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Abstract: Firstly in this article, the exact solution of a time
fractional Burgers’ equation, where the derivative is con-
formable fractional derivative, with dirichlet and initial
conditions is found by Hopf-Cole transform. Thereafter the
approximate analytical solution of the time conformable
fractional Burger’s equation is determined by using a Ho-
motopy Analysis Method(HAM). This solution involves an
auxiliary parameter / which we also determine. The nu-
merical solution of Burgers’ equation with the analyti-
cal solution obtained by using the Hopf-Cole transform is
compared.
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1 Introduction

Fractional calculus (which is an important field in ap-
plied mathematics) arouses great interest for scientists [1-
3]. Recently, many studies on fractional derivatives and
fractional integrals, which are leading topics in fractional
calculus, have been undertaken by scientists. Thus, there
are many different definitions of fractional derivatives and
fractionals integral such as the Riemann-Liouville defini-
tion, the Caputo definition, Griinwald-Letnikov definition
and Riesz-Fischer definition.The following are some of the
most common definitions:
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1. Riemann-Liouville Fractional Derivative Definition:
If n is a positive integer and @ € [n-1,n), the a
derivative of a function f is given by,

a _ 1
Da (A = -a) dam / (t- X)“ n+1

2. Caputo Fractional Derivative Definition: If n is a pos-
itive integer and a € [n - 1, n), the a derivative of a
function f is given by,

¢
1 ()
I'n-a) ) (t-x)an+l

a

D3 (f)(®) =

Last year R. Khalil et al. [4] presented a new definition of a
fractional derivative and integral called the "Conformable
fractional derivative and integral” .
Definition Let f : [0, o) — R be a function. The a'"
order "conformable fractional derivative" of f is defined by,
Ta()(0) = im w,

&

forallt > 0,a € (0,1). If f is a-differentiable in some
(0,a),a > 0 and tlirg f("‘)(t) exists then define f(“)(O) =
—0*

tlir{)l f@(¢) and the conformable fractional integral of a
0

t
function f starting from a > 0 is defined as I§(f)(¢) = [ )’:E’,‘Z
a

where the integral is the usual Riemann improper integral,
and a € (0, 1]. The following theorem highlights some
properties of the conformable fractional derivative [4].

Theorem1. Let « < (0,1] and suppose f,g are a-
differentiable at point t > 0. Then

1. Ta(cf +dg) = cTu(f) + cTa(g) foralla, b € R.

2. Tq(tP) = ptP~* forallp € R.

3. Tq(A) = O for all constant functions f(t) = A.

4. Ta(fg) = fTa(g) + gTa(f).

5. Ta (g) = L),

6. If , in addition to f differentiable, then T.(f)(t) =
tl—a%.

This new fractional derivative definition has governed
much attention in recent months. For instance T. Abdel-
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jawad [5] provide fractional versions of the chain rule, ex-
ponential functions, Gronwall’s inequality, integration by
parts, Taylor power series expansions and Laplace trans-
forms. N. Benkhettoua et al. [6] introduced conformable
time-scale fractional calculus. As physical applications
of conformable fractional derivative M.A. Hammad and
R. Khalil [7] give the solution for the conformable frac-
tional heat equation and W.S. Chung [8] used the con-
formable fractional derivative and integral to discuss frac-
tional Newtonian mechanics. It is clearly seen that further
studies and explanations can be made regarding the phys-
ical meaning and physical applications of this new subject
area.
Burgers’ equation:
ou ou _du

~— +u

ot "¥ox ~Vox2 (1.1)

was firstly presented by Bateman [9] in 1918. J.M. Burg-
ers expounded on this in his studies between 1939-1965
[10, 11]. Since then, Burgers’ equation has been used as
a mathematical model in numerous areas such as num-
ber theory, gas dynamics, heat conduction, elasticity the-
ory, turbulence theory, shock wave theory, fluid mechan-
ics, termaviscous fluids, hydrodynamic waves and elastic
waves [12-15].

Scientists conducted many studies to determine the
numerical or analytical solution of the Eq. (1.1). For ex-
ample, T. Ozis and A. Ozdes [16] used a direct varia-
tional method to solve Burgers’ equation. E. Aksan and A.
Ozdes [17] used a variational method constructed on the
method of discretization in time to solve Burgers’ equa-
tion. S. Kutluay et al. [18] obtained a the numerical solu-
tion of Burgers’ equation by using finite difference meth-
ods. E. Varoglu and L. Finn [19] made use of a weighted
residue method. J. Caldwell and P. Wanless [20] used fi-
nite elements. D.J. Evans and A.R. Abdullah [21] used the
group explicit method. R.C. Mittal and P. Singhal [22] used
the Galerkin method to determine numerical solutions of
Burgers’ equation.

Therefore it can be concluded that scientists have de-
voted much attention to obtain the numerical and/or an-
alytical solution for the fractional Burgers’ equation. For
instance A. Esen and O. Tasbozan [23] used Cubic B-spline
Finite Elements to have the numerical solution of time
fractional Burgers’ equation. A. Esen et al. [24] used HAM
to find the approximate analytical solution of time frac-
tional Burgers’ equation. In another study E. A.-B. Abdel-
Salam et al. [25] used fractional Riccati expansion method
to solve space-time factional Burgers’ equation. M. Inc [26]
used a variational iteration method to solve the space and
time fractional Burgers’ equations.
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Investigating and reaching exact or numerical solu-
tions of these type of equations has a great importance in
applied mathematics. The HAM, which is one of the great-
est tool for finding the approximate solutions of nonlinear
evolution equations (NLEEs), was first presented by Liao
[27, 28]. The HAM differs from perturbation techniques in
that it is not limited to any small physical parameters in the
considered equation. For this reason, HAM has neither any
restrictions nor limitations of perturbation techniques so
that it provides us with a powerful tool to analyze strongly
nonlinear problems [29-31]. Due to these advantages HAM
is used as a method to obtain the approximate analytical
solution of many different equations.[32-34].

In 1950 a transform

__ytx
u= 2v9

was defined by Hopf [35] which helps in transforming
Burgers’ equation into a heat equation:

(1.2)

00 _ 0%

ot ox2
where 0(x, t) is the solution of the heat equation (1.3) and
u(x, t) is the solution of Eq. (1.1) [36]. In 1951 some theo-
rems, were suggested by Cole [37] which express the rela-
tionship between Burgers’ equation and the heat equation.

(1.3)

2 The Conformable Time Fractional
Burgers’ Equation

Consider the fractional Burgers’ equation:

%  du  d%u
i +u&—vW =0,0<x<1,t>0, (2.1)
with the conditions,
u(x, 0) = sin(mx) (2.2)
and
u(0,t) =u(1,t) =0, (2.3)

where a € (0, 1) and % means conformable fractional
derivative of function u(x, t). Using the Hopf-Cole trans-
formation (1.2), the equation evolves into a time fractional
heat equation, ,

a

‘?)Tff - V‘ZT?, 24)
where the derivative is an a—order conformable fractional
derivative and Q(x, t) the solution of the heat equation

(2.4). The conditions are thus,

_ 1-cos(mx)

Q(X’ O) =e o,

(2.5)
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and

Qx(0,8) = Qx(1,0) =0 (2.6)

Hence, using the method of separation of variables,
the solution to the above linearized problem can be ob-
tained easily as

nznzvtu

Qlx, t) = ap + Z an cos(nmx)e” &
n=1

where ag and an, n = 1, 2, ... are Fourier coefficients and

can be evaluated as:

1

_ 1-cos(mx)
ap = e dx,

0

and

1
_ 1-cos(mx)
an=2 | e 2r cos(nmx) dx.
0

Then using equation (1.2), the exact solution of the equa-
tion (2.1) is

had n2n2ve%
S ane” a
n=1
hind _n2m2ve& ’
ap+ > ane” « cos(nmx)
n=1

n sin(nmx)

ulx, t) =2vn

where the coefficients ag and a, are:

1
/ _ 1-cos(mx)
2vm
0

and

1
_ 1-cos(mx)
an = - cos(nmx) dx,n=1,2,3,
0

3 Fundamentals of the HAM

In this work, HAM is applied to the treated problem. In or-
der to explain the fundamentals of the method we consider
the following differential equation,

Nulx, t)] =0

where N is a nonlinear operator, x and t show indepen-
dent variables, u(x, t) is an unknown function. By using
the generalization of HAM, Liao [27, 28] has constructed a
zero-order deformation equation

(1-p)L [¢p(x, t;p) - uo(x, )] = phN [¢p(x, t; )], (3.1)
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where p ¢ [0, 1] is the embedding parameter, i # O is
an auxiliary parameter, £ is an auxiliary linear operator,
uo(x, t) is an initial guess of u(x, t), ¢(x, t; p) is an un-
known function, respectively. Thus, it would be sensible to
choose auxiliary parameters and operators in HAM. When
we choose p = 0 and p = 1 then we obtain

d(x, £;0) = uo(x, t), p(x, t; 1) = u(x, t)

respectively. So, as the embedding parameter p increases
from O to 1, the solutions ¢(x, t; p) differ from the initial
value up(x, t) to the solution u(x, t) . If ¢(x, t;p) is ex-
panded in Taylor series with respect to the embedding pa-
rameter p, we obtain:

P, t5p) = uo(x, ) + > um(x, )p™

m=1
where oM )
_ 1 X, t;p
Um(x, t) = mopm o (3.2)

When the auxiliary linear operator, the initial guess and
the auxiliary parameter 7 are chosen in a suitable manner,
the series (which are denoted above) converges at p = 1,
and

ulx, t) = uplx, t) + i Um(x, t).
m=1

This must be one of the solutions of the original nonlin-
ear equation, as shown by Liao [28, 31]. According to (3.2),
the governing equation can be reduced from the zero-order
deformation equation (3.1). Define the vector:

un = {uo(x, ), ur(x, t), ..., un(x, )} .

If we differentiate Eq. (3.1) m times with respect to the em-
bedding parameter p and then setting p = 0 and dividing
by m!, we obtain the mth-order deformation equation:

L [um(x, t) = Ymum-1(x, t)] = hRm (Un-1) (33)
where
1 "N [, t;p)]
R Wn-1) = o=y —gpmt
p=0
and

_ 0, mz<1,

Xm 1, m>1.
We emphasize that um(x, t) for m > 1 is governed by Eq.
(3.3) with the boundary condition that comes from the

problem. It can then be easily solved by using symbolic
computation software such as Mathematica.
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4 Application of HAM

We handle the time fractional Burgers equation as

YU+ uly — Vixy = 0, (4.1)
with initial conditions
u(x, 0) = sin(mx), (4.2)

where a € (0, 1) and the derivative is a conformable frac-
tional derivative. When v > 0, it is often referred to as the
viscous Burgers equation, and when v = 0, it is often re-
ferred to as the inviscid Burgers equation. For convenience
and to shorten the article, vis taken as 1 for all calculations
in this paper. One can use any other value of v for calcula-
tions. For investigating the series solution of Eq. (4.1) with
initial condition (4.2), we choose the linear operator,

L [p(x, t;p)] = DEP(x, t; ),

with the property,
Llc]=0

where c is constant. From Eq. (4.1), we now define the non-
linear operator as,

%9 6p) | ¢g;at p) +¢(x, t;p)

_0%¢(x, t;p)
ox? )

[¢(X tp)} a¢(x tp)

From Theorem 1 the nonlinear operator can be written as
follows,

N[l t;p)] =t OPED) gy, 1, ) 2PUC 6P)
_9’p(x, t;p)
T

Therefore the zero-order deformation equation is estab-
lished as:

(1-p)L [px, t;p) - uolx, t)] = phN [¢p(x, t;p)] . (4.3)

Precisely, if we choose p = 0 and p = 1 then we obtain
d(x, £;0) = uo(x, t) = u(x, 0), p(x, t; 1) = u(x, t).

Thus, since the embedding parameter p increases from O
to 1, the solution ¢(x, t; p) varies from the initial value
uo(x, t) to the solution u(x, t). By expanding ¢(x, t; p) in
Taylor series with respect to the embedding parameter p:

P, t5p) = uo(x, ) + > um(x, p™,

m=1

(4.4)
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where
1 0"¢(x, t;p)

um(X, t): m apm

(4.5)

p=0

If the auxiliary linear operator, the initial guess and the
auxiliary parameter 7 are properly chosen, the above se-
ries converges at p = 1, and,

ulx, t) = uplx, t) + i um(x, t),
m=1

which must be one of the solutions of the original nonlin-
ear equations, as proved by Liao [28]. By differentiating Eq.
(4.3) m times with respect to the embedding parameter p,
we obtain the mth-order deformation equation:

L [um(xy t) —Xmum—l(xy t)] = hRm (um—l) ’ (4-6)
where,
R (1) =12 Bum;)lt(x, t)
ou 1 (x ) um-lx, 1)
+Zun(x ) ’gxz ,
and
_ O,mz<1
Xm 1,m>1

The solutions of the mth-order deformation Eq. (4.6) for
m = 1 leads to

Um(X, t) = YmUm-1(x, £) + AL [Rm (Wp-1)] - 4.7)

By using Eq.(4.7) with initial condition given by (4.2) we
successively obtain
uo(x, t) = sin(mx),

u1(x, t) = (mht*( + cos(mx)) sin(mx))/ a,

Therefore, the series solutions expressed by HAM can
be written in the form

ulx, t) = ugx, t) +u (x, ) + u(x, ) +.... (4.8)

To demonstrate the efficiency of the method, we com-
pare the HAM solutions of the time conformable fractional
Burgers equation given by Eq. (4.8) with its exact solutions

_nmy/? :
21V dne” & U nsin(nmx)
u(x, t) = - i
do+> ., dne” a U cos(nmx)

where

(4.9)

1
_1- cos(nx)
/ 21y
0
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and

1
—cos(mx)
dn = Z/e"1 T cos(nmx)dx, n=1,2,3,... (4.10)
0

The auxiliary parameter 7, which is in our HAM solution
series, provides us with a simple way to adjust and con-
trol the convergence of the solution series. To obtain an ap-
propriate range for 7, we consider the so-called k-curve to
choose a proper value of 2 which provide that the solution
series is convergent, as pointed by Liao [28], by discover-
ing the valid region of 7 which corresponds to the line seg-
ments nearly parallel to the horizontal axis.

u(0.1,0.1)
0.4 . . ‘ . . / .
0.3F

0.2t ]

0.1F 9

0.0 fi

—0.1F J

=02 1 . . . 1 .
-10 -08 -06 -04 -02 00 0.2

(@x=0.1,t=0.1
u(0.1,0.2)

081
0.6F
04r

02 _ /_/ ]
0.0 f

-0.6 -0.4

-0.2 0.0 0.2

(b)x=0.1,t=0.2

Figure 1: The fi-curves of 4th-order approximate solution obtained
by the HAM for a = 1.

Table 1: Exact and numerical solutions fora = 1 and i = -0.5.

t  x Numerical Exact Absolute Error
0.1 0.1 0.107347 0.109538 0.002191
0.2 0.209011 0.209792 0.000781
0.3 0.294529 0.291896 0.002633
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Table 2: Exact and numerical solutions fora = 1 and h = -0.3.

t X Numerical Exact Absolute Error
0.2 0.1 0.039200 0.041929 0.002729
0.2 0.077707 0.079994 0.002287
0.3 0.107657 0.110622 0.002965
u(0.1.0.1)
0.6 b
0.4} B
0.2f / ]
0.0 fi
_O:J_ i
70.4_ 4
-0.20 -0.15 -010 -0.05 0.00 0.05
(@a=0.5
u(0.1,0.1)
0.6 g
0.4 B
“ ’/ 1
0.0 fi
_02 L 4
0.4 '

-05 -04 -03 -02 -01 00 0.1

(b)a =0.75

Figure 2: The h-curves of 4th-order approximate solution obtained
by the HAM for x = 0.1and t = 0.1.

Table 3: Exact and numerical solutions for a = 0.5 and A = -0.075.

t  x Numerical Exact Absolute Error

0.1 0.1 0.006068 0.000599 0.005469
0.2 0.009353 0.001114 0.008239
0.3 0.007259 0.001569 0.005690
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Table 4: Exact and numerical solutions for @ = 0.75 and h = —-0.25.

t x Numerical Exact Absolute Error

0.1 0.1 0.028019 0.029248 0.001229
0.2 0.054543 0.055752 0.001209
0.3 0.0723617 0.076991 0.004629

5 Conclusion

In this paper, we argue new exact and numerical solutions
of time fractional Burgers’ equation, which is known as
one dimensional nonlinear time fractional partial differ-
ential equation. It is known that Burgers’ equation is one
of the rare nonlinear equations whose solution can be ob-
tained analytically. Burgers’ equation has a great impor-
tance in applied sciences. The Hopf-Cole transform and
conformable fractional derivative definition (which is a
new fractional derivative definition) are used for the exact
solution of the time fractional Burgers’ equation. For nu-
merical solutions, the homotopy analysis method, which
is a powerful and efficient technique in finding the numer-
ical solution of the conformable time fractional Burgers’
equation is applied successfully. This conformable frac-
tional derivative definition is a convenient definition in the
exact solution procedure of fractional differential equa-
tions. Conformable fractional derivatives are easier to use
when compared to the other fractional derivatives, as its
derivative definition does not include any integral term. It
has been also shown that the HAM solution of the prob-
lem, converges very rapidly to the exact one by choosing
a convenient auxiliary parameter #. In conclusion, some
tables which compare the numerical and analytical solu-
tions are provided to show that the HAM is a powerful and
efficient technique in finding the numerical solution of the
conformable time fractional Burgers’ equation.
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provement of this paper.
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