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Abstract: In the present study, we investigate the unsteady
peristaltic transport of a viscoelastic fluid with fractional
Burgers’ model in an inclined tube. We suppose that the
viscosity is variable in the radial direction. This analy-
sis has been carried out under low Reynolds number and
long-wavelength approximations. An analytical solution
to the problem is obtained using a fractional calculus ap-
proach. Figures are plotted to show the effects of angle
of inclination, Reynolds number, Froude number, mate-
rial constants, fractional parameters, parameter of viscos-
ity and amplitude ratio on the pressure gradient, pressure
rise, friction force, axial velocity and on the mechanical ef-
ficiency.

Keywords: unsteady peristaltic transport; fractional Burg-
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1 Introduction

Peristaltic transport is a process that occurs frequently
both in nature and industrial applications. In physiologi-
cal processes, the transport of fluids from one place to any
other place due to contraction and relaxation of the chan-
nel walls is termed peristalsis. These contractions and re-
laxations travel in the form of waves along the channel
walls and propel the fluid. Peristalsis is involved in swal-
lowing food through the oesophagus or transport of chyme
in small intestines. The first investigation of peristalsis
was by Latham [1] and Jaffrin and Shapiro [2]. Later, sev-
eral studies (such as such [3-8]) analyzed the peristaltic
transport phenomenon for a Newtonian fluid. Viscoelas-
tic fluids are non- Newtonian and possess both viscous
and elastic properties. These fluids play an important role
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in fluid mechanics. For example, Maxwell, Oldroyd, Jef-
frey, Johnson-Segalman, Thein-Tanner, Micropolar, Third
and Fourth grade fluids have all been the subject of work,
such as [9-16] respectively. More recently in rheology, the
study of viscoelastic fluids flows with fractional deriva-
tives play an important role. The starting point of the frac-
tional derivative of the viscoelastic model is usually a clas-
sical differential equation which is modified by replacing
the time derivative of an integer order by the so-called
Riemann-Liouville fractional calculus operators. This gen-
eralization allows one to precisely define non-integer or-
der integrals or derivatives. In recent years, peristaltic
transport has been studied using the fractional Maxwell
model [17, 18], fractional Oldroyd-B model [19] or of frac-
tional second-grade model [20]. These fluid models can be
treated as the special cases of another kind of viscoelas-
tic fluid, known as the fractional Burgers’ fluid. The Burg-
ers’ model has been utilized to describe the motion of the
Earth’s maentl. This model is also the preferred model to
explain the behavior of asphalt and asphalt concrete [21].
In addition, the Burgers model is sometimes used to model
other geological structures, such as Olivine rocks [22]. Re-
cently, Hayat et al. [23] found an exact solution for rotating
flows of a generalized Burgers’ fluid on an infinite insulat-
ing plate when the fluid is permeated by a transverse mag-
netic field. Khan et al. [24] have considered the accelerated
flows for a fractional Burgers’ model for two cases: flow in-
duced by constantly accelerating plate, and flow induced
by variable accelerated plate, and Khan et al. [25] analyzed
the influences of Hall current on the flow of a Burgers’ fluid
in a pipe. Meanwhile, Siddiqui et al. [26] investigated the
magnetohydrodynamics flow of an electrically conducting
incompressible Burgers’ fluid in an orthogonal rheometer.
The fractional Burgers’s fluid generalizes several types of
fluids as mentioned bellow. It helps to study the applica-
tions of fluid engineering and biomedical engineering and
it can capture the complex rheological characteristics of
many real fluids better than other models. In addition, the
Burgers model is applicable in transportation of industrial
fluids by peristaltic pumping, as well as for peristaltic flow
of physiological fluids in deformable domains such as the
motion of blood, food bolus and chyme in the small intes-
tine. The availability of the solutions for viscoelastic flu-
ids is significant because such solutions can not only ex-
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plain the physics of some fundamental flows, but can also
be used as a benchmark for the complicated numerical
codes that have been developed for much more complex
flows. For these reasons, and motivated by the application
of fractional calculus in viscoelastic fluid engineering, this
paper will focus on the as-yet unstudied peristaltic trans-
port of a fractional Burgers’ fluid. The aim of this paper is
to analytically investigate the unsteady peristaltic flow of
a viscoelastic fluid using the fractional Burgers’s model,
and with variable viscosity, in an inclined tube. The prob-
lem is simplified under long-wavelength and low Reynolds
number approximations. The effects of different physical
parameters are shown graphically. Parameters studied in-
clude, angle of inclination A, Reynolds R, and Froude F;
numbers, material constants (A1, A>, A3), fractional pa-
rameters (a, f8), viscosity § and the amplitude ratio ¢, and
their effects are studied on the pressure gradient, pressure
rise, fictional force, axial velocity and on the mechanical
efficiency of pumping.

2 Formulation and analysis

We consider the unsteady peristaltic transport of a vis-
coelastic fluid through an inclined axisymmetric tube
thickness with a sinusoidal wave traveling down its wall.
In a cylindrical coordinate system (R, Z), the dimensional
equation for the tube radius for an infinite wave train is:

HZ. D=a+b sin (%(2 —ch), )

where a is the average radius of the tube, b is the ampli-
tude of the wave, A is the wavelength and c is the wave
speed (see Figure 1).

Figure 1: Geometry of the problem.
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The viscoelastic fluid is modeled as a fractional Burgers’
model given by:

(1+A"Df + A" D) § = 1) (1+ 5" DF) 5, @

where £, S, 4 and ji(7) are the time, shear stress, rate of
shear strain and the viscosity function, respectively. A;
and A5 (< Ap) are the relaxation and the retardation times,
respectively, A, is the new material parameter of the Burg-
ers’ fluid having the dimension of 2, a and B are the frac-
tional time derivative parameters such that0 < a < § < 1.
D% is the upper convected fractional derivative defined by:

b%@®) = DXS) + (V.v)S) - LG) - GILT 3)
in which:
= (V) + (V) @)
where L is the velocity gradient and V is the velocity vector,
and Df = 0f is the fractional differentiation operator of
order a with respect to t and may be defined as fractional
complex transform [27]

1 d"

DEc(t) = I(n-a)dtn

t
/ (s-"1 [Co(s)-C(s)] ds, (5)
to

or it can convert a fractional differential equation to a par-
tial differential equation as given in [28].
Here I'(.) denotes the Gamma function and

Di*(8) = DH(DE(S)). (6)

We choose a cylindrical coordinate system (7, z) where the
Zz-axis is the longitudinal direction and the r-axis is trans-
verse to it.

The equations of motion for the flow of an incompress-
ible fluid are given by:

on __om __odu]l  op 19 .o
P{az“‘ﬁ””&}‘ o FroaromE
aS?Z_
5z P8 cos(A) @
ow _ow . _ow] _ 0p 19 .o
p|:¥+ua?+W62}__02+?$(r8r2)+
S TP8 sin(A) (8)
ou u ow
it O ©)

where p is the fluid density, &t and w are the velocity com-
ponents in the wave frame and p is the pressure.
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We assume that the extra stress S depends on r and

t only. After using the initial condition S(t = 0), Equa-
tions (2-6) YlE'ld Sff = SZZ = S;@ = S@Z =0 and
Sa 0% - a0?®) - _
(1+A1 W+A2 W) 7z = p(7)
-p 0P\ ow

where S;; is the tangential stress.
For further analysis, we introduce the following di-
mensionless parameters:

z Z 7 R H ct
Z_Z’Z_X’r_E’R_E’H_E’t_W’

My AU W W chy

ac ac c c A

Ay, A a’p, @,

A T’}b T;P—my ()—m,

_Q __a,, _pca . _c . b
Q_ﬂcaz’g_A’Re_ HO ’Fr_ga’d)_a’ (11)

where U and W are the velocity components in the fixed
frame, o is the viscosity on the z-axis (7 = 0), € is the di-
mensionless wave number, Re is the Reynolds number, Fr
is the Froude number and ¢ is the amplitude ratio with
0<¢p<1.

Using the above non-dimensional quantities and un-
der the assumptions of the long-wavelength approxima-
tion (i.e., € < 1 or A >> a) and the low Reynolds number
(i.e., Re > 0), the continuity equation is satisfied and the
equations of motion (7-9) can be reduced to:

ana an2a ap _ Re . _
(1+A1Dt + A3 D¢ ) (E Fr sm(A)) =
) (1 ow
(1+250f) (r <y(r)r ar)) NP
The boundary conditions are:
w=-1 at r=H (13)
ow

5 - 0 at r=0, (14)

where H = 1+ ¢ sin(2712) is the dimensionless equation of
the tube radius in the wave frame.

Integrating (12), and using the boundary conditions
(13-14), we obtain:
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(1 +A{D} +A§Df”‘> (g—g - % sin(A))

(/ry(rr) dr) =2 (1 +A§Df) (w+1). (15)
H

The volume rate of flow in the fixed coordinate system (R,
Z) is given as:

H
0z, 6 =2 / WR dR. (16)
0

Using the transformations between the laboratory and the
wave frames, in the dimensionless form, given by:

z=Z-t; r=R; u=U; w=W-1 (17)
the flow rate (16) becomes:
QZ,0)=q+H, (18)

where g is the volume flow rate in the moving coordinate
system, and is given by:

H
q=2/wrdr. (19)
0
Equation (15) becomes:
(1 +A{D¥ + AQ‘D%“) (g—i - % sin(A)) =
(1+2Df) ) )
O dr)rdr
Uo (IH u(r) r) r }
The time-averaged flow rate is defined by:
1 2
Q=/Q(Z,t)dt=q+1+7. 1)
0
Using (21), (18) becomes:
2 ¢’
QZ,)=Q+H —1-5 (22)
n substituting (22) into (20), we then obtain:
On substituting (22) into (20) hen obtai
(1 +A{Df + AZ‘D%“) (g—g - % sin(A)) =
H-1-%
(1+20f) S 2 23)

[f(fl (f[lﬁ dr) r .dr}
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Figure 2: Pressure gradlent

versus axial distance zwhen Q = -2 and t = 1 corresponding to (a) different values of A and A; with Re =
0.008, Fr = 0.005, A, =1, /13 =3,a=0.4,8=0.7,¢ = 0.3 and § = 0.1 (b) different values of Re and A, with A =
A3 =3,a=0.4,B8=0.7,¢ = 0.3 and § = 0.1(c) different values of Fr and A3 with A =

2, Fr =0.005,1; =5,
Z,Re = 0.008,A; = 5,4, = 1,a = 0.4, = 0.7,

¢ = 0.3 and é = 0.1 (d) different values of a and B with A = 1”2,Re = 0.008, Fr = 0.005,4; =5, =1,A3 =3,¢p =0.3and 6 = 0.1 (e)

different values of ¢ and § with A = 75,

3 Method of solution

In order to obtain a solution for Equation (23), using the
definition of the fractional differential operator (5), we ob-
tain the pressure gradient as:

op(z,t) Re
5 " Fr sin(A) +

B _tf
1+/\3F(1 5

a_t2
+A9 T(1-24)

Q+H?-1-%
[ff(f;{ﬁ dr)rdr}

From this solution it is clear that for A = 0, 6§ = 0, 1; =
Ay = A3 = 0and a = B = 1 we obtain the classical solu-
tion of peristaltic transport of a Newtonian fluid [29]. For
/12 = 0,/12 =/13 = Oand/l1 =A; = 0(w1tha =ﬂ = 1)

1+A7 r(17 Q)

(24)

L Re =0.008, Fr =0.005,A; =5,A; =1,A3 =3 and a = 0.4, =0.7.

we find the solutions of the cases of fractional Oldroyd-
B, fractional Maxwell and fractional second-grade models,
respectively. In addition, the first term ¢ sin(A) interprets
the effect of gravitation because of the 1nc11nat10n of the
tube.

4 The pumping characteristics

The pressure rise Ap and the frictional force F) at the walls
of the tube, in the non-dimensional form, are given by:

1
op(z, t)
Ap= | =2-d (25)
O/ 0z
1
/ H2< op(z, t)> dz. 26)
0
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Figure 3: Pressure rise Ap versus time-averaged flow rate Q when t = 1 corresponding to (a) different values of A and A; with Re = 0.008,

Fr=0.005,A; =1,A3 =3, =0.4,8=0.7, ¢ = 0.3 and § = 0.1 (b) different values of Re and A; with A = &
a=0.4,8=0.7,¢ = 0.3 and 6 = 0.1(c) different values of Fr and A3 with A = &

8 = 0.1 (d) different values of a and B with A = %,

&, Fr=0.005,A; = 5,15 = 3,

X Re=0.008,A; =51, =1,a=0.4,f=0.7,¢ = 0.3 and

Re = 0.008, Fr = 0.005,1; =5,A; = 1,A3 = 3, ¢ = 0.3 and § = 0.1 (e) different values

of ¢ and 6 with A = %, Re = 0.008, Fr = 0.005,1; =5,A; =1,A3 =3 anda = 0.4, 8 =0.7.

122

5 Mechanical efficiency of pumping

The mechanical efficiency is defined as the ratio between
the average rate per wavelength at which work is done by
the moving fluid against a pressure head and the average
rate at which the walls do work on the fluid [9, 29].
We find the expression of the mechanical efficiency E as
follows :

Q4p

E=gz-op Ap+Fy @7)

In order to analyze the effect of viscosity variation u(r) on
peristaltic transport, we assume that u(r) in a dimension-
less form is given by [30]:

ur)y = e
or (28)
ur) = 1-6r for 6<<1,

where § is the viscosity parameter.

6 Results and discussions

The analytical expressions for the pressure gradient g—g,
the pressure rise Ap, the frictional force F; and the me-
chanical efficiency E are derived in the previous sections.
In order to compute these physical quantities with respect
to parameters of interest for the problem, we observe that
the integrals in Equations (25-26) are not integrable in the
closed form. They are evaluated numerically using mathe-
matics software.

6.1 Behavior of pressure gradient

Plots of the pressure gradient g—’; versus axial difference
z for various parameters are shown in Figures 2,a-e. The
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Figure 4: Frictional force F, versus time-averaged flow rate Q when t = 1 corresponding to (a) different values of A and A; with Re = 0.008,

Fr=0.005,1; =1,A3 =3,a =0.4,8=0.7,¢ = 0.3 and § = 0.1 (b) different values of Re and A, with A = 2
a=0.4,8=0.7,¢ = 0.3 and 6 = 0.1(c) different values of Fr and A3 with A = %

6 = 0.1 (d) different values of @ and Bwith A = Z

ﬁ’
of ¢ and 6 with A = %,

axial differences are all shown at one wavelength for dif-
ferent values of angle of inclination A, Reynolds number
Re, Froude number F;, material constants (A1, A, A3), frac-
tional parameters (a, ), parameter of viscosity 6 and am-
plitude ratio ¢. These figures show that in the wider part
of the tube, ‘3—'; is relatively small, where the flow can easily
pass without giving any large pressure gradient. However,
in the narrow part of the tube a much larger pressure gra-
dient is required to maintain the same flux, especially for
the narrowest position near z = 0.75. This is in good agree-
ment with the physical situation. Moreover the maximum
of the pressure gradient increases with increasing A, Re,
A3, ¢ or a while it decreases when the increase in Fr, A4,
Ay, 6 or B is increased.

6.2 Behavior of pressure rise

The effects of various parameters on the pressure rise Ap
with a time-averaged flow rate Q are shown in Figures 3,a-
e. We have the following peristaltic regions; pumping re-
gion (Ap > 0), free-pumping region (Ap = 0) and co-

15> Fr=0.005,1; = 5,13 = 3,

Z,Re=0.008,1; =5, =1,a=0.4,4=0.7,¢ = 0.3 and

Re = 0.008, Fr = 0.005,A; = 5,4 = 1,A3 = 3, ¢ = 0.3 and § = 0.1 (e) different values
Re =0.008, Fr = 0.005,A; =5,A, =1,A3 =3anda = 0.4, =0.7.

pumping region (Ap < 0). These figures show a linear rela-
tionship between Ap and Q in all three of these regions, i.e,
the pressure rise decreases with increasing time-averaged
flow rate.

From Figures 3,a-c we observe that the time-averaged
flow rate Q increases with increasing A or Re, while it de-
creasesin all regions as Frisincreased. But for 11, A, or A3,
these Figures show that the curves intersect in the pump-
ing region at Q = 0.32. It can be seen that the flow rate
Q decreases with increasing A; or A, in the pumping re-
gion, while it increases in both the free-pumping and the
co-pumping regions. From Figure 3, c it is found that the
flow rate Q increases with increasing A3 in the pumping re-
gion while it decreases in both the free-pumping and the
co-pumping regions. Figures 3, d display the pressure rise
Ap against the time-averaged flow rate Q for different val-
ues of @ and . This Figure indicates that all the curves are
also intersecting in the pumping region at Q = 0.32. In
addition, Q increases with increasing a in the pumping re-
gion but it decreases in both the free-pumping and the co-
pumping regions while we observe an opposite behavior of
Q versus f compared to a. From Figure 3, e it can be seen
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Figure 5: Axial velocity W versus radial direction r when t = 1 corresponding to (a) different values of A and A; with Re = 0.008, Fr
0.005,4; = 1,A3 = 3,a = 0.4,8 = 0.7,¢p = 0.3 and § = 0.1 (b) different values of Re and A, with A =
a=0.4,8=0.7,¢ = 0.3 and § = 0.1(c) different values of Fr and A3 with A =

n

15 Re = 0.008, Fr
Re = 0.008, Fr = 0.005,A; = 5,1, =1,13

6 = 0.1 (d) different values of @ and B with A =

of ¢ and 6 with A = 1—”2,

that the time-averaged flow rate Q decreases with increas-
ing 6 in the pumping region while it increases in both the
free-pumping and the co-pumping regions. For ¢ we ob-
serve, from the same figure, that the curves intersect in the
co-pumping region where Q increases with the increase in

¢.

6.3 Behavior of frictional force

We calculated the fictional force F; from Equation (26). The
effects of A, Re, Fr, A1, A2, A3, @, B, 6 and ¢ on F) are de-
picted in Figures 4,a-e. It can be observed from these fig-
ures that, when plotted versus physical parameters, the
frictional force F; behavior is the opposite of that shown
by the pressure rise Ap.

6.4 Axial velocity

In Figures 5,a-e we represent the axial velocity w for differ-
ent values of the same physical parameters. These figures
indicate that the velocity w increases with increasing A,

1—"2,Fr = 0.005,A; = 5,A3 = 3,

Re=0.008,A; =5,A; = 1,a=0.4,8=0.7,¢ = 0.3 and

I
12°

=0.005,A; =5, =1,A3 =3, ¢ = 0.3 and § = 0.1 (e) different values
=3anda=0.4,5=0.7.

A1, Az, B, 6 or ¢, while it decreases with an increase in Re,
Fr, A3 or a.

6.5 Behavior of mechanical efficiency

Figures 6,a-e plot the mechanical efficiency E versus the
ratio of the time-averaged flow rate Q and maximum flow
rate Qo (i.e %). These figures show the effects of inter-
est parameters on E. It is found that the mechanical effi-
ciency increases, attains a maximum value, and decreases
to zero. It is also observed that the mechanical efficiency E
increases with increasing A, Re, A1, A3, B, 6 or ¢, and it
decreases if Fr, A3 or a are increased.

7 Conclusions

In this work we have analytically studied the peristaltic
flow of a fractional Burgers’ fluid with variable viscosity
in an inclined tube. The problem was simplified under
the assumptions of long-wavelength approximation and
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Figure 6: Mechanical efficiency E versus QQ when t = 1 corresponding to (a) different values of A and A; with Re = 0.008, Fr = 0.005,

A =1,A3=3,a=04,=0.7,¢ = 0.30and 6 = 0.1 (b) different values of Re and A, with A =
B=0.7,¢ =0.3 and § = 0.1(c) different values of Fr and A3 with A =

(d) different values of @ and B with A = &

. m ﬁ,
6 with A = o

low Reynolds number. An analytical solution to the prob-
lem was obtained using a fractional calculus approach. In-
teraction of various emerging parameters with peristaltic
flow was studied with the help of illustrations. The com-
putations have shown that the pressure rise Ap decreases
with increasing time-averaged flow rate Q for all interest
parameters, while the frictional force F) vs Q shows the
opposite behavior. In addition, an increase of angle of in-
clination A, material constant A3, fractional parameter a,
amplitude ratio ¢ or the Reynolds number causes an in-
crease of the time-averaged flow rate in the pumping re-
gion, and for a given value of Ap, while opposing behavior
is seen for material constants A1, A,, fractional parameter
B, Froude number or the parameter of viscosity 6. The ax-
ial velocity w increases with increasing A, A, A3, 8, 6 or
¢, while it decreases with any increase in Re, Fr, A3 or a.
The mechanical efficiency E increases with an increase in
A, A1, Ay, B, Re, 6 o1 ¢, while it decreases with the increase
in Fy, A3 or a.

Acknowledgement: The author is grateful to the referees
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15> Fr =0.005,41 = 5,43 = 3, a0 = 0.4,

Re =0.008,A; =5,A, =1,a=0.4,=0.7,p =0.3and § = 0.1
Re = 0.008, Fr = 0.005,A; = 5,4, = 1,43 =3, ¢ = 0.3 and 6 = 0.1 (e) different values of ¢ and
Re =0.008, Fr = 0.005,4; =5, =1,A3 =3 anda =0.4, 5 =0.7.
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