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Abstract: In this paper, the sinc-Galerkin method is used
for numerically solving a class of nonlinear di�erential
equations with boundary conditions. The importance of
this study is that sinc approximation of the nonlinear term
is stated as a new theorem. The method introduced here is
tested on some nonlinear problems and is shown to be a
very e�cient and powerful tool for obtaining approximate
solutions of nonlinear ordinary di�erential equations.
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1 Introduction
Since nonlinear di�erential equations are often used to
model scienti�c phenomena, �nding the solution of these
equations is quite important. Many methods havebeen
developed for solving these equations numerically since
most of them either have no analytical solution or are
quite di�cult to solve. Some numerical methods in the
literature include the following: the variational iteration
method [1–3], the homotopy analysis method [4–7], the
Adomian decomposition method [8–10], the homotopy
perturbation method [11, 12], the Haar wavelet method
[13, 14], the Chebyshev wavelets method [15] and the Leg-
endre wavelets method [16, 17].

One of the numerical techniques that is frequently
used in the literature is the sinc-Galerkin method, which
is used as a base for translated sinc functions. Some stud-
ies involving the sinc-Galerkin include [20–26].

The aim of this paper is use the sinc-Galerkin method
to �nd the approximate solution of the following class of
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boundary value problems for nonlinear ordinary di�eren-
tial equations:

µ2(x)y′′ + µ1(x)y′ + µ0(x)y + n1(x)ysy′ + n2(x)yr = f (x) (1)

subject to homogeneous boundary conditions

y(a) = 0, y(b) = 0. (2)

The originality of this study is to present a new the-
orem for sinc approximation of the nonlinear term when
s ≥ 2 in Equation 1.

The rest of this paper is organized as follows: In Sec-
tion 2, some preliminaries and basic de�nitions related to
sinc functions are recalled. In Section 3, the sinc-Galerkin
method is constructed for solving a class of nonlinear ordi-
nary di�erential equations through a new theorem. In Sec-
tion 4, numerical examples are presented. Finally, conclu-
sions and remarks are made in Section 5.

2 Preliminaries and notation
In this section, some preliminaries and notations related
to sinc basic functions are given. For more details, see [18,
19, 21, 23, 27, 28].

De�nition 1. The sinc function is de�ned on the whole real
line −∞ < x < ∞ by

sinc(x) =
{

sin(πx)
πx x 6= 0

1 x = 0.

De�nition 2. For h > 0 and k = 0, ±1, ±2, ... the translated
sinc functions with space node are given by:

S(k, h)(x) = sinc
( x − kh

h

)
=


sin
(
π x−khh

)
π x−khh

x 6= kh
1 x = kh.

De�nition 3. If f (x) is de�ned on the real line, then for h >
0 the series

C(f , h)(x) =
∞∑

k=−∞
f (kh)sinc

( x − kh
h

)
is called the Whittaker cardinal expansion of f whenever
this series converges.
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In general, approximations can be constructed for in�nite,
semi-in�nite and �nite intervals. To construct an approxi-
mation on the interval (a, b), the conformal map

ϕ(z) = ln
( z − a
b − z

)
is employed. The basis functions on the interval (a, b) are
derived from the composite translated sinc functions

Sk(z) = S(k, h)(z) ◦ ϕ(z) = sinc
(
ϕ(z) − kh

h

)
.

The inverse map of w = ϕ(z) is

z = ϕ−1(w) = a + be
w

1 + ew .

The sinc grid points zk ∈ (a, b) in DE will be denoted
by xk because they are real. For the evenly spaced nodes
{kh}∞k=−∞ on the real line, the image which corresponds to
these nodes is denoted by

xk = ϕ−1(kh) =
a + bekh
1 + ekh

, k = 0, ±1, ±2, ...

Theorem 1. Let Γ be (0, 1), F ∈ B(DE), then for h > 0 suf-
�ciently small,∫

Γ

F(z)dz − h
∞∑

j=−∞

F(zj)
ϕ′(zj)

= i
2

∫
∂D

F(z)k(ϕ, h)(z)
sin(πϕ(z)/h) dz

≡ IF , (3)

where

|k(ϕ, h)|z∈∂D =
∣∣∣∣e[ iπϕ(z)h sgn(Imϕ(z))

]∣∣∣∣
z∈∂D

= e
−πd
h .

For the sinc-Galerkin method, the in�nite quadrature rule
must be truncated to a �nite sum. The following theorem
indicates the conditions under which an exponential con-
vergence results.

Theorem 2. If there exist positive constants α, β and C
such that∣∣∣∣ F(x)ϕ′(x)

∣∣∣∣ ≤ C
{
e−α|ϕ(x)| x ∈ ψ((−∞,∞))
e−β|ϕ(x)| x ∈ ψ((0,∞)).

(4)

then the error bound for the quadrature rule (3) is∣∣∣∣∣∣
∫
Γ

F(x)dx − h
N∑

j=−M

F(xj)
ϕ′(xj)

∣∣∣∣∣∣ ≤ C
(
e−αMh
α + e

−βNh

β

)
+ |IF |. (5)

The in�nite sum in (3) is truncated with the use of (4) to
arrive at the inequality (5). Making the selections

h =
√
πd
αM

and
N ≡

[⌊αM
β + 1

⌋]
where [b.c] is the integer part of the statement andM is the
integer value which speci�es the grid size, then∫

Γ

F(x)dx = h
N∑

j=−M

F(xj)
ϕ′(xj)

+ O
(
e−(παdM)1/2

)
. (6)

These theoremsareused for the integrals in the inner prod-
ucts that arise from the method presented here.

3 The sinc-Galerkin method
An approximate solution of y(x) in (1) is represented by the
formula

yn(x) =
N∑

k=−M
ckSk(x), n = M + N + 1 (7)

where Sk is function S(k, h) ◦ ϕ(x) for some �xed step size
h. The unknown coe�cients ck in (7) are determined by or-
thogonalizing the residual with respect to the basis func-
tions, i.e.

〈µ2(x)y′′, Sk〉 + 〈µ1(x)y′, Sk〉 + 〈µ0(x)y, Sk〉
+ 〈n1(x)ysy′, Sk〉 + 〈n2(x)yr(x), Sk〉
= 〈f (x), Sk〉, k = −M, . . . , N . (8)

The inner product used for the sinc-Galerkinmethod is de-
�ned by

〈f , g〉 =
b∫
a

f (x)g(x)w(x)dx,

where w(x) a weight function which is taken for second-
order boundary value problems in the following form

w(x) = 1
ϕ′(x) .

We need the following theorems for the approximation of
inner products in (8).

Theorem 3. The following relations hold:

〈µ2(x)y′′, Sk〉 ≈ h
N∑

j=−M

2∑
i=0

y(xj)
ϕ′(xj)hi

δ(i)kj g2,i(xj) (9)

〈µ1(x)y′, Sk〉 ≈ −h
N∑

j=−M

1∑
i=0

y(xj)
ϕ′(xj)hi

δ(i)kj g1,i(xj) (10)

and for G(x) = n2(x)yr(x), G(x) = µ0(x)y(x) and G(x) = f (x)

〈G, Sk〉 ≈ h
G(xk)w(xk)
ϕ′(xk)

. (11)
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The proof of this theorem and values of gk,i(x) can be
found in [21].

Theorem 4. The following relation holds:

〈n1(x)ysy′, Sk〉 ≈ −
h

s + 1

N∑
j=−M

ys+1(xj)
ϕ′(xj)

×
[
1
h δ

(1)
kj (ϕ

′n1w)(xj) + δ(0)kj (n1w)
′(xj)

]
. (12)

Proof. For n1(x)ysy′, the inner product with sinc basis el-
ements is given by

〈n1ysy′, Sk〉 =
b∫
a

ysy′(Skn1w)dx.

Integrating by parts to remove the �rst derivative from the
dependent variable y leads to the equality

〈n1ysy′, Sk〉 = B1 −
1

s + 1

b∫
a

ys+1(Skn1w)′dx, (13)

where the boundary term is

B1 =
[

1
s + 1(y

s+1Skn1w)
]b
x=a

= 0

and expanding the derivatives under the integral in (13)
yields

〈n1ysy′, Sk〉 =

− 1
s + 1

b∫
a

ys+1
[
S(1)k ϕ

′(n1w) + S(0)k (n1w)′
]
dx. (14)

Applying the sinc quadrature rule given by (6) to the right-
hand side of (3.8) and deleting the error term yields (12).

Replacing each term of (8) with the approximations de-
�ned in (9)-(12), respectively, and replacing y(xj) by cj, and
dividing by h, we obtain the following theorem:

Theorem 5. If the assumed approximate solution of the
boundary-value problem (1),(2) is (7), then the discrete sinc-
Galerkin system for the determination of the unknown coef-
�cients {cj}Nj=−M is given, for k = −M, . . . , N, by

N∑
j=−M

{ 2∑
i=0

1
hi
δ(i)kj

g2,i(xj)
ϕ′(xj)

cj −
1∑
i=0

1
hi
δ(i)kj

g1,i(xj)
ϕ′(xj)

cj

− 1
s + 1

[1
h δ

(1)
kj (n1w)(xj)c

s+1
j + (n1w)′(xk)

ϕ′(xk)
cs+1k

]}

+µ0(xk)w(xk)
ϕ′(xk)

ck +
n2(xk)w(xk)
ϕ′(xk)

crk =
f (xk)w(xk)
ϕ′(xk)

.

(15)

Now we de�ne some notation to represent the system (15)
in matrix-vector form. Let D(y) denote a diagonal matrix
whose diagonal elements are y(x−M), y(x−M+1), , y(xN) and
non-diagonal elements are zero; also for 0 ≤ i ≤ 2, let I(i)

denote the matrices

I(i) = [δ(i)jk ], j, k = −M, . . . , N,

where D and I are square matrices of dimension n × n. In
order to calculate the unknown coe�cients ck in the non-
linear system (15), we rewrite this system using the above
notations in matrix-vector form as

AC + BCs + ECr = F, (16)

where

A =
2∑
j=0

1
hj
I(j)D

(
g2,j
ϕ′

)
−

1∑
j=0

1
hj
I(j)D

(
g1,j
ϕ′

)
+ I(0)D

(
g0,0
ϕ′

)

B = − 1
s + 1

[
1
h I

(1)D
(
n1w

)
+ I(0)D

(
(n1w)′
ϕ′

)]

E = D
(
n2w
ϕ′

)

F = D
(
wf
ϕ′

)
1

Cj =
(
cj−M , c

j
−M+1, . . . , c

j
N−1, c

j
N

)T
, j = 1, s, r.

Now we have a nonlinear system of n equations in n
unknown coe�cients given by (16). Solving by Newton’s
method, we can obtain the unknown coe�cients ck that
are necessary for approximating the solution in (7).

4 Computational examples
In this section, some numerical examples are presented to
show the accuracy of the method introduced here using
MATHEMATICA 10. In all examples, d = π/2, α = β = 1/2,
and N = M. EN shows the maximum absolute error be-
tween the exact solution and numerical solution at col-
location points by this method. Also, RN in the examples
indicates the experimental rate of convergence that calcu-
lated as [28]

RN =
log[EN/2/EN ]

log 2 .

Example 1 Consider the following nonlinear boundary
value problem

y′′(x) + xy2(x)y′(x) + x2y3(x) = f (x)
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Table 1:Maximum error and convergence rate for Example 4.

N Max. Error EN Rate of convergence RN
2 4.49 × 10−2

4 9.94 × 10−3 2.17
8 8.23 × 10−4 3.59
16 3.22 × 10−5 4.67
32 4.64 × 10−7 6.11
64 8.00 × 10−10 9.18

Table 2: Numerical results for Example 4.

x Exact sol. Error for N = 2 Error for N = 64
0 0 0 0
0.1 0.0729 1.48 × 10−2 7.80 × 10−10

0.2 0.1024 3.85 × 10−2 8.00 × 10−10

0.3 0.1029 4.49 × 10−2 1.94 × 10−10

0.4 0.0864 3.78 × 10−2 1.24 × 10−10

0.5 0.0625 2.45 × 10−2 2.07 × 10−10

0.6 0.0384 1.12 × 10−2 2.26 × 10−10

0.7 0.0189 2.15 × 10−3 2.42 × 10−10

0.8 0.0064 1.32 × 10−3 3.94 × 10−10

0.9 0.0009 2.09 × 10−3 5.87 × 10−10

1 0 0 0

subject to the homogeneous boundary conditions

y(0) = 0, y(1) = 0,

where

f (x) = (1−x)
(
6(−1+x)+6x+(−1+x)8x5+(−1+x)7x3(−1+4x)

)
.

The exact solution of this problem is given by y(x) = x(1 −
x)3. The numerical solutions which are obtained by using
the presented method for this problem are given in Table 1
and Table 2. Additionally, graphs of the exact and approx-
imate solutions for di�erent values of collocation points N
are provided in Figure 1.
Example 2 Consider the nonlinear singular boundary
value problem

y′′(x) − 1
x y
′(x) + 1

x(x − 1) y
3(x)y′(x) − 1

x − 1 y
2(x) = f (x)

subject to the homogeneous boundary conditions

y(0) = 0, y(1) = 0,

Table 3:Maximum error and convergence rate for Example 4.

N Max. Error EN Rate of convergence RN
2 1.35 × 10−1

4 4.65 × 10−2 1.53
8 7.92 × 10−3 2.55
16 7.01 × 10−4 3.49
32 3.34 × 10−5 4.39
64 3.27 × 10−7 6.67

Table 4: Numerical results for Example 4.

x Exact sol. Error for N = 2 Error for N = 64
0 0 0 0
0.1 0.03090 5.15 × 10−2 2.40 × 10−7

0.2 0.11755 1.23 × 10−1 2.81 × 10−7

0.3 0.24270 1.35 × 10−1 1.38 × 10−7

0.4 0.38042 1.02 × 10−1 1.03 × 10−7

0.5 0.50000 5.71 × 10−2 1.58 × 10−7

0.6 0.57063 2.64 × 10−2 2.54 × 10−8

0.7 0.56631 2.70 × 10−2 1.24 × 10−7

0.8 0.47022 5.11 × 10−2 3.27 × 10−7

0.9 0.27811 3.36 × 10−2 2.78 × 10−7

1 0 0 0

where

f (x) = π cos πx − sin πx
x − π2x sin πx − x

2(sin πx)2
x − 1

+ πx3 cos πx(sin πx)3
x − 1 + x

2(sin πx)4
x − 1 .

The exact solution of this problem is y(x) = x sin πx. The
numerical solutions which are obtained by using the pre-
sented method for this problem are given in Table 3 and
Table 4. Additionally, graphs of the exact and approximate
solutions for di�erent values of N are provided in Figure 2.

5 Conclusion
In this paper, the sinc-Galerkin method is introduced to
obtain the approximate solutions of a class of nonlinear
di�erential equations. In order to illustrate the accuracy
of the presented method, the numerical results are com-
pared with results from exact solutions. From these com-
parisons, it is concluded that the sinc-Galerkin method
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Figure 1: Graphs of exact and approximate solutions for Example 4 when N = 2, 4, 8, 16, 32, 64.
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Figure 2: Graphs of exact and approximate solutions for Example 4 when N = 2, 4, 8, 16, 32, 64.
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provides a good approximate solution and shows promise
for solving other types of nonlinear di�erential equations.
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