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Abstract: In the present study, we investigate the unsteady
peristaltic transport of a viscoelastic �uid with fractional
Burgers’ model in an inclined tube. We suppose that the
viscosity is variable in the radial direction. This analy-
sis has been carried out under low Reynolds number and
long-wavelength approximations. An analytical solution
to the problem is obtained using a fractional calculus ap-
proach. Figures are plotted to show the e�ects of angle
of inclination, Reynolds number, Froude number, mate-
rial constants, fractional parameters, parameter of viscos-
ity and amplitude ratio on the pressure gradient, pressure
rise, friction force, axial velocity and on themechanical ef-
�ciency.

Keywords: unsteady peristaltic transport; fractional Burg-
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1 Introduction
Peristaltic transport is a process that occurs frequently
both in nature and industrial applications. In physiologi-
cal processes, the transport of �uids from one place to any
other place due to contraction and relaxation of the chan-
nel walls is termed peristalsis. These contractions and re-
laxations travel in the form of waves along the channel
walls and propel the �uid. Peristalsis is involved in swal-
lowing food through the oesophagus or transport of chyme
in small intestines. The �rst investigation of peristalsis
was by Latham [1] and Ja�rin and Shapiro [2]. Later, sev-
eral studies (such as such [3–8]) analyzed the peristaltic
transport phenomenon for a Newtonian �uid. Viscoelas-
tic �uids are non- Newtonian and possess both viscous
and elastic properties. These �uids play an important role
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in �uid mechanics. For example, Maxwell, Oldroyd, Jef-
frey, Johnson-Segalman, Thein-Tanner, Micropolar, Third
and Fourth grade �uids have all been the subject of work,
such as [9–16] respectively. More recently in rheology, the
study of viscoelastic �uids �ows with fractional deriva-
tives play an important role. The starting point of the frac-
tional derivative of the viscoelastic model is usually a clas-
sical di�erential equation which is modi�ed by replacing
the time derivative of an integer order by the so-called
Riemann-Liouville fractional calculus operators. This gen-
eralization allows one to precisely de�ne non-integer or-
der integrals or derivatives. In recent years, peristaltic
transport has been studied using the fractional Maxwell
model [17, 18], fractional Oldroyd-B model [19] or of frac-
tional second-grademodel [20]. These �uidmodels can be
treated as the special cases of another kind of viscoelas-
tic �uid, known as the fractional Burgers’ �uid. The Burg-
ers’ model has been utilized to describe the motion of the
Earth’s maentl. This model is also the preferred model to
explain the behavior of asphalt and asphalt concrete [21].
In addition, the Burgersmodel is sometimes used tomodel
other geological structures, such as Olivine rocks [22]. Re-
cently, Hayat et al. [23] found an exact solution for rotating
�ows of a generalized Burgers’ �uid on an in�nite insulat-
ing plate when the �uid is permeated by a transverse mag-
netic �eld. Khan et al. [24] have considered the accelerated
�ows for a fractional Burgers’ model for two cases: �ow in-
duced by constantly accelerating plate, and �ow induced
by variable accelerated plate, and Khan et al. [25] analyzed
the in�uences ofHall current on the �owof a Burgers’ �uid
in a pipe. Meanwhile, Siddiqui et al. [26] investigated the
magnetohydrodynamics �ow of an electrically conducting
incompressible Burgers’ �uid in an orthogonal rheometer.
The fractional Burgers’s �uid generalizes several types of
�uids as mentioned bellow. It helps to study the applica-
tions of �uid engineering and biomedical engineering and
it can capture the complex rheological characteristics of
many real �uids better than other models. In addition, the
Burgers model is applicable in transportation of industrial
�uids by peristaltic pumping, as well as for peristaltic �ow
of physiological �uids in deformable domains such as the
motion of blood, food bolus and chyme in the small intes-
tine. The availability of the solutions for viscoelastic �u-
ids is signi�cant because such solutions can not only ex-
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plain the physics of some fundamental �ows, but can also
be used as a benchmark for the complicated numerical
codes that have been developed for much more complex
�ows. For these reasons, andmotivated by the application
of fractional calculus in viscoelastic �uid engineering, this
paper will focus on the as-yet unstudied peristaltic trans-
port of a fractional Burgers’ �uid. The aim of this paper is
to analytically investigate the unsteady peristaltic �ow of
a viscoelastic �uid using the fractional Burgers’s model,
and with variable viscosity, in an inclined tube. The prob-
lem is simpli�ed under long-wavelength and lowReynolds
number approximations. The e�ects of di�erent physical
parameters are shown graphically. Parameters studied in-
clude, angle of inclination A, Reynolds Re and Froude Fr
numbers, material constants (λ1, λ2, λ3), fractional pa-
rameters (α, β), viscosity δ and the amplitude ratio ϕ, and
their e�ects are studied on the pressure gradient, pressure
rise, �ctional force, axial velocity and on the mechanical
e�ciency of pumping.

2 Formulation and analysis
We consider the unsteady peristaltic transport of a vis-
coelastic �uid through an inclined axisymmetric tube
thickness with a sinusoidal wave traveling down its wall.
In a cylindrical coordinate system (R̄, Z̄), the dimensional
equation for the tube radius for an in�nite wave train is:

H̄(Z̄, t̄) = a + b sin ( 2π
λ (Z̄ − ct̄)), (1)

where a is the average radius of the tube, b is the ampli-
tude of the wave, λ is the wavelength and c is the wave
speed (see Figure 1).

Figure 1: Geometry of the problem.

The viscoelastic �uid is modeled as a fractional Burgers’
model given by:

(
1 + λ̄1

α D̃αt̄ + λ̄2
α D̃2α

t̄

)
S̄ = µ̄(r̄)

(
1 + λ̄3

β D̃βt̄
)
γ̇, (2)

where t̄, S̄, γ̇ and µ̄(r̄) are the time, shear stress, rate of
shear strain and the viscosity function, respectively. λ̄1
and λ̄3 (< λ̄1) are the relaxation and the retardation times,
respectively, λ̄2 is the newmaterial parameter of the Burg-
ers’ �uid having the dimension of t2, α and β are the frac-
tional time derivative parameters such that 0 ≤ α ≤ β ≤ 1.
D̃αt is the upper convected fractional derivative de�ned by:

D̃αt̄ (S̄) = Dαt̄ (S̄) + (V̄.∇)(S̄) − L̄(S̄) − (S̄)L̄T (3)

in which:
γ̇ = (∇V̄) + (∇V̄)T , (4)

where L̄ is the velocity gradient and V̄ is the velocity vector,
and Dαt̄ = ∂αt̄ is the fractional di�erentiation operator of
order α with respect to t and may be de�ned as fractional
complex transform [27]

Dαt C(t) = 1
Γ(n − α)

dn
dtn

t∫
t0

(s− t)n−α−1 [C0(s)−C(s)
]
ds, (5)

or it can convert a fractional di�erential equation to a par-
tial di�erential equation as given in [28].

Here Γ(.) denotes the Gamma function and

D̃2α
t (S) = D̃αt (D̃αt (S)). (6)

We choose a cylindrical coordinate system (r̄, z̄) where the
z̄-axis is the longitudinal direction and the r̄-axis is trans-
verse to it.

The equations ofmotion for the �owof an incompress-
ible �uid are given by:

ρ
[
∂ū
∂t̄

+ ū ∂ū∂r̄ + w̄ ∂ū∂z̄

]
= −∂p̄∂r̄ + 1

r̄
∂
∂r̄ (r̄S̄ r̄ r̄) +

∂S̄ r̄z̄
∂z̄ − ρ g cos(A) (7)

ρ
[
∂w̄
∂t̄

+ ū ∂w̄∂r̄ + w̄ ∂w̄∂z̄

]
= −∂p̄∂z̄ + 1

r̄
∂
∂r̄ (r̄S̄ r̄z̄) +

∂S̄z̄z̄
∂z̄ + ρ g sin(A) (8)

∂ū
∂r̄ + ū

r̄ + ∂w̄
∂z̄ = 0, (9)

where ρ is the �uid density, ū and w̄ are the velocity com-
ponents in the wave frame and p̄ is the pressure.
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We assume that the extra stress S̄ depends on r and
t only. After using the initial condition S̄(t = 0), Equa-
tions (2-6) yield S̄ r̄ r̄ = S̄z̄z̄ = S̄ r̄θ̄ = S̄θ̄z̄ = 0 and

(
1 + λ̄1

α ∂α
∂t̄α

+ λ̄2
α ∂2α

∂t̄2α

)
S̄ r̄z̄ = µ̄(r̄)(

1 + λ̄3
β ∂β

∂t̄β

)
∂w̄
∂r̄ , (10)

where S̄ r̄z̄ is the tangential stress.
For further analysis, we introduce the following di-

mensionless parameters:

z = z̄
λ ; Z = Z̄

λ ; r = r̄
a ; R = R̄

a ;H = H̄
a ; t = ct̄

λ ;

u = λū
ac ;U = λŪ

ac ;w = w̄
c ;W = W̄

c ; λ1 =
¯cλ1
λ ;

λ2 =
¯cλ2
λ ; λ3 =

¯cλ3
λ ; p = a2p̄

µλc ; µ(r) = µ̄(r̄)
µ0

;

Q = Q̄
πca2 ; ε = a

λ ; Re = ρ c a
µ0

; Fr = c2

ga ;ϕ = b
a , (11)

where Ū and W̄ are the velocity components in the �xed
frame, µ0 is the viscosity on the z̄-axis (r̄ = 0), ε is the di-
mensionless wave number, Re is the Reynolds number, Fr
is the Froude number and ϕ is the amplitude ratio with
0 < ϕ < 1.

Using the above non-dimensional quantities and un-
der the assumptions of the long-wavelength approxima-
tion (i.e., ε � 1 or λ � a) and the low Reynolds number
(i.e., Re → 0), the continuity equation is satis�ed and the
equations of motion (7-9) can be reduced to:

(
1 + λα1Dαt + λα2D2α

t

)(∂p
∂z −

Re
Fr sin(A)

)
=(

1 + λβ3D
β
t

)(1
r

(
µ(r)r ∂w∂r

))
. (12)

The boundary conditions are:

w = −1 at r = H (13)

∂w
∂r = 0 at r = 0, (14)

where H = 1 +ϕ sin(2πz) is the dimensionless equation of
the tube radius in the wave frame.

Integrating (12), and using the boundary conditions
(13-14), we obtain:

(
1 + λα1Dαt + λα2D2α

t

)(∂p
∂z −

Re
Fr sin(A)

)
 r∫
H

r
µ(r) dr

 = 2
(

1 + λβ3D
β
t

)
(w + 1). (15)

The volume rate of �ow in the �xed coordinate system (R,
Z) is given as:

Q(Z, t) = 2
H∫

0

W R dR. (16)

Using the transformations between the laboratory and the
wave frames, in the dimensionless form, given by:

z = Z − t ; r = R ; u = U ; w = W − 1 (17)

the �ow rate (16) becomes:

Q(Z, t) = q + H2, (18)

where q is the volume �ow rate in the moving coordinate
system, and is given by:

q = 2
H∫

0

w r dr. (19)

Equation (15) becomes:

(
1 + λα1Dαt + λα2D2α

t

)(∂p
∂z −

Re
Fr sin(A)

)
=(

1 + λβ3D
β
t

) Q(Z, t)[∫ H
0

(∫ r
H

r
µ(r) dr

)
r dr

] . (20)

The time-averaged �ow rate is de�ned by:

Q =
1∫

0

Q(Z, t) dt = q + 1 + ϕ2

2 . (21)

Using (21), (18) becomes:

Q(Z, t) = Q + H2 − 1 − ϕ
2

2 . (22)

On substituting (22) into (20), we then obtain:

(
1 + λα1Dαt + λα2D2α

t

)(∂p
∂z −

Re
Fr sin(A)

)
=

(
1 + λβ3D

β
t

) Q + H2 − 1 − ϕ2

2[∫ H
0

(∫ r
H

r
µ(r) dr

)
r .dr

]
 (23)
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Figure 2: Pressure gradient ∂p∂z versus axial distance z when Q = −2 and t = 1 corresponding to (a) di�erent values of A and λ1 with Re =
0.008, Fr = 0.005, λ2 = 1, λ3 = 3, α = 0.4, β = 0.7, ϕ = 0.3 and δ = 0.1 (b) di�erent values of Re and λ2 with A = π

12 , Fr = 0.005, λ1 = 5,
λ3 = 3, α = 0.4, β = 0.7, ϕ = 0.3 and δ = 0.1(c) di�erent values of Fr and λ3 with A = π

12 , Re = 0.008, λ1 = 5, λ2 = 1, α = 0.4, β = 0.7,
ϕ = 0.3 and δ = 0.1 (d) di�erent values of α and β with A = π

12 , Re = 0.008, Fr = 0.005, λ1 = 5, λ2 = 1, λ3 = 3, ϕ = 0.3 and δ = 0.1 (e)
di�erent values of ϕ and δ with A = π

12 , Re = 0.008, Fr = 0.005, λ1 = 5, λ2 = 1, λ3 = 3 and α = 0.4, β = 0.7.

3 Method of solution
In order to obtain a solution for Equation (23), using the
de�nition of the fractional di�erential operator (5), we ob-
tain the pressure gradient as:

∂p(z, t)
∂z = Re

Fr sin(A) + 1 + λβ3
t−β

Γ(1−β)

1 + λα1
t−α

Γ(1−α) + λα2
t−2α

Γ(1−2α)


 Q + H2 − 1 − ϕ2

2[∫ H
0

(∫ r
H

r
µ(r) dr

)
r dr

]
 . (24)

From this solution it is clear that for A = 0, δ = 0, λ1 =
λ2 = λ3 = 0 and α = β = 1 we obtain the classical solu-
tion of peristaltic transport of a Newtonian �uid [29]. For
λ2 = 0, λ2 = λ3 = 0 and λ1 = λ2 = 0 (with α = β = 1)

we �nd the solutions of the cases of fractional Oldroyd-
B, fractionalMaxwell and fractional second-grademodels,
respectively. In addition, the �rst term Re

Fr sin(A) interprets
the e�ect of gravitation because of the inclination of the
tube.

4 The pumping characteristics
The pressure rise ∆p and the frictional force Fλ at thewalls
of the tube, in the non-dimensional form, are given by:

∆p =
1∫

0

∂p(z, t)
∂z dz (25)

Fλ =
1∫

0

H2
(
−∂p(z, t)

∂z

)
dz. (26)
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Figure 3: Pressure rise ∆p versus time-averaged flow rate Q when t = 1 corresponding to (a) di�erent values of A and λ1 with Re = 0.008,
Fr = 0.005, λ2 = 1, λ3 = 3, α = 0.4, β = 0.7, ϕ = 0.3 and δ = 0.1 (b) di�erent values of Re and λ1 with A = π

12 , Fr = 0.005, λ1 = 5, λ3 = 3,
α = 0.4, β = 0.7, ϕ = 0.3 and δ = 0.1(c) di�erent values of Fr and λ3 with A = π

12 , Re = 0.008, λ1 = 5, λ2 = 1, α = 0.4, β = 0.7, ϕ = 0.3 and
δ = 0.1 (d) di�erent values of α and β with A = π

12 , Re = 0.008, Fr = 0.005, λ1 = 5, λ2 = 1, λ3 = 3, ϕ = 0.3 and δ = 0.1 (e) di�erent values
of ϕ and δ with A = π

12 , Re = 0.008, Fr = 0.005, λ1 = 5, λ2 = 1, λ3 = 3 and α = 0.4, β = 0.7.

5 Mechanical e�ciency of pumping
The mechanical e�ciency is de�ned as the ratio between
the average rate per wavelength at which work is done by
the moving �uid against a pressure head and the average
rate at which the walls do work on the �uid [9, 29].
We �nd the expression of the mechanical e�ciency E as
follows :

E = Q∆p
H(z = 0)2 ∆p + Fλ

. (27)

In order to analyze the e�ect of viscosity variation µ(r) on
peristaltic transport, we assume that µ(r) in a dimension-
less form is given by [30]:

µ(r) = e−δr

or (28)
µ(r) = 1 − δr for δ << 1,

where δ is the viscosity parameter.

6 Results and discussions
The analytical expressions for the pressure gradient ∂p

∂z ,
the pressure rise ∆p, the frictional force Fλ and the me-
chanical e�ciency E are derived in the previous sections.
In order to compute these physical quantities with respect
to parameters of interest for the problem, we observe that
the integrals in Equations (25-26) are not integrable in the
closed form. They are evaluated numerically usingmathe-
matics software.

6.1 Behavior of pressure gradient

Plots of the pressure gradient ∂p
∂z versus axial di�erence

z for various parameters are shown in Figures 2,a-e. The
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Figure 4: Frictional force Fλ versus time-averaged flow rate Q when t = 1 corresponding to (a) di�erent values of A and λ1 with Re = 0.008,
Fr = 0.005, λ2 = 1, λ3 = 3, α = 0.4, β = 0.7, ϕ = 0.3 and δ = 0.1 (b) di�erent values of Re and λ2 with A = π

12 , Fr = 0.005, λ1 = 5, λ3 = 3,
α = 0.4, β = 0.7, ϕ = 0.3 and δ = 0.1(c) di�erent values of Fr and λ3 with A = π

12 , Re = 0.008, λ1 = 5, λ2 = 1, α = 0.4, β = 0.7, ϕ = 0.3 and
δ = 0.1 (d) di�erent values of α and β with A = π

12 , Re = 0.008, Fr = 0.005, λ1 = 5, λ2 = 1, λ3 = 3, ϕ = 0.3 and δ = 0.1 (e) di�erent values
of ϕ and δ with A = π

12 , Re = 0.008, Fr = 0.005, λ1 = 5, λ2 = 1, λ3 = 3 and α = 0.4, β = 0.7.

axial di�erences are all shown at one wavelength for dif-
ferent values of angle of inclination A, Reynolds number
Re, Froudenumber Fr,material constants (λ1, λ2, λ3), frac-
tional parameters (α, β), parameter of viscosity δ and am-
plitude ratio ϕ. These �gures show that in the wider part
of the tube, ∂p∂z is relatively small, where the �ow can easily
pass without giving any large pressure gradient. However,
in the narrow part of the tube a much larger pressure gra-
dient is required to maintain the same �ux, especially for
the narrowest positionnear z = 0.75. This is in good agree-
ment with the physical situation. Moreover the maximum
of the pressure gradient increases with increasing A, Re,
λ3, ϕ or α while it decreases when the increase in Fr, λ1,
λ2, δ or β is increased.

6.2 Behavior of pressure rise

The e�ects of various parameters on the pressure rise ∆p
with a time-averaged �ow rate Q are shown in Figures 3,a-
e. We have the following peristaltic regions; pumping re-
gion (∆p > 0), free-pumping region (∆p = 0) and co-

pumping region (∆p < 0). These �gures show a linear rela-
tionship between ∆p andQ in all three of these regions, i.e,
the pressure rise decreases with increasing time-averaged
�ow rate.

From Figures 3,a-c we observe that the time-averaged
�ow rate Q increases with increasing A or Re, while it de-
creases in all regions as Fr is increased. But for λ1, λ2 or λ3,
these Figures show that the curves intersect in the pump-
ing region at Q = 0.32. It can be seen that the �ow rate
Q decreases with increasing λ1 or λ2 in the pumping re-
gion, while it increases in both the free-pumping and the
co-pumping regions. From Figure 3, c it is found that the
�ow rateQ increaseswith increasing λ3 in the pumping re-
gion while it decreases in both the free-pumping and the
co-pumping regions. Figures 3, d display the pressure rise
∆p against the time-averaged �ow rate Q for di�erent val-
ues of α and β. This Figure indicates that all the curves are
also intersecting in the pumping region at Q = 0.32. In
addition, Q increases with increasing α in the pumping re-
gion but it decreases in both the free-pumping and the co-
pumping regionswhilewe observe an opposite behavior of
Q versus β compared to α. From Figure 3, e it can be seen
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Figure 5: Axial velocityW versus radial direction r when t = 1 corresponding to (a) di�erent values of A and λ1 with Re = 0.008, Fr =
0.005, λ2 = 1, λ3 = 3, α = 0.4, β = 0.7, ϕ = 0.3 and δ = 0.1 (b) di�erent values of Re and λ2 with A = π

12 , Fr = 0.005, λ1 = 5, λ3 = 3,
α = 0.4, β = 0.7, ϕ = 0.3 and δ = 0.1(c) di�erent values of Fr and λ3 with A = π

12 , Re = 0.008, λ1 = 5, λ2 = 1, α = 0.4, β = 0.7, ϕ = 0.3 and
δ = 0.1 (d) di�erent values of α and β with A = π

12 , Re = 0.008, Fr = 0.005, λ1 = 5, λ2 = 1, λ3 = 3, ϕ = 0.3 and δ = 0.1 (e) di�erent values
of ϕ and δ with A = π

12 , Re = 0.008, Fr = 0.005, λ1 = 5, λ2 = 1, λ3 = 3 and α = 0.4, β = 0.7.

that the time-averaged �ow rate Q decreases with increas-
ing δ in the pumping region while it increases in both the
free-pumping and the co-pumping regions. For ϕ we ob-
serve, from the same �gure, that the curves intersect in the
co-pumping region where Q increases with the increase in
ϕ.

6.3 Behavior of frictional force

Wecalculated the�ctional forceFλ fromEquation (26). The
e�ects of A, Re, Fr, λ1, λ2, λ3, α, β, δ and ϕ on Fλ are de-
picted in Figures 4,a-e. It can be observed from these �g-
ures that, when plotted versus physical parameters, the
frictional force Fλ behavior is the opposite of that shown
by the pressure rise ∆p.

6.4 Axial velocity

In Figures 5,a-e we represent the axial velocity w for di�er-
ent values of the same physical parameters. These �gures
indicate that the velocity w increases with increasing A,

λ1, λ2, β, δ or ϕ, while it decreases with an increase in Re,
Fr, λ3 or α.

6.5 Behavior of mechanical e�ciency

Figures 6,a-e plot the mechanical e�ciency E versus the
ratio of the time-averaged �ow rate Q and maximum �ow
rate Q0 (i.e Q

Q0
). These �gures show the e�ects of inter-

est parameters on E. It is found that the mechanical e�-
ciency increases, attains amaximum value, and decreases
to zero. It is also observed that the mechanical e�ciency E
increases with increasing A, Re, λ1, λ2, β, δ or ϕ, and it
decreases if Fr, λ3 or α are increased.

7 Conclusions
In this work we have analytically studied the peristaltic
�ow of a fractional Burgers’ �uid with variable viscosity
in an inclined tube. The problem was simpli�ed under
the assumptions of long-wavelength approximation and
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Figure 6: Mechanical e�ciency E versus Q
Q0

when t = 1 corresponding to (a) di�erent values of A and λ1 with Re = 0.008, Fr = 0.005,
λ2 = 1, λ3 = 3, α = 0.4, β = 0.7, ϕ = 0.3 and δ = 0.1 (b) di�erent values of Re and λ2 with A = π

12 , Fr = 0.005, λ1 = 5, λ3 = 3, α = 0.4,
β = 0.7, ϕ = 0.3 and δ = 0.1(c) di�erent values of Fr and λ3 with A = π

12 , Re = 0.008, λ1 = 5, λ2 = 1, α = 0.4, β = 0.7, ϕ = 0.3 and δ = 0.1
(d) di�erent values of α and β with A = π

12 , Re = 0.008, Fr = 0.005, λ1 = 5, λ2 = 1, λ3 = 3, ϕ = 0.3 and δ = 0.1 (e) di�erent values of ϕ and
δ with A = π

12 , Re = 0.008, Fr = 0.005, λ1 = 5, λ2 = 1, λ3 = 3 and α = 0.4, β = 0.7.

low Reynolds number. An analytical solution to the prob-
lemwas obtained using a fractional calculus approach. In-
teraction of various emerging parameters with peristaltic
�ow was studied with the help of illustrations. The com-
putations have shown that the pressure rise ∆p decreases
with increasing time-averaged �ow rate Q for all interest
parameters, while the frictional force Fλ vs Q shows the
opposite behavior. In addition, an increase of angle of in-
clination A, material constant λ3, fractional parameter α,
amplitude ratio ϕ or the Reynolds number causes an in-
crease of the time-averaged �ow rate in the pumping re-
gion, and for a given value of ∆p, while opposing behavior
is seen for material constants λ1, λ2, fractional parameter
β, Froude number or the parameter of viscosity δ. The ax-
ial velocity w increases with increasing A, λ1, λ2, β, δ or
ϕ, while it decreases with any increase in Re, Fr, λ3 or α.
The mechanical e�ciency E increases with an increase in
A, λ1, λ2, β, Re, δ orϕ, while it decreaseswith the increase
in Fr, λ3 or α.
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