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Abstract: In this paper, the sinc-Galerkin method is used
for numerically solving a class of nonlinear differential
equations with boundary conditions. The importance of
this study is that sinc approximation of the nonlinear term
is stated as a new theorem. The method introduced here is
tested on some nonlinear problems and is shown to be a
very efficient and powerful tool for obtaining approximate
solutions of nonlinear ordinary differential equations.
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1 Introduction

Since nonlinear differential equations are often used to
model scientific phenomena, finding the solution of these
equations is quite important. Many methods havebeen
developed for solving these equations numerically since
most of them either have no analytical solution or are
quite difficult to solve. Some numerical methods in the
literature include the following: the variational iteration
method [1-3], the homotopy analysis method [4-7], the
Adomian decomposition method [8-10], the homotopy
perturbation method [11, 12], the Haar wavelet method
[13, 14], the Chebyshev wavelets method [15] and the Leg-
endre wavelets method [16, 17].

One of the numerical techniques that is frequently
used in the literature is the sinc-Galerkin method, which
is used as a base for translated sinc functions. Some stud-
ies involving the sinc-Galerkin include [20-26].

The aim of this paper is use the sinc-Galerkin method
to find the approximate solution of the following class of
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boundary value problems for nonlinear ordinary differen-
tial equations:

w2y + u1 )y + po@y + n1(¥y°y + na(y” = f(x) (1)
subject to homogeneous boundary conditions
y(a) =0, y(b) = 0. @

The originality of this study is to present a new the-
orem for sinc approximation of the nonlinear term when
s = 2 in Equation 1.

The rest of this paper is organized as follows: In Sec-
tion 2, some preliminaries and basic definitions related to
sinc functions are recalled. In Section 3, the sinc-Galerkin
method is constructed for solving a class of nonlinear ordi-
nary differential equations through a new theorem. In Sec-
tion 4, numerical examples are presented. Finally, conclu-
sions and remarks are made in Section 5.

2 Preliminaries and notation

In this section, some preliminaries and notations related
to sinc basic functions are given. For more details, see [18,
19, 21, 23, 27, 28].

Definition 1. The sinc function is defined on the whole real
line —oo < x < oo by

x#0
x =0.

sin(rx)
X

sinc(x) = { 1

Definition 2. Forh > Oandk = 0, 1, +2, ... the translated
sinc functions with space node are given by:

i x-kh
sin (TIT)

x-kh X %kh
T
1 x = kh.

S(k, h)(x) = sinc(x — kh) =

h

Definition 3. Iff(x) is defined on the real line, then for h >
0 the series

C(f, h(x) = i f(kh)sinc(x_hkh>

k=—o0

is called the Whittaker cardinal expansion of f whenever
this series converges.
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In general, approximations can be constructed for infinite,
semi-infinite and finite intervals. To construct an approxi-
mation on the interval (a, b), the conformal map

-1 (372)

is employed. The basis functions on the interval (a, b) are
derived from the composite translated sinc functions

Si(2) = S(k, h)(2) o (2) = sinc <M) )

The inverse map of w = ¢(z) is

_ 1,y a+be”
z=¢ (W)= 1+evw ’

The sinc grid points z; € (a, b) in Dg will be denoted
by x; because they are real. For the evenly spaced nodes
{kh} 2 _.. on the real line, the image which corresponds to

these nodes is denoted by

a+be

Xp=¢ L(kh) = ok k=0,+1,+2,...

Theorem 1. Let I be (0, 1), F € B(Dg), then for h > O suf-
ficiently small,

F(z;) ~ F(2)k(¢, h)(2)
F/F(Z)d _hz(,b(])) - ésm(m;b(z)/h)d
= Iy, ©)
where

S,

—TT
=eth,
z€oD

ing(z)
‘k((p’h”zgaD: e[ h Sgn(Im¢(Z))]

For the sinc-Galerkin method, the infinite quadrature rule
must be truncated to a finite sum. The following theorem
indicates the conditions under which an exponential con-
vergence results.

Theorem 2. If there exist positive constants a, 8 and C

such that
F(x) e Wl x ¢ h((~oo, 00))
§00) ° C{ e xep(O,00).

then the error bound for the quadrature rule (3) is

—aMh -BNh
C (e + € )
a B

+ IF|. )

N

/F(x)dx h Z

r

F(x])
¢'(x;)

The infinite sum in (3) is truncated with the use of (4) to
arrive at the inequality (5). Making the selections

nd

h = aM
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T ey

where [|.]] is the integer part of the statement and M is the
integer value which specifies the grid size, then

/ FOdx = h Z 0 (e @™y (g)

These theorems are used for the integrals in the inner prod-
ucts that arise from the method presented here.

F(x]

3 The sinc-Galerkin method

An approximate solution of y(x) in (1) is represented by the
formula

N
yn(x) = Z ckSkx), n=M+N+1 7

k=—M
where S is function S(k, h) o ¢p(x) for some fixed step size
h. The unknown coefficients ¢; in (7) are determined by or-
thogonalizing the residual with respect to the basis func-
tions, i.e.

+

(Mo, Sk)
(n,0y" (), S)
,...,N. (8

(i)Y, Se) +
(niGY°y, Sk) +
(f(x), Sx), k=-M

The inner product used for the sinc-Galerkin method is de-
fined by

200y, Sx)

+

b
= / f)g(x)w(x)dx,

where w(x) a weight function which is taken for second-
order boundary value problems in the following form

1
wx) = ——.
¢'(x)
We need the following theorems for the approximation of
inner products in (8).

Theorem 3. The following relations hold:

2
. (0956
400y, 55) = h}%;}(py(x})hl 80its) )
N2 )’(Xl) (@)
(1 00y, i) = ~h ;V“Z;(P(X i Sgs1ig)  (10)
and for G(x) = na(x)y" (x), G(x) = po(x)y(x) and G(x) = f(x)
(G, Sp) ~ G(Xk)W(Xk). 1)

@' (xx)
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The proof of this theorem and values of g ;(x) can be
found in [21].

Theorem 4. The following relation holds:

h . ysi(y)

(n(0y°y’, i) = -

[ 80 nyw)xy) + 69 (ny w) (x,)} 12)

Proof. For ni(x)y’y’, the inner product with sinc basis el-
ements is given by

b
(n1y°y’, Si) = / Y°y (Sgniw)dx.
a

Integrating by parts to remove the first derivative from the
dependent variable y leads to the equality

b

/ YL (Smw) dx,

a

Bi - (13)

sy’ -
(ny’y, Si) = S+1
where the boundary term is
b

_ 1 s+1 _
B, = [m()’ Sknlw):| =0

X=a
and expanding the derivatives under the integral in (13)
yields

(n1y®y’, Sx) =
b
/ys+1 [Si1)¢'(n1w)+5§°)(n1w)' dx

a

1

“5r 1 (14)

Applying the sinc quadrature rule given by (6) to the right-
hand side of (3.8) and deleting the error term yields (12).
O

Replacing each term of (8) with the approximations de-
fined in (9)-(12), respectively, and replacing y(x;) by c;, and
dividing by h, we obtain the following theorem:

Theorem 5. If the assumed approximate solution of the
boundary-value problem (1),(2) is (7), then the discrete sinc-
Galerkin system for the determination of the unknown coef-

ficients {c;}}_y is given, for k = — .,N, by
N
) 82,i(Xj 5081 1(X]
Py {Zhl%(ﬁx) th i g ()
1) s+1 (n1w) (X)) s+1
_S+1[ By ()™ + S ck]}
Mo ()w(xy) o (wlx) o _ foadwla)
¢ P) T P

(15)
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Now we define some notation to represent the system (15)
in matrix-vector form. Let D(y) denote a diagonal matrix
whose diagonal elements are y(x_y), y(x_p+1), » Y(xn) and
non-diagonal elements are zero; also for 0 < i < 2, let 1@
denote the matrices

I(i) [6(1)]

jk jrk=-M

> "’N)

where D and I are square matrices of dimension n x n. In
order to calculate the unknown coefficients c¢; in the non-
linear system (15), we rewrite this system using the above
notations in matrix-vector form as

AC+BC*+EC" =F, (16)

where

Ll il ()
511 iﬂ“DQuw)+ﬂmD<O%y)>}

E- D(?f)

F- D(J)

) . ) ) NG
C}:(C]—M’C)—M+1""’CJN—1’C]I\I) , j=1,s,r.

Now we have a nonlinear system of n equations in n
unknown coefficients given by (16). Solving by Newton’s
method, we can obtain the unknown coefficients c that
are necessary for approximating the solution in (7).

4 Computational examples

In this section, some numerical examples are presented to
show the accuracy of the method introduced here using
MATHEMATICA 10.In all examples, d = /2, a = 8 = 1/2,
and N = M. Ey shows the maximum absolute error be-
tween the exact solution and numerical solution at col-
location points by this method. Also, Ry in the examples
indicates the experimental rate of convergence that calcu-
lated as [28]

Ry = log[Eyy,/En]
N~ 7 __~ -
log2
Example 1 Consider the following nonlinear boundary

value problem

Y (0 +xy* )y () + x*y3(x) = f(x)
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Table 1: Maximum error and convergence rate for Example 4.

Max. Error Ey

N Rate of convergence Ry
2 4.49x1072

4

8

9.94 x1073 2.17
8.23x107* 3.59
16 3.22x107° 4.67
32 4.64x1077 6.11
64 8.00x1071° 9.18

Table 2: Numerical results for Example 4.

X Exactsol. Errorfor N=2 Errorfor N = 64
0 0 0 0

0.1 0.0729 1.48 x 1072 7.80x 10710
0.2 0.1024 3.85x 1072 8.00x 10710
0.3 0.1029 4.49 x 1072 1.94 x 10710
0.4 0.0864 3.78x 1072 1.24 x 10710
0.5 0.0625 2.45 x 1072 2.07 x 10710
0.6 0.0384 1.12x 1072 2.26x10710
0.7 0.0189 2.15x 1073 2.42x10710
0.8 0.0064 1.32x1073 3.94 x 10710
0.9 0.0009 2.09 x 1073 5.87 x 10710
1 0 0 0

subject to the homogeneous boundary conditions

y(0)=0, y(@@)=0,

where
flx) = (1—)()(6(—1+x)+6)(+(—1+x)8x5+(—1+)()7x3 (-1+4x)).

The exact solution of this problem is given by y(x) = x(1 -
x)3. The numerical solutions which are obtained by using
the presented method for this problem are given in Table 1
and Table 2. Additionally, graphs of the exact and approx-
imate solutions for different values of collocation points N
are provided in Figure 1.

Example 2 Consider the nonlinear singular boundary
value problem

1
x(x-1)

Y20y (0 -

V200 = £

" 1
y -2y )+
subject to the homogeneous boundary conditions

y(0©) =0, y(@)=0,
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Table 3: Maximum error and convergence rate for Example 4.

Max. Error Ey

N Rate of convergence Ry
2 1.35x107!

4

8

4,65 x 1072 1.53
7.92x1073 2.55
16 7.01x107* 3.49
32 3.34x107° 4.39
64 3.27x1077 6.67

Table 4: Numerical results for Example 4.

X Exact sol. Errorfor N =2 Errorfor N = 64
0 0 0 0

0.1 0.03090 5.15x 1072 2.40x 1077

0.2 0.11755 1.23x107! 2.81x1077

0.3 0.24270 1.35x107! 1.38x 1077

0.4 0.38042 1.02x107! 1.03x 1077

0.5 0.50000 5.71x1072 1.58 x 1077

0.6 0.57063  2.64x1072 2.54x1078

0.7 0.56631 2.70x1072 1.24x 1077

0.8 0.47022 5.11x1072 3.27x1077

0.9 0.27811 3.36x1072 2.78x1077

1 0 0 0

where
f(x) = mcosmx- SIMTX_ 2y sin 71x — M
7x3 cos mx(sinx)®  x%(sin 7x)*
x-1 x-1

The exact solution of this problem is y(x) = x sin x. The
numerical solutions which are obtained by using the pre-
sented method for this problem are given in Table 3 and
Table 4. Additionally, graphs of the exact and approximate
solutions for different values of N are provided in Figure 2.

5 Conclusion

In this paper, the sinc-Galerkin method is introduced to
obtain the approximate solutions of a class of nonlinear
differential equations. In order to illustrate the accuracy
of the presented method, the numerical results are com-
pared with results from exact solutions. From these com-
parisons, it is concluded that the sinc-Galerkin method
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Figure 1: Graphs of exact and approximate solutions for Example 4 when N = 2, 4, 8, 16, 32, 64.
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Figure 2: Graphs of exact and approximate solutions for Example 4 when N = 2, 4, 8, 16, 32, 64.
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provides a good approximate solution and shows promise
for solving other types of nonlinear differential equations.
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