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Abstract: It is assumed that the two-component spinor for-

malisms for curved spacetimes that are endowed with tor-

sionful a�ne connexions can supply a local description

of dark energy in terms of classical massive spin-one un-

charged �elds. The relevant wave functions are related to

torsional a�ne potentials which bear invariance under

the action of the generalized Weyl gauge group. Such po-

tentials are thus taken to carry an observable character

and emerge from contracted spin a�nities whose patterns

are chosen in a suitable way. New covariant calculational

techniques are then developed towards deriving explicitly

the wave equations that supposedly control the propaga-

tion in spacetime of the dark energy background.What im-

mediately comes out of this derivation is a presumably nat-

ural display of interactions between the �elds and both

spin torsion and curvatures. The physical properties that

may arise directly from the solutions to thewave equations

are not brought out.
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1 Introduction
Since the discovery of the cosmic dark energy [1, 2], several

attempts have beenmade [3–9] at accomplishing amacro-

scopic explanation of the presently observable accelera-

tion of the universe [10, 11], while circumventing the sit-

uations concerning some of the problems that arise in the

context of the standard cosmology [4, 12]. One of the most

popular approaches that were designed in this connection

describes dark energy in a geometrically torsionless fash-
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ion as a gravitationally repulsive cosmic backgroundmod-

elled either by a positive cosmological constant or by a

scalar �eld to which a physical meaning may possibly be

ascribed. In this model, the dark energy density can be

explicitly evaluated with the help of some auxiliary ob-

servational data, but the corresponding results neverthe-

less turn out to be in serious disagreement with character-

istic values arising from the conventional quantum �eld

theories. In addition, the complete physical adequacy of

the scalar �eld taken up thereabout has not been estab-

lished hitherto. Another popular approach focusses upon

trivial modi�cations of the Lagrangian density for classi-

cal general relativity. It likewise implements alternative

patterns for generally relativistic energy momentum ten-

sors, and thereby gives rise to the need for sorting out the

microscopic nature of dark energy within extended parti-

cle physics models. A somewhat interesting work carried

out along these lines [13], identi�es the dark energy back-

groundwith amassive vector potentialwhich is taken from

the beginning to obey a non-minimal coupling to grav-

ity. Accordingly, the Friedmann equations acquire an extra

non-geometric term which is proportional to the rest mass

of the dark energy particles. Moreover, the implementa-

tion of certain astronomical constraints makes it feasible

to estimate the mass of the particles. The overall picture

then leads to amass value naively related to the cosmolog-

ical constant, and also supplies a late-time accelerated De

Sitter-like cosmic expansion.

On the basis of Einstein-Cartan’s theory [14–18], a

prospect has been posed by researchers for bringing forth

a torsional version of the standard cosmological model

(see Refs. [19, 20]). This had been partially motivated by

a theoretical possibility of particularly explaining the cos-

mic acceleration of the universe along with its spatial �at-

ness, its homogeneity and isotropy, without having to call

for any mechanisms of cosmic in�ation [3, 4]. As men-

tioned in Refs. [21–25], torsional gravity has also attracted

a considerable deal of attention in conjunction with a pre-

diction achieved by string theory that concerns the occur-

rence of couplings between torsion and spinning �elds.

Many insights into the understanding of both the coupling

strengths of the fundamental interactions and the ratios
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between them, have thus been gained from the torsionic

property of underlying spacetime geometries. Remarkably

enough, the essentially unique torsionful version of the fa-

mous Infeld-van der Waerden γε-formalisms [26–38] had

been until very recently [39] just sparsely considered in

the literature [40, 41]. The main motivation for formulat-

ing this torsional extension came from the ascertainment

that its geometric inner structuremay allow the implemen-

tation of a�ne contributions which a�ord gauge invariant

vector potentials bearing an observable character. It had

then been expected that the de�nitive ascription of a fun-

damental signi�cance to spacetime torsion would eventu-

ally become more tangible if a torsional two-component

spinor description of dark energy might go hand-in-hand

with the spin-torsion mechanisms that prevent the uni-

verse from being originated by a singularity [42–44].

In the present work, we take account of the torsional

spinor formalisms referred to previously to bring forward

a supposedly realistic description of the dynamics of dark

energy in a purely local fashion. In fact, the viability for

carrying out our description relies geometrically upon the

possibility of choosing asymmetric spin-a�ne connexions

that supply gauge invariant potentials for two-component

massive spin-one uncharged �elds on spacetimeswith tor-

sionful a�nities. The paper works out the idea that the

universe could have been expected beforehand to host

two physical backgrounds which, as we believe, must be

described in terms of a�ne potentials coming from the

spinor structures inherently borne by generally relativis-

tic spacetimes [45, 46]. Hence, a torsionless electromag-

netic background should be locally described by the old

γε-formalisms suchas suggested inRefs. [29, 33], anda tor-

sionful background should be describable locally in terms

of geometric Proca �eldswithin a suitably extended spinor

framework. Throughout the paper, we thus adopt the atti-

tude that identi�es the former with the cosmic microwave

background (CMB), and likewise think of the latter as con-

stituting the cosmic dark energy. As was pointed out in

Ref. [39] from a strictly geometric viewpoint, any torsional

a�ne potential must be accompanied by proper torsion-

less contributions whence, in actuality, the implementa-

tion of this picture gives rise to one of the theoretical fea-

tures of our work whereby the spacetime description of

dark energy has to be united togetherwith that of the CMB.

Yet, we realize that the propagation of the CMB in regions

of the universe where the values of torsional a�nities are

negligible may be described alone within the framework

of Ref. [28].

We shall account for the well-established observa-

tional fact [8, 9] that the CMB and dark energy perme-

ate together the whole of the universe. Because of the lo-

cality of our description, the completion of the relevant

procedures will be accomplished without making it nec-

essary to allow for any cosmological kinematics or even

to call upon any ordinary cosmological presuppositions

like those concerning homogeneities, isotropy, in�ation

and shape of physical densities. Instead, the only assump-

tions lying behind the implementation of our procedures

are the same as the ones made before [39], according to

which local spinor structures along with manifold map-

ping groups and the matrices that classically constitute

the generalized Weyl gauge group [26–28], remain all for-

mally unaltered when any classical spacetime considera-

tion is shifted to the torsional framework. We stress that

the de�ning prescriptions for any of the geometric world

and spin densities tied in with the old formalisms [28, 29],

may be applicable equally well herein. The information

on the wave functions for both physical backgrounds is

carried by adequately contracted spin curvatures which

emerge as sums of typical bivector contributions from the

action on arbitrary spin vectors of a characteristic torsion-

ful second-order covariant derivative operator. It appears

that the additivity property of such contracted curvatures

is really passed on to the wave functions.

Wewill utilize the notation adhered to in Ref. [39]. Un-

less otherwise indicated in an explicit manner, the usual

designation of the traditional spinor framework as γε-
formalisms will henceforward be attributed to the torsion-

ful two-component formalisms under consideration here.

Upon writing down the world form of the pertinent �eld

equations, we shall therefore take into account geometric

electromagnetic and uncharged Proca �elds for a curved

spacetime M that carries a world metric tensor gµν hav-

ing the local signature (+ − −−) and a torsionful, metric

compatible, covariant derivative operator ∇µ. The spinor

form of the �eld equations will be obtained by carrying

out a straightforward transcription of the respective world

statements.Wewill see that the resulting spinor �eld equa-

tions involve pairs of new complex conjugate current den-

sities for each physical background, which absorb outer

products carrying appropriate torsion spinors along with

the wave functions themselves. In order to carry out sys-

tematically the derivation of the wave equations that con-

trol the propagation of the �elds in M, we shall have to

adapt to the torsional framework the di�erential calcula-

tional techniques employed for the �rst time in thework of

Ref. [28]. What immediately comes out of this derivation

is a presumably natural display of interactions between

the �elds and both torsion and curvatures. In either for-

malism, some pieces of the geometric sources originated

by the �eld equations must thus be subject to prescribed

gauge invariant subsidiary conditions which are brought
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about by the inherent symmetry of the wave functions. We

will not bring out at this stage any physical properties that

may arise from the solutions to our wave equations, how-

ever.

Without any risk of confusion, we will use the same

indexed symbol ∇µ to write covariant derivatives in both

formalisms. The symbol g will sometimes be used for de-

noting the determinant of gµν. For theworld a�ne connex-

ion associated with∇µ, we have the splitting

Γµνλ = Γ̃µνλ + Tµνλ ,

where Γ̃µνλ = Γ
(µν)λ and Tµνλ = Γ

[µν]λ is by de�nition

the torsion tensor of ∇µ. The symmetric piece Γ̃µνλ may

be identi�ed with the Christo�el connexion of gµν in case

Tµνλ is rearranged adequately. We take the elements of the

Weyl gauge group as non-singular complex (2×2)-matrices

whose entries are de�ned by

ΛAB = exp(iθ)δAB ,

where δAB denotes the Kronecker symbol and θ is the

gauge parameter of the group which shows up as an ar-

bitrary di�erentiable real-valued function on M. The de-

terminant exp(2iθ) of (ΛAB) will be denoted as ∆Λ. A hori-

zontal bar lying over some kernel letter will denote the op-

eration of complex conjugation. Some minor conventions

shall be explained in due course.

Our outline has been set as follows. In Section 2,we re-

call the contracted spin curvatures as built up in Ref. [39],

and bring out the world �eld equations. The de�nition of

all wave functions is shown in Section 3 together with the

spinor �eld equations. In Section 4, the torsional calcu-

lational techniques are developed. There, we will have to

consider spin curvatures somewhat further. Nonetheless,

many of the curvature formulae deduced in Ref. [39] shall

be taken for granted at the outset. In Section 5, the wave

equations are derived. We set an outlook on future works

in Section 6.

2 World �eld equations
The key curvature object for either formalism is a world-

spin quantity CµνAB that occurs in the con�guration

Dµνζ B = CµνABζ A , (1)

where ζ A is an arbitrary spin vector andDµν amounts to the

characteristic second-order covariant derivative operator

of the torsional framework, namely,

Dµν + 2(∇
[µ∇ν]

+ Tµνλ∇λ). (2)

In the γ-formalism, we have the tensor law

C′µνAB = ΛACΛBDCµνCD = ∆ΛCµνAB , (3)

whereas the object CµνAB for the ε-formalism is taken as an

invariant spin-tensor density of weight −1, that is to say,

C′µνAB = (∆Λ)

−1ΛACΛBDCµνCD = CµνAB . (4)

The contracted curvature CµνAA possesses the gauge

invariant additivity property¹

CµνAA = C̃µνAA + C(T)

µνA
A
. (5)

In particular, C(T)

µνA
A
accounts for the torsionfulness of ∇µ

while the whole C̃µνAB is taken up by the torsionless com-

mutator

2∇̃
[µ∇̃ν]

ζ B = C̃µνABζ A , (6)

where ∇̃µ is indeed the covariant derivative operator for

Γ̃µνλ. It turns out that we can write down the simultaneous

contracted relations

C̃µνAA = 2∂
[µ ϑ̃ν]A

A
, C(T)

µνA
A

= 2∂
[µϑ(T)

ν]A
A
, (7)

with the involved ϑ-pieces thus occurring in the skew con-

tributions that make up in each formalism a suitably cho-

sen asymmetric spin a�nity for ∇µ, in agreement with

Equation (5). Hence, making use of the standard patterns

[39]

ϑ̃µAA = ∂µ log E − 2iΦµ , ϑ(T)

µA
A

= −2iAµ , (8)

yields the purely imaginary expression

CµνAA = −2i
(
F̃µν + F(T)

µν

)
, (9)

along with the bivectors

F̃µν + 2∂
[µΦν]

, F(T)

µν + 2∂
[µAν]

, (10)

with Φµ and Aµ amounting to a�ne potentials subject to

the gauge behaviours

Φ′µ = Φµ − ∂µθ, A′µ = Aµ . (11)

It is worthwhile to recast each of the derivatives of Equa-

tion (10) as a piece that looks formally like

∂
[µΩν]

= ∇
[µΩν]

+ TµνλΩλ . (12)

We mention, in passing, that the quantity E carried by

the prescriptions (8) is a real positive-de�nite world-

invariant spin-scalar density of absolute weight +1. In the

1 We should emphasize that the uncontracted object CµνAB for either

formalism does not hold the additivity property.
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γ-formalism, it carries a manifestly spin-metric character,

but this ceases holding for the ε-formalism. The poten-

tials Φµ and Aµ are the same in both formalisms. They

arise from an a�ne property of the covariant derivative ex-

pansions for the Hermitian connecting objects of the for-

malisms (for further details, see Ref. [39]).

It can be seen from Equation (11) that Φµ is a Maxwell

potential, which we take to be physically associated to

the CMB. In turn, Aµ bears gauge invariance and is like-

wise looked upon as a potential of mass m for the dark

energy background. The world form of the �rst half of

the overall set of �eld equations emerges from the usual

least-action principles for Maxwell and real Proca �elds in

curved spacetimes [47]. It follows that, allowing for the re-

lation

1√
−g
∂µ
(√
−gFµλ

)
= ∇µFµλ + 2TµFµλ − TµνλFµν , (13)

with Tµ + Tµττ and the kernel letter F standing for either

F̃ or F(T)

, we get the �rst half of Maxwell’s equations

∇µ F̃µλ + 2Tµ F̃µλ − Tµνλ F̃µν = 0, (14)

along with the �rst half of Proca’s equations

∇µF(T)

µλ + 2TµF(T)

µλ − T
µν
λF(T)

µν + m2Aλ = 0. (15)

Obviously, in accordance with our picture, the statements

(14) and (15) are the dynamical world �eld equations inM

for CMB photons and dark energy �elds. Both of the sec-

ond halves come about as the corresponding Bianchi iden-

tities, which may be expressed by

∇µ*Fµλ = −2

*TλµνFµν , (16)

with the kernel-letter notation of (13), as well as some of

the dualization schemes given in Ref. [16], having beenuti-

lized for writing Equation (16).

3 Spinor �eld equations
The wave functions for both backgrounds are supplied by

the spinor decomposition of the bivectors carried by Equa-

tion (10). We have, in e�ect,

SµAA′S
ν
BB′ F̃µν = MA′B′ϕAB + MABϕA′B′ (17)

and²

SµAA′S
ν
BB′F

(T)

µν = MA′B′ψAB + MABψA′B′ , (18)

2 The kernel letter M will henceforth denote either γ or ε.

where the S-symbols are some of the connecting objects

for the formalism occasionally allowed for, and the entries

of the pair (MAB ,MA′B′ ) just denote the respective covari-

ant metric spinors. Thus, the wave functions carried by

(ϕAB , ϕA′B′ ) and (ψAB , ψA′B′ ) come into play as massless

and massive spin-one uncharged �elds of opposite hand-

ednesses, with their gauge characterizations incidentally

coinciding with those exhibited by Equations (3) and (4).

By invoking Equation (12) togetherwith the torsion decom-

position

TAA′BB′
µ

= MA′B′τAB
µ

+ MABτA′B′
µ
, (19)

we obtain the �eld-potential relationships

ϕAB = −∇C
′

(AΦB)C′ + 2τABµΦµ (20)

and

ψAB = −∇C
′

(AAB)C′ + 2τABµAµ . (21)

The contravariant form of (20) and (21) is written in both

formalisms as

ϕAB = ∇(A
C′ Φ

B)C′
+ 2τABµΦµ (22)

and

ψAB = ∇(A
C′ A

B)C′
+ 2τABµAµ , (23)

where we have implemented the eigenvalue equations

∇µγAB = iαµγAB , ∇µγAB = −iαµγAB , (24)

together with their conjugates and the de�nition

αµ + ∂µΦ + 2 (Φµ + Aµ) , (25)

with the quantity Φ being nothing else but the polar ar-

gument of the independent component of γAB (see Equa-

tion (40) below).

We next carry out the spinor translation of the indi-

vidual pieces of Equations (14)-(16), with the purpose of

paving the way for deriving the �eld equations at issue.

Evidently, it will su�ce to carry through the apposite pro-

cedures for either of the F-bivectors of Equation (13). For

the∇-term of (15), say, we have

∇AA
′

F(T)

AA′BB′ = ∇AA
′

(MA′B′ψAB) + c.c., (26)

with the symbol "c.c." denoting an overall complex conju-

gate piece. In the γ-formalism, the right-hand side of Equa-

tion (26) reads

∇AA
′

(γA′B′ψAB) + c.c. = (∇AB′ψAB − iα
A
B′ψAB) + c.c.. (27)

As ∇µεAB = 0 in both formalisms, the ε-formalism coun-

terpart of (27) may be obtained by dropping the α-term
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from it. By combining (18) and (19), we readily �nd the pat-

terns

TAA
′

F(T)

AA′BB′ =

(
τAMMB′ − τB′M′

AM′
)
ψAB + c.c. (28)

and

TAA
′MM′

BB′F
(T)

AA′MM′ = 2τAMBB′ψAM + c.c., (29)

which just represent TµF(T)

µλ and TµνλF(T)

µν in either formal-

ism. The γ-formalism version of the left-hand side of Equa-

tion (16) is given by

∇AA
′

*F(T)

AA′BB′ = i
[(
∇A

′

B ψA′B′ + iαA
′

B ψA′B′
)
− c.c.

]
, (30)

whereas the piece

*TλµνF(T)

µν gets in each formalism trans-

lated into

*TBB′AA
′MM′F(T)

AA′MM′

= i
[(
τBAMB′ψAM − c.c.) + (τB′M′AM

′

ψAB − c.c.

)]
. (31)

Towards completing our derivation procedures, it is con-

venient to require the unprimed and primed wave func-

tions for either background to bear algebraic indepen-

dence throughout M. This requirement enables us to ma-

nipulate the con�gurations involved in the spinor tran-

scription we have carried out above in such a way that

the left-right handedness characters of the �elds become

transparently separable. Therefore, by taking into account

the equality

τAMMB′ − τB′M′
AM′

= TAB′ , (32)

we obtain the �eld equation

∇AA
′

(MA′B′ψAB) +

1

2

m2ABB′ = sBB′ , (33)

with the complex dark energy source

sBB′ = 2

(
τAMBB′ψAM − T

A
B′ψAB

)
. (34)

It should be remarked that the term τBAMB′ψAM, which

is borne by Equation (31), cancels out at an intermediate

step of the manipulations that yield the statement (33),

and thence also so does its complex conjugate. In the γ-

formalism, we then have

∇AB′ψAB − iα
A
B′ψAB +

1

2

m2ABB′ = sBB′ , (35)

with the corresponding ε-formalism statement being spelt

out as

∇AB′ψAB +

1

2

m2ABB′ = sBB′ . (36)

For the CMB, we get the γ-formalism massless �eld equa-

tion

∇AB′ϕAB − iα
A
B′ϕAB = sBB′ , (37)

along with its ε-formalism counterpart

∇AB′ϕAB = sBB′ (38)

and the geometric source

sBB′ = 2

(
τAMBB′ϕAM − T

A
B′ϕAB

)
. (39)

It was demonstrated in Ref. [28] that the wave-function

pattern ϕAB for the torsionless framework bears a com-

monness feature in that it is the same in both the classi-

cal formalisms. Inasmuch as the traditional algebraic def-

initions for metric spinors and connecting objects are for-

mally appropriate for the torsionful framework as well, we

can right away write the γε-relationships

C(γ)

µνA
B

= C(ε)

µνA
B ⇔ C(γ)

µνAB = γC(ε)

µνAB , (40)

where γ is the independent component of γAB. Conse-

quently,³ we can say that each of the pairs (ϕBA , ϕB
′

A′ )

and (ψBA , ψB
′

A′ ) possesses a commonness property which is

seemingly similar to the classical one, in addition to hold-

ing in both formalisms a gauge invariant spin-tensor char-

acter. In each formalism, we thus have the �eld equations

∇AB
′

ψBA +

1

2

m2ABB
′

= sBB
′

(41)

and

∇AB
′

ϕBA = sBB
′

, (42)

where the ϕ-�eld relation, for instance,

γCB∇AB
′

ϕCA = ∇AB
′

ϕAB − iαAB
′

ϕAB , (43)

has been used in the γ-formalism case.

4 Calculational techniques
By this point, we shall build up the techniques that yield

in both formalisms the wave equations for the �elds be-

ing considered. In fact, these techniques constitute a tor-

sional version of the di�erential ones which had been de-

veloped originally within the classical γε-framework [28].

Let us begin with the operator decomposition

SµAA′S
ν
BB′Dµν = MA′B′ ˇDAB + MAB ˇDA′B′ . (44)

Whence, implementing Equations (2) and (19), gives

ˇDAB = ∆AB + 2τABµ∇µ , ∆AB + −∇C
′

(A∇B)C′ , (45)

3 We will henceforth stop staggering the indices of any symmetric

two-index con�guration.
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together with the complex conjugate of (45). The operators

ˇDAB and ∆AB both are linear and possess the Leibniz rule

property.

It may be useful to utilize Equation (24) for reexpress-

ing the γ-formalism operator ∆AB as

∆AB = ∇C′(A∇
C′
B)

− iαC′(A∇
C′
B)

. (46)

In the ε-formalism, one has

∆AB = −∇C
′

(A∇B)C′ = ∇C′(A∇
C′
B)

. (47)

It is worth noticing that the γ-formalism contravariant

form of ∆AB appears as

∆AB = −(∇C
′

(A∇B)

C′ + iαC
′

(A∇B)

C′ ), (48)

or, equivalently, as

∆AB = ∇(A
C′∇

B)C′
. (49)

Because αµ bears gauge invariance [39], the conjugate
ˇD-

operators for the γ-formalism behave under gauge trans-

formations as covariant spin tensors. In the ε-formalism,

they correspondingly behave as invariant spin-tensor den-

sities of weight −1 and antiweight −1.

Equations (1) and (44) suggest that some of the ele-

mentary
ˇD-derivatives should be prescribed in either for-

malism by

ˇDABζ C = ϖABMCζM , ˇDA′B′ ζ
C

= ϖA′B′M
CζM , (50)

with the spin-curvature expansion

CAA′BB′CD = MA′B′ϖABCD + MABϖA′B′CD , (51)

and the relationships

ϖ(γ)

ABCD = γ2ϖ(ε)

ABCD , ϖ
(γ)

A′B′CD =| γ |2 ϖ(ε)

A′B′CD , (52)

which clearly agree with (40). We can show [39] that the

spinor pair

G =

(
ϖAB(CD)

, ϖA′B′(CD)

)
(53)

constitutes the irreducible decomposition of the Riemann

tensor for∇µ. Its unprimed entry is expandable as⁴

XABCD=ΨABCD −M(A|(CξD)|B)
−

1

3

κMA(CMD)B , (54)

with

ΨABCD = X
(ABCD)

, ξAB = X

M
(AB)M , κ = XLM

LM
, (55)

4 From now on, we will for simplicity employ the de�nitions

XABCD + ϖAB(CD)
and ΞA′B′CD + ϖA′B′(CD)

.

and the Ψ-spinor de�ning a typical wave function

for gravitons in M. Likewise, the contracted pieces

(ϖABMM , ϖA′B′MM) ful�ll the additivity relations (5) and (9),

and are thereby proportional to the wave functions of (17)

and (18) according to the schemes

ϖ̃ABMM = −2iϕAB , ϖ̃A′B′M
M

= −2iϕA′B′ (56)

and

ϖ(T)

ABM
M

= −2iψAB , ϖ(T)

A′B′M
M

= −2iψA′B′ . (57)

Hence, we can cast the prescriptions (50) into the form

ˇDABζ C = XABM
CζM − i (ϕAB + ψAB) ζ C (58)

and

ˇDA′B′ ζ
C

= ΞA′B′M
CζM − i (ϕA′B′ + ψA′B′ ) ζ

C
. (59)

The prescriptions for computing
ˇD-derivatives of a covari-

ant spin vector ηA can be obtained out of (50) by assuming

that

ˇDAB
(
ζ CηC

)
= 0,

ˇDA′B′
(
ζ CηC

)
= 0, (60)

and carrying out Leibniz expansions thereof.We thus have

ˇDABηC = −

[
XABC

MηM − i (ϕAB + ψAB) ηC
]

(61)

and

ˇDA′B′ηC = −

[
ΞA′B′C

MηM − i (ϕA′B′ + ψA′B′ ) ηC
]
, (62)

along with the complex conjugates of Equations (58)-(62).

The
ˇD-derivatives of a di�erentiable complex spin-scalar

density α of weightw onM are written out explicitly as

ˇDABα = 2iwα (ϕAB + ψAB) ,
ˇDA′B′α = 2iwα (ϕA′B′ + ψA′B′ ) .

(63)

These con�gurations may in both formalisms be regarded

as immediate consequences of the integrability condition

Dµνα = 2iwα
(
F̃µν + F(T)

µν

)
. (64)

When acting on a world-spin scalar h, the
ˇD-operators

then recover the de�ning relation Dµνh = 0 as

ˇDABh = 0,
ˇDA′B′h = 0, (65)

whence

∆ABh = −2τABµ∇µh. (66)

Of course, the patterns for
ˇD-derivatives of some spin-

tensor density can be speci�ed from Leibniz expansions

like

ˇDAB (αBC...D) =

(
ˇDABα

)
BC...D + αˇDABBC...D , (67)
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with BC...D being a spin tensor.

As for the old γε-framework, whenever
ˇD-derivatives

of Hermitian quantities are actually computed in either

formalism, the wave function contributions carried by the

expansions (58)-(62) get cancelled. Such a cancellation

likewise happens when we let the
ˇD-operators act freely

upon spin tensors having the same numbers of covariant

and contravariant indices of the same kind. For w < 0,

it still occurs in the expansion (67) when BC...D is taken

to carry −2w indices and Imα 6= 0 everywhere. A sim-

ilar property also holds for situations that involve outer

products between contravariant spin tensors and complex

spin-scalar densities having suitable positive weights. The

gauge behaviours speci�ed in the foregoing Section tell us

that such weight-valence properties neatly �t in with the

case of the ε-formalism wave functions.

In carrying out the procedures for deriving our wave

equations, it may become necessary to take account of the

algebraic rules

2∇A
′

[B∇A]A′ = MAB� = ∇A
′

C

(
MBA∇CA′

)
(68)

and

2∇[A
A′∇

B]A′
= MAB� = ∇CA′

(
MBA∇A

′

C

)
, (69)

along with the operator splittings

∇C
′

A∇BC′ =

1

2

MBA� − ∆AB , ∇AA′∇
BA′

= ∆AB +

1

2

MAB� (70)

and the gauge invariant de�nition

� + ∇AA′∇
AA′

. (71)

Owing to the applicability in both formalisms of themetric

compatibility condition

∇µ(MABMA′B′ ) = 0, (72)

we can reset (71) as

� = ∇AA
′

∇AA′ . (73)

In addition, from the equations

�γAB = ΘγAB , �γAB = ΘγAB , (74)

whose derivation involves using the eigenvalue carried by

(24) together with

Θ + −αµαµ + i∇µαµ , (75)

we also get the symbolic γ-formalism devices

(�ιAC)γCB = (� − 2iαµ∇µ + Θ)ιAB (76)

and

γAC(�ιCB) =

(
� + 2iαµ∇µ + Θ

)
ιAB , (77)

which obey the valence-interchange rule⁵

iαµ∇µ ↔−iαµ∇µ , Θ↔ Θ. (78)

In the γ-formalism, the �-correlations for ιAB and ιAB can

then be achieved from

γACγBD�ιCD =

(
� − 4iαµ∇µ − Υ

)
ιAB (79)

and

γACγBD�ιCD =

(
� + 4iαµ∇µ − Υ

)
ιAB , (80)

which conform to Equation (78) with Υ = 2(αµαµ − Θ).

5 Wave equations
To obtain the entire set of wave equations that govern the

propagation of both physical backgrounds in M, we ini-

tially follow up the simpler procedure which consists in

implementing the calculational techniques exhibited an-

teriorly to work out the �eld equation of either formalism

for the common dark energy wave function ψBA. It will be-

come manifest that a gauge invariant condition for each

entry of the pairs (ψBA , ψB
′

A′ ) and (ϕBA , ϕB
′

A′ ) can be estab-

lished as a geometric consequence of the symmetry of

the underlying �elds. Rather than elaborating upon Equa-

tion (35), which could unnecessarily produce some com-

plicated manipulations, we will deduce the γ-formalism

wave equations for the unprimed pair (ψAB , ψAB) by ap-

pealing to the di�erential devices (76) and (77). We may

certainly get the wave equations for any primed ψ-�elds
by taking complex conjugates. The wave equations for all

ϕ-�elds shall then arise in a trivial way, provided that the

�eld equations for both backgrounds carry formally the

same couplings between the wave functions and torsion

spinors.

We start by operating with∇CB′ on the con�guration of

Equation (41). Thus, recalling the contravariant splitting of

(70) leads us to the statement

∆ACψBA −
1

2

MAC�ψBA +

1

2

m2∇CB′A
BB′

= ∇CB′ s
BB′

. (81)

It is obvious that both �rst-order derivative kernels of (81)

are of the type

∇CB′u
BB′

= ∇(B
B′ u

C)B′
−

1

2

MBC∇µuµ , (82)

5 The rule (78) had also arisen in Ref. [28] in connection with the

derivation of the wave equations for the CMB and gravitons in tor-

sionless environments.
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with the symmetric piece for the potential being given by

∇(B
B′A

C)B′
= ψBC − 2τBCµAµ , (83)

in accordance with (23). By virtue of the relation (45), the

∆-piece of (81) may be rewritten in either formalism as

∆ACψBA =
ˇDACψBA − 2τACµ∇µψBA . (84)

Furthermore, calling for (58) and (61) along with the ex-

pansion (54), after some computations, we get the contri-

butions

ˇDA(BψC)

A = ΨABC
MψMA +

2

3

κψBC − ψ(B
M ξ

C)M
(85)

and

ˇDA[BψC]

A = MBCψAMξAM . (86)

We can see that the symmetry property of the wave func-

tions entails imparting symmetry in the indices B and C to

the�-block of (81), which means that

MA[B�ψC]

A =

1

2

MBCMA
D�ψDA ≡ 0. (87)

In both formalisms, Equation (87) thus implies that

2∆A[CψB]

A = MBC
(

1

2

m2∇µAµ −∇µsµ
)
, (88)

while the relations (84) and (86) yield the expression

∆A[CψB]

A = MBC
(
τAµM ∇µψ

M
A − ψAMξAM

)
. (89)

So, utilizing Equation (34) and working out the τ∇ψ-term
of (89) to the extent that

τAµM ∇µψ
M
A = −

[
1

2

∇µsµ +∇CB′
(
TAB

′

ψCA
)

+ ψMA∇µτ
Aµ
M

]
,

(90)

we arrive at the condition⁶

1

4

m2∇µAµ+∇CB′
(
TAB

′

ψCA
)

+ψMA∇µτ
Aµ
M −ψ

M
A ξAM = 0. (91)

For ϕBA, we similarly obtain the massless condition

∇CB′
(
TAB

′

ϕCA
)

+ ϕMA∇µτ
Aµ
M − ϕMA ξAM = 0, (92)

along with the complex conjugates of (91) and (92).

The property (87) stipulates in either formalism that

the only contributions to the wave equation for ψBA are

those produced by the symmetric pieces in B and C of the

corresponding con�guration (81). Hence, carrying out a

symmetrization over the indices B and C of (81), likewise

6 When Equations (88)-(90) are combined together, the terms that

involve∇µsµ explicitly get cancelled.

�tting together the pieces of Equations (83)-(85) and rear-

ranging indices adequately thereafter, we end up with the

dark energy equation

(� +

4

3

κ + m2

)ψBA + 2ΨLB
MAψML = 2βBA , (93)

with

βAB = ∇(A
B′ s

B)B′
+ ψ(A

M ξ
B)M

+ 2(∇µψ(A
M )τB)Mµ

+ m2τABµAµ .
(94)

We should emphasize that the statements (91)-(93) are for-

mally the same in both formalisms, and additionally bear

gauge invariance because of the behaviour of Aµ as speci-

�ed by Equation (11). Indeed, it is the masslessness of the

CMB�elds that ensures the absence from (92) of a termpro-

portional to∇µΦµ
.

It now becomes clear that the application to Equa-

tion (93) of the correlations supplied by (76) and (77), al-

lows us to attain quite easily the γ-formalism version of

the wave equations for ψAB and ψAB. In e�ect, we have

(�−2iαµ∇µ+Θ+

4

3

κ+m2

)ψAB−2ΨAB
LMψLM = 2βAB (95)

and(
� + 2iαµ∇µ + Θ +

4

3

κ + m2

)
ψAB−2ΨAB

LMψLM = 2βAB ,

(96)

which satisfy the rule (78). For the ε-formalism, we obtain(
� +

4

3

κ + m2

)
ψAB − 2ΨAB

LMψLM = 2βAB (97)

and (
� +

4

3

κ + m2

)
ψAB − 2ΨAB

LMψLM = 2βAB . (98)

We notice that the ε-formalism lower-index version of βAB

is expressed simply as

βAB = ∇B′(As
B′
B)

− ψM
(AξB)M − 2(∇µψM

(A)τB)M
µ

+ m2τABµAµ .
(99)

Due to the occurrence of the same formal geometric pat-

terns on the right-hand sides of the �eld equations of Sec-

tion 3, we can promptly obtain the CMB wave equations

from the statements (93)-(98) by �rst setting m = 0 and

then replacing wave functions appropriately. In either for-

malism, we thus have(
� +

4

3

κ
)
ϕBA + 2ΨLB

MAϕML = 2ηBA , (100)

with

ηAB = ∇(A
B′ s

B)B′
+ ϕ(A

M ξ
B)M

+ 2(∇µϕ(A
M )τB)Mµ

(101)
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and sµ being given by (39). The γ-formalism equations for

(ϕAB , ϕAB) accordingly appear as(
� − 2iαµ∇µ + Θ +

4

3

κ
)
ϕAB − 2ΨAB

LMϕLM = 2ηAB
(102)

and(
� + 2iαµ∇µ + Θ +

4

3

κ
)
ϕAB − 2ΨAB

LMϕLM = 2ηAB ,

(103)

whereas the ε-formalism counterparts of Equations (102)

and (103) are stated as(
� +

4

3

κ
)
ϕAB − 2ΨAB

LMϕLM = 2ηAB (104)

and (
� +

4

3

κ
)
ϕAB − 2ΨAB

LMϕLM = 2ηAB . (105)

6 Concluding remarks and outlook
The description we have just proposed here has been

based upon the belief that the spinor structures of gen-

erally relativistic spacetimes should support locally a ge-

ometric description of the microwave and dark energy

backgrounds of the universe. Because of the fact that any

torsional a�ne potentials must always enter geometric

prescriptions together with adequate torsionless compan-

ions, we could de�nitely establish that any torsional two-

component spinor description of the dark energy back-

groundmust be accompanied by a description of the CMB.

We saw that all wave functions couple to the pieces of the

spinor decomposition for the torsion tensor of M. They

also interact with curvatures via couplings like, say, the

Ψψ andΨϕ ones carriedbyEquations (97) and (104).How-

ever, they do not interact with one another whence we can

say that one background propagates in M as if the other

were absent. This result appears to be in full agreement

with the suggestion made earlier in Ref. [33] by which the

CMB may propagate alone in spacetimes equipped with

torsionless a�nities as Infeld-van der Waerden photons.

One of the striking aspects of the procedures im-

plemented in Section 5, is related to the gauge invari-

ance of the condition (92), which takes place because

the masslessness of the CMB �elds annihilates either γε-
contribution that carries the non-invariant piece∇µΦµ

. It

should be stressed that the occurrence of the massive con-

dition (91) rests upon the torsionfulness intrinsically borne

by Equation (89). In the limiting case of the torsionless

framework, the derivative ∆A[CϕB]

A becomes an identically

vanishing contribution in both formalisms, and Equa-

tions (93)-(98) all "evaporate" together with the source sµ

and the curvature spinor ξAB. Under this circumstance, the

world-spin scalar κ bears reality and satis�es the equality

4κ = R,

with R being the Ricci scalar of ∇µ. Hence, the electro-

magnetic wave equations of Ref. [32] may be recovered,

with the physical signi�cance described in Ref. [33] being

of course e�ectively ascribed to them.

We expect that the subsidiary conditions involved in

the derivation of the wave equations for the dark energy

background could perhaps shed some light on the phys-

ical meaning of the right-hand side of Einstein-Cartan’s

�eld equations. We also believe that a distributional treat-

ment of our wave equations could be of considerable im-

portance insofar as it may provide us with local theoret-

ical evaluations of the dynamical properties of dark en-

ergy, including the feasibility of performing explicit calcu-

lations towardsmakingdirect comparisonswith data com-

ing from the observed anisotropy of the CMB. One of our

hopes is that the role played by spacetime torsion could

be actually further strengthened. It is considerably inter-

esting to point out that the calculational techniques de-

veloped in Section 4 can supply geometric tools for de-

scribing the propagation of gravitons and Dirac particles

in torsional cosmic environments, in combinationwith the

mechanisms that may avert gravitational singularities as

particularly exhibited in Ref. [43].
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