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Abstract: It is assumed that the two-component spinor for-
malisms for curved spacetimes that are endowed with tor-
sionful affine connexions can supply a local description
of dark energy in terms of classical massive spin-one un-
charged fields. The relevant wave functions are related to
torsional affine potentials which bear invariance under
the action of the generalized Weyl gauge group. Such po-
tentials are thus taken to carry an observable character
and emerge from contracted spin affinities whose patterns
are chosen in a suitable way. New covariant calculational
techniques are then developed towards deriving explicitly
the wave equations that supposedly control the propaga-
tion in spacetime of the dark energy background. What im-
mediately comes out of this derivation is a presumably nat-
ural display of interactions between the fields and both
spin torsion and curvatures. The physical properties that
may arise directly from the solutions to the wave equations
are not brought out.
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1 Introduction

Since the discovery of the cosmic dark energy [1, 2], several
attempts have been made [3-9] at accomplishing a macro-
scopic explanation of the presently observable accelera-
tion of the universe [10, 11], while circumventing the sit-
uations concerning some of the problems that arise in the
context of the standard cosmology [4, 12]. One of the most
popular approaches that were designed in this connection
describes dark energy in a geometrically torsionless fash-
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ion as a gravitationally repulsive cosmic background mod-
elled either by a positive cosmological constant or by a
scalar field to which a physical meaning may possibly be
ascribed. In this model, the dark energy density can be
explicitly evaluated with the help of some auxiliary ob-
servational data, but the corresponding results neverthe-
less turn out to be in serious disagreement with character-
istic values arising from the conventional quantum field
theories. In addition, the complete physical adequacy of
the scalar field taken up thereabout has not been estab-
lished hitherto. Another popular approach focusses upon
trivial modifications of the Lagrangian density for classi-
cal general relativity. It likewise implements alternative
patterns for generally relativistic energy momentum ten-
sors, and thereby gives rise to the need for sorting out the
microscopic nature of dark energy within extended parti-
cle physics models. A somewhat interesting work carried
out along these lines [13], identifies the dark energy back-
ground with a massive vector potential which is taken from
the beginning to obey a non-minimal coupling to grav-
ity. Accordingly, the Friedmann equations acquire an extra
non-geometric term which is proportional to the rest mass
of the dark energy particles. Moreover, the implementa-
tion of certain astronomical constraints makes it feasible
to estimate the mass of the particles. The overall picture
then leads to a mass value naively related to the cosmolog-
ical constant, and also supplies a late-time accelerated De
Sitter-like cosmic expansion.

On the basis of Einstein-Cartan’s theory [14-18], a
prospect has been posed by researchers for bringing forth
a torsional version of the standard cosmological model
(see Refs. [19, 20]). This had been partially motivated by
a theoretical possibility of particularly explaining the cos-
mic acceleration of the universe along with its spatial flat-
ness, its homogeneity and isotropy, without having to call
for any mechanisms of cosmic inflation [3, 4]. As men-
tioned in Refs. [21-25], torsional gravity has also attracted
a considerable deal of attention in conjunction with a pre-
diction achieved by string theory that concerns the occur-
rence of couplings between torsion and spinning fields.
Many insights into the understanding of both the coupling
strengths of the fundamental interactions and the ratios
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between them, have thus been gained from the torsionic
property of underlying spacetime geometries. Remarkably
enough, the essentially unique torsionful version of the fa-
mous Infeld-van der Waerden ~e-formalisms [26-38] had
been until very recently [39] just sparsely considered in
the literature [40, 41]. The main motivation for formulat-
ing this torsional extension came from the ascertainment
that its geometric inner structure may allow the implemen-
tation of affine contributions which afford gauge invariant
vector potentials bearing an observable character. It had
then been expected that the definitive ascription of a fun-
damental significance to spacetime torsion would eventu-
ally become more tangible if a torsional two-component
spinor description of dark energy might go hand-in-hand
with the spin-torsion mechanisms that prevent the uni-
verse from being originated by a singularity [42-44].

In the present work, we take account of the torsional
spinor formalisms referred to previously to bring forward
a supposedly realistic description of the dynamics of dark
energy in a purely local fashion. In fact, the viability for
carrying out our description relies geometrically upon the
possibility of choosing asymmetric spin-affine connexions
that supply gauge invariant potentials for two-component
massive spin-one uncharged fields on spacetimes with tor-
sionful affinities. The paper works out the idea that the
universe could have been expected beforehand to host
two physical backgrounds which, as we believe, must be
described in terms of affine potentials coming from the
spinor structures inherently borne by generally relativis-
tic spacetimes [45, 46]. Hence, a torsionless electromag-
netic background should be locally described by the old
~e-formalisms such as suggested in Refs. [29, 33], and a tor-
sionful background should be describable locally in terms
of geometric Proca fields within a suitably extended spinor
framework. Throughout the paper, we thus adopt the atti-
tude that identifies the former with the cosmic microwave
background (CMB), and likewise think of the latter as con-
stituting the cosmic dark energy. As was pointed out in
Ref. [39] from a strictly geometric viewpoint, any torsional
affine potential must be accompanied by proper torsion-
less contributions whence, in actuality, the implementa-
tion of this picture gives rise to one of the theoretical fea-
tures of our work whereby the spacetime description of
dark energy has to be united together with that of the CMB.
Yet, we realize that the propagation of the CMB in regions
of the universe where the values of torsional affinities are
negligible may be described alone within the framework
of Ref. [28].

We shall account for the well-established observa-
tional fact [8, 9] that the CMB and dark energy perme-
ate together the whole of the universe. Because of the lo-
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cality of our description, the completion of the relevant
procedures will be accomplished without making it nec-
essary to allow for any cosmological kinematics or even
to call upon any ordinary cosmological presuppositions
like those concerning homogeneities, isotropy, inflation
and shape of physical densities. Instead, the only assump-
tions lying behind the implementation of our procedures
are the same as the ones made before [39], according to
which local spinor structures along with manifold map-
ping groups and the matrices that classically constitute
the generalized Weyl gauge group [26—28], remain all for-
mally unaltered when any classical spacetime considera-
tion is shifted to the torsional framework. We stress that
the defining prescriptions for any of the geometric world
and spin densities tied in with the old formalisms [28, 29],
may be applicable equally well herein. The information
on the wave functions for both physical backgrounds is
carried by adequately contracted spin curvatures which
emerge as sums of typical bivector contributions from the
action on arbitrary spin vectors of a characteristic torsion-
ful second-order covariant derivative operator. It appears
that the additivity property of such contracted curvatures
is really passed on to the wave functions.

We will utilize the notation adhered to in Ref. [39]. Un-
less otherwise indicated in an explicit manner, the usual
designation of the traditional spinor framework as ~e-
formalisms will henceforward be attributed to the torsion-
ful two-component formalisms under consideration here.
Upon writing down the world form of the pertinent field
equations, we shall therefore take into account geometric
electromagnetic and uncharged Proca fields for a curved
spacetime 91 that carries a world metric tensor g, hav-
ing the local signature (+ — —-) and a torsionful, metric
compatible, covariant derivative operator V. The spinor
form of the field equations will be obtained by carrying
out a straightforward transcription of the respective world
statements. We will see that the resulting spinor field equa-
tions involve pairs of new complex conjugate current den-
sities for each physical background, which absorb outer
products carrying appropriate torsion spinors along with
the wave functions themselves. In order to carry out sys-
tematically the derivation of the wave equations that con-
trol the propagation of the fields in 9, we shall have to
adapt to the torsional framework the differential calcula-
tional techniques employed for the first time in the work of
Ref. [28]. What immediately comes out of this derivation
is a presumably natural display of interactions between
the fields and both torsion and curvatures. In either for-
malism, some pieces of the geometric sources originated
by the field equations must thus be subject to prescribed
gauge invariant subsidiary conditions which are brought
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about by the inherent symmetry of the wave functions. We
will not bring out at this stage any physical properties that
may arise from the solutions to our wave equations, how-
ever.

Without any risk of confusion, we will use the same
indexed symbol V to write covariant derivatives in both
formalisms. The symbol g will sometimes be used for de-
noting the determinant of g,,,. For the world affine connex-
ion associated with V,,, we have the splitting

Fyv/l = va/l + Tyv/l’

where T"WA = Ty and Ty = Iy, is by definition
the torsion tensor of V. The symmetric piece fywl may
be identified with the Christoffel connexion of g,y in case
T, is rearranged adequately. We take the elements of the
Weyl gauge group as non-singular complex (2x2)-matrices
whose entries are defined by

A4" = exp(i6)6,°,

where 642 denotes the Kronecker symbol and 6 is the
gauge parameter of the group which shows up as an ar-
bitrary differentiable real-valued function on 9t. The de-
terminant exp(2i6) of (A4%) will be denoted as A,. A hori-
zontal bar lying over some kernel letter will denote the op-
eration of complex conjugation. Some minor conventions
shall be explained in due course.

Our outline has been set as follows. In Section 2, we re-
call the contracted spin curvatures as built up in Ref. [39],
and bring out the world field equations. The definition of
all wave functions is shown in Section 3 together with the
spinor field equations. In Section 4, the torsional calcu-
lational techniques are developed. There, we will have to
consider spin curvatures somewhat further. Nonetheless,
many of the curvature formulae deduced in Ref. [39] shall
be taken for granted at the outset. In Section 5, the wave
equations are derived. We set an outlook on future works
in Section 6.

2 World field equations

The key curvature object for either formalism is a world-
spin quantity C,,4p that occurs in the configuration

D,uv(B = }lvAB(A’ (1)

where {4 is an arbitrary spin vector and D,y amounts to the
characteristic second-order covariant derivative operator
of the torsional framework, namely,

Dy = Z(V[va] + THVAVA). 2
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In the +-formalism, we have the tensor law
C;vaB = As“AB” Cuvep = A4 Cpva, (3)

whereas the object Cy;, 4 for the e-formalism is taken as an
invariant spin-tensor density of weight -1, that is to say,

C;JVAB = (AA)_lAACABDCyvCD = CyvaB- (4)

The contracted curvature CWAA possesses the gauge
invariant additivity property*

C,uvAA = EyvAA + CS;,)AA (5)

(T) A

In particular, C A

accounts for the torsionfulness of Vv,
while the whole EWA g is taken up by the torsionless com-
mutator

2V, V¢® = Cua®, 6)

where V,, is indeed the covariant derivative operator for
I, It turns out that we can write down the simultaneous
contracted relations

EMVAA = 26[H5V]AA, C(T) A 26[ S(T)A (7)

UVA HZv]A 2

with the involved 9-pieces thus occurring in the skew con-
tributions that make up in each formalism a suitably cho-
sen asymmetric spin affinity for V,, in agreement with
Equation (5). Hence, making use of the standard patterns
[39]

9™ = 0y log E - 2i@y, 90" = -2iA,, (8)

yields the purely imaginary expression
Cuva® = -2i (F,N + F,&TJ) , )
along with the bivectors
Fuv = 20, @y, Fia) = 20,4, (10)

with @, and A, amounting to affine potentials subject to
the gauge behaviours

D, = Dy - 0,0, A, =Ay. (11)

It is worthwhile to recast each of the derivatives of Equa-
tion (10) as a piece that looks formally like

0y = Vi 2y + T Q. (12)

We mention, in passing, that the quantity E carried by
the prescriptions (8) is a real positive-definite world-
invariant spin-scalar density of absolute weight +1. In the

1 We should emphasize that the uncontracted object C V\,AB for either
formalism does not hold the additivity property.
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~-formalism, it carries a manifestly spin-metric character,
but this ceases holding for the e-formalism. The poten-
tials @, and A, are the same in both formalisms. They
arise from an affine property of the covariant derivative ex-
pansions for the Hermitian connecting objects of the for-
malisms (for further details, see Ref. [39]).

It can be seen from Equation (11) that @, is a Maxwell
potential, which we take to be physically associated to
the CMB. In turn, A, bears gauge invariance and is like-
wise looked upon as a potential of mass m for the dark
energy background. The world form of the first half of
the overall set of field equations emerges from the usual
least-action principles for Maxwell and real Proca fields in
curved spacetimes [47]. It follows that, allowing for the re-
lation

1

v
with T = Ty" and the kernel letter J standing for either
For FD we get the first half of Maxwell’s equations

(1 ﬁ_gfw) = VP 4 2T, T - T Y, (13)

VHFup + 2T F - T 3Fuy = 0, (14)
along with the first half of Proca’s equations
VHFD + 2TFF) - T\ F) + m* Ay =0, (15)

Obviously, in accordance with our picture, the statements
(14) and (15) are the dynamical world field equations in 91
for CMB photons and dark energy fields. Both of the sec-
ond halves come about as the corresponding Bianchi iden-
tities, which may be expressed by

VH T = -2 T T, (16)

with the kernel-letter notation of (13), as well as some of
the dualization schemes given in Ref. [16], having been uti-
lized for writing Equation (16).

3 Spinor field equations

The wave functions for both backgrounds are supplied by
the spinor decomposition of the bivectors carried by Equa-
tion (10). We have, in effect,

SiA,S};B'?yv = MA'B'¢AB + MAB()bA'B' (17)
and?
SZA'SEB'F;%) =MypPap+ Mapap, (18)

2 The kernel letter M will henceforth denote either ~ or €.
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where the S-symbols are some of the connecting objects
for the formalism occasionally allowed for, and the entries
of the pair (M4p, M, ) just denote the respective covari-
ant metric spinors. Thus, the wave functions carried by
(¢pap, Pap) and (Pap, P4 p) come into play as massless
and massive spin-one uncharged fields of opposite hand-
ednesses, with their gauge characterizations incidentally
coinciding with those exhibited by Equations (3) and (4).
By invoking Equation (12) together with the torsion decom-
position

Tanpp" = MypTas" + MapTyp?, (19)
we obtain the field-potential relationships
Pap = -V Dy + 274" D, (20)
and
Yan = -V Agc + 275" Ap. 1)

The contravariant form of (20) and (21) is written in both

formalisms as
¢"F = V4P 4 2B, (22)

and

YAB = VUADC | opiBig, (23)

where we have implemented the eigenvalue equations

Viuyas = iuvas, Viy*t = —iauy*?, (24)
together with their conjugates and the definition
Ay = 0, D+ 2 (Dy + Ay, (25)

with the quantity @ being nothing else but the polar ar-
gument of the independent component of v45 (see Equa-
tion (40) below).

We next carry out the spinor translation of the indi-
vidual pieces of Equations (14)-(16), with the purpose of
paving the way for deriving the field equations at issue.
Evidently, it will suffice to carry through the apposite pro-
cedures for either of the F-bivectors of Equation (13). For

the V-term of (15), say, we have
v ,(42'33' = VM (Mypas) + cc., (26)

with the symbol “c.c." denoting an overall complex conju-
gate piece. In the v-formalism, the right-hand side of Equa-
tion (26) reads

VA (vapPap) + c.c. = (Vghap — idgPag) +c.c..  (27)

As Vyeap = 0 in both formalisms, the e-formalism coun-
terpart of (27) may be obtained by dropping the a-term
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from it. By combining (18) and (19), we readily find the pat-
terns

(e F1(4TA)'BB’ = (TAMMB' - TB'M'AM ) Pup +cC.C. (28)
and o
A4 BB'F;T,Z’MM’ = 2TAMBB’ Yam +c.C., 29)

which just represent T"F}(lﬁ) and T* AF,S? in either formal-
ism. The ~-formalism version of the left-hand side of Equa-
tion (16) is given by

v *FZT,Z'BB' =1 [(Vﬁ Yap + i“é l/)A'B') - C-C-} , (30)

whereas the piece *TA”VF,(K,) gets in each formalism trans-
lated into

* AA'MM 1(T)

TBB’ FAA,MM'

=i [(TBAMB»!,DAM —c.c)+ (T ™M - c.c.)} . 3

Towards completing our derivation procedures, it is con-
venient to require the unprimed and primed wave func-
tions for either background to bear algebraic indepen-
dence throughout 91. This requirement enables us to ma-
nipulate the configurations involved in the spinor tran-
scription we have carried out above in such a way that
the left-right handedness characters of the fields become
transparently separable. Therefore, by taking into account
the equality

TAMMB’ - TB'M'AM = Tg” (32)
we obtain the field equation
' 1
VA (Mypag) + 5m*Agy = Spp (33)
with the complex dark energy source
Spp =2 (TAMBB’l/)AM - Tg'l/)AB) . (34)

It should be remarked that the term 75 514, which
is borne by Equation (31), cancels out at an intermediate
step of the manipulations that yield the statement (33),
and thence also so does its complex conjugate. In the ~-
formalism, we then have

(35)

A . A 1 5
Vahap —iagPap + 5m App = Spp>

with the corresponding e-formalism statement being spelt
out as

1
ViWap+ =m*Agg = Sgg. (36)

2
For the CMB, we get the ~-formalism massless field equa-
tion

Vi dag — iy Pap = spp (37)
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along with its e-formalism counterpart

Vi Pap = spp (38)
and the geometric source
Spp =2 (TAMBB’¢AM - Tg"l’AB) . (39)

It was demonstrated in Ref. [28] that the wave-function
pattern ¢4? for the torsionless framework bears a com-
monness feature in that it is the same in both the classi-
cal formalisms. Inasmuch as the traditional algebraic def-
initions for metric spinors and connecting objects are for-
mally appropriate for the torsionful framework as well, we
can right away write the ~e-relationships

(v) B _ () B ) _ )
c —CWA N fyCWAB,

UVA WvAB — (40)

where ~ is the independent component of ~,5. Conse-
quently,> we can say that each of the pairs (¢5, (;bﬁi)
and (Y&, l,bﬁ’,) possesses a commonness property which is
seemingly similar to the classical one, in addition to hold-
ing in both formalisms a gauge invariant spin-tensor char-
acter. In each formalism, we thus have the field equations

VAB’IPE N %mzABB' _ gBF 1)
and , ,
VAR ¢} = PP (42)
where the ¢-field relation, for instance,
ves VAP @ = VAP pap - ia’ P, “3)

has been used in the -formalism case.

4 Calculational techniques

By this point, we shall build up the techniques that yield
in both formalisms the wave equations for the fields be-
ing considered. In fact, these techniques constitute a tor-
sional version of the differential ones which had been de-
veloped originally within the classical ve-framework [28].
Let us begin with the operator decomposition

S St Duv = My g Dag + MypD . (44)
Whence, implementing Equations (2) and (19), gives
Dap =g+ 27454V, Aap = —V(CAVB)C', (45)

3 We will henceforth stop staggering the indices of any symmetric
two-index configuration.
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together with the complex conjugate of (45). The operators
Dap and A, both are linear and possess the Leibniz rule
property.

It may be useful to utilize Equation (24) for reexpress-
ing the ~-formalism operator A,p as

AAB = Vc’(AVzC;) - iac'(AVg). (46)
In the e-formalism, one has
_ ¢ _ ¢
AAB = _V(AVB)C' = Vc'(AvB). (47)

It is worth noticing that the ~-formalism contravariant
form of A,p appears as

A% = (VEUATD) 1 jaCUyD), (48)

or, equivalently, as

AP = TUPe, (49)
Because ay bears gauge invariance [39], the conjugate D-
operators for the y-formalism behave under gauge trans-
formations as covariant spin tensors. In the e-formalism,
they correspondingly behave as invariant spin-tensor den-
sities of weight —1 and antiweight —1.

Equations (1) and (44) suggest that some of the ele-
mentary D-derivatives should be prescribed in either for-
malism by

D4p¢¢ = @apm M, Dy l© = 0apnM, (50)
with the spin-curvature expansion
Canprcp = Mpyp®apep + Map@ g cps (51)
and the relationships
@ep =V Dhens wf;%w 1y P @Sy (52

which clearly agree with (40). We can show [39] that the
spinor pair

G-= (wAB(CD)’ wA'B'(CD)) (53)

constitutes the irreducible decomposition of the Riemann
tensor for V. Its unprimed entry is expandable as*

1
Xascp=Yascp — Mucépyp) — §%MA(CMD)B, (54)
with

Wagcn = Xusepy a8 = XM upms 7 = Xou™, (55)

4 From now on, we will for simplicity employ the definitions
Xapcp = @ap(cp) and Eypep =+ @y g (cp)-
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and the Y-spinor defining a typical wave function
for gravitons in 9. Likewise, the contracted pieces
(@™, @ 45 ,M) fulfill the additivity relations (5) and (9),
and are thereby proportional to the wave functions of (17)
and (18) according to the schemes

Dapu™ = ~2ipap, Dapy™ = -2id g (56)
and
ng)}MM =-2iYap, W;T'};VMM =-2i,p. (57)

Hence, we can cast the prescriptions (50) into the form

Dapl® = Xapn M —i(pap + Pap) ¢© (58)

and

Dyp¢C =Enpu " - i(bap +Yaw) - (59)
The prescriptions for computing D-derivatives of a covari-
ant spin vector 17, can be obtained out of (50) by assuming
that

Dag ((C'lc) =0, Dyp ((C'lc) =0, (60)

and carrying out Leibniz expansions thereof. We thus have

Dapne = - [XABCMHM ~1(Pap +Pap) flc} (61)

and

Dypnc=- [EA'B’CMHM —i(Pap +Yap) TYC] , (62
along with the complex conjugates of Equations (58)-(62).
The D-derivatives of a differentiable complex spin-scalar
density a of weight v on 91 are written out explicitly as

Dypat = 2iwa (¢ap + Yap), Dyga = 2i0a(Pap +Pag).

(63)
These configurations may in both formalisms be regarded
as immediate consequences of the integrability condition

Dwva = 2iva (E,v + F,(E,)) . (64)
When acting on a world-spin scalar h, the D-operators
then recover the defining relation Dyyh = 0 as

DABh = 0, DA’B'h = O, (65)

whence

AABh = —ZTAByVyh. (66)

Of course, the patterns for D-derivatives of some spin-
tensor density can be specified from Leibniz expansions
like

Dap(aBc..p) = (DABa) Bc..p+aDapBe..p, (67)
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with B¢, p being a spin tensor.

As for the old ve-framework, whenever D-derivatives
of Hermitian quantities are actually computed in either
formalism, the wave function contributions carried by the
expansions (58)-(62) get cancelled. Such a cancellation
likewise happens when we let the D-operators act freely
upon spin tensors having the same numbers of covariant
and contravariant indices of the same kind. For v < 0,
it still occurs in the expansion (67) when B¢, p is taken
to carry —2tv indices and Ima # O everywhere. A sim-
ilar property also holds for situations that involve outer
products between contravariant spin tensors and complex
spin-scalar densities having suitable positive weights. The
gauge behaviours specified in the foregoing Section tell us
that such weight-valence properties neatly fit in with the
case of the e-formalism wave functions.

In carrying out the procedures for deriving our wave
equations, it may become necessary to take account of the

algebraic rules
2V{EV g = MapO = V¢ (MBAV,E') (68)

and

A ¥ i v (MBA v‘é’) , (69)

along with the operator splittings
V§ Ve = %MBAD —Agp, VAVBA — 4984 %MABD (70)
and the gauge invariant definition
0=V VA4, (71)

Owing to the applicability in both formalisms of the metric
compatibility condition

VuMagMyp) =0, (72)
we can reset (71) as
O=vy,,. 73)
In addition, from the equations
Oyas = Ovap, Ov*? = 6477, (74)

whose derivation involves using the eigenvalue carried by
(24) together with

0 = —aay +iv,a*, (75)
we also get the symbolic ~-formalism devices
(@tavep = (O - 2id" Vy + O)igp (76)
and
Y0P = (O + 2ia'vy + 0) PP, (77)
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which obey the valence-interchange rule’

"V, > -iad"V,, 6 <> 0. (78)

In the v-formalism, the O-correlations for (45 and (4% can
then be achieved from

’yAc’YBDDlCD = (D - 4ia“Vy - Y) lAB (79)

and
FACABP O = (D + 4ia" V7, - ?) AB, (80)

which conform to Equation (78) with Y = 2(a*a, - ©).

5 Wave equations

To obtain the entire set of wave equations that govern the
propagation of both physical backgrounds in 9, we ini-
tially follow up the simpler procedure which consists in
implementing the calculational techniques exhibited an-
teriorly to work out the field equation of either formalism
for the common dark energy wave function 4. It will be-
come manifest that a gauge invariant condition for each
entry of the pairs (5, %5 and (¢, $) can be estab-
lished as a geometric consequence of the symmetry of
the underlying fields. Rather than elaborating upon Equa-
tion (35), which could unnecessarily produce some com-
plicated manipulations, we will deduce the ~-formalism
wave equations for the unprimed pair (45, $48) by ap-
pealing to the differential devices (76) and (77). We may
certainly get the wave equations for any primed y-fields
by taking complex conjugates. The wave equations for all
¢-fields shall then arise in a trivial way, provided that the
field equations for both backgrounds carry formally the
same couplings between the wave functions and torsion
spinors.

We start by operating with Vg, on the configuration of
Equation (41). Thus, recalling the contravariant splitting of
(70) leads us to the statement

1

AAC B
vi- 1

MACOyE + %mzvg,ABB’ - vSsPE. (81)

It is obvious that both first-order derivative kernels of (81)
are of the type

vg/uBB’ _ vg?uC)B’ 3 %MBCVHUH, (82)

5 The rule (78) had also arisen in Ref. [28] in connection with the
derivation of the wave equations for the CMB and gravitons in tor-
sionless environments.
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with the symmetric piece for the potential being given by

VEAOE = yBC 2Py, (83)

in accordance with (23). By virtue of the relation (45), the
A-piece of (81) may be rewritten in either formalism as

AP = DACYE — 20y k. (84)

Furthermore, calling for (58) and (61) along with the ex-
pansion (54), after some computations, we get the contri-
butions

~ 2 M
DA(BI! g) 'P’ABCMI! AM 3 sl BC U gﬁ C) (85)
and

DA[Blpg] = MBCyp &M (86)

We can see that the symmetry property of the wave func-
tions entails imparting symmetry in the indices B and C to
the O-block of (81), which means that

MABy Y = %MBCMADD!,DQ =0. (87)
In both formalisms, Equation (87) thus implies that
1
2018l = ppBe <§m2V,,A" - vys”> ,  (88)

while the relations (84) and (86) yield the expression

ANl = M (ol - pan™) . (89)
So, utilizing Equation (34) and working out the TVi)-term
of (89) to the extent that
1 ,
TVl = - [ivys" +Vep (TAB 1/)5) + lp%vllTAA/Iy:| ,
(90)
we arrive at the condition®

1 ’
2m Va4V p (TAB r,bﬁ) + M, T M Ed = 0. (91)

For ¢&, we similarly obtain the massless condition

Vew (T 05) + givurif - ¢l -0, ©2)
along with the complex conjugates of (91) and (92).

The property (87) stipulates in either formalism that
the only contributions to the wave equation for % are
those produced by the symmetric pieces in B and C of the
corresponding configuration (81). Hence, carrying out a
symmetrization over the indices B and C of (81), likewise

6 When Equations (88)-(90) are combined together, the terms that
involve Vs# explicitly get cancelled.
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fitting together the pieces of Equations (83)-(85) and rear-
ranging indices adequately thereafter, we end up with the
dark energy equation

4
@O+ 3x+ m>)Yh + 29 gl = 285, (93)

with

B8 = Vg}sB)B' + 1/)5(2.{3)1” + 2V M L m2 2B A,

(94)
We should emphasize that the statements (91)-(93) are for-
mally the same in both formalisms, and additionally bear
gauge invariance because of the behaviour of A, as speci-
fied by Equation (11). Indeed, it is the masslessness of the
CMB fields that ensures the absence from (92) of a term pro-
portional to V, @H.

It now becomes clear that the application to Equa-
tion (93) of the correlations supplied by (76) and (77), al-
lows us to attain quite easily the y-formalism version of
the wave equations for 145 and Y42, In effect, we have

(D—Zia"V,l+@+§%+mz)¢AB—2‘I’ABLMl/)LM = zﬂAB (95)
and

(D +2ia"Vy + 0 + §%+ mz) PP 2Pt = 2B,

(96)
which satisfy the rule (78). For the e-formalism, we obtain

4
<|:| + §%+ mz) Yap - ZIPABLMIIJLM =2BaB 97)
and

<D N §%+ m2> YAB _ 2@AB M _ AB 98)
We notice that the e-formalism lower-index version of g2
is expressed simply as

Bag = Viwush - Yiaéom - 2(Vup() T + m*Tag" Ay

(99)
Due to the occurrence of the same formal geometric pat-
terns on the right-hand sides of the field equations of Sec-
tion 3, we can promptly obtain the CMB wave equations
from the statements (93)-(98) by first setting m = 0 and
then replacing wave functions appropriately. In either for-
malism, we thus have

(D + §%> o8+ 2wtB M = 2nh, (100)
with
8 = VBB 1 pUueBM L o(v, i)Y (101)
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and s, being given by (39). The v-formalism equations for
(¢4, p*B) accordingly appear as

(D = Zia”V,, +0+ %%) ¢AB = Z'PABLMd)LM = ZTIAB
(102)
and

(D +2ia'Vy + 0 + %%) ¢ —2wAB ™M = 2B,
(103)
whereas the e-formalism counterparts of Equations (102)
and (103) are stated as

4
<D + §%> Gap - 2¥as"M by = 2045 (104)

and

(D + §%> @B —2wAB MM = 2B, (105)

6 Concluding remarks and outlook

The description we have just proposed here has been
based upon the belief that the spinor structures of gen-
erally relativistic spacetimes should support locally a ge-
ometric description of the microwave and dark energy
backgrounds of the universe. Because of the fact that any
torsional affine potentials must always enter geometric
prescriptions together with adequate torsionless compan-
ions, we could definitely establish that any torsional two-
component spinor description of the dark energy back-
ground must be accompanied by a description of the CMB.
We saw that all wave functions couple to the pieces of the
spinor decomposition for the torsion tensor of 9. They
also interact with curvatures via couplings like, say, the
Y1 and W¢ ones carried by Equations (97) and (104). How-
ever, they do not interact with one another whence we can
say that one background propagates in 91 as if the other
were absent. This result appears to be in full agreement
with the suggestion made earlier in Ref. [33] by which the
CMB may propagate alone in spacetimes equipped with
torsionless affinities as Infeld-van der Waerden photons.
One of the striking aspects of the procedures im-
plemented in Section 5, is related to the gauge invari-
ance of the condition (92), which takes place because
the masslessness of the CMB fields annihilates either ~e-
contribution that carries the non-invariant piece vV, ®*. It
should be stressed that the occurrence of the massive con-
dition (91) rests upon the torsionfulness intrinsically borne
by Equation (89). In the limiting case of the torsionless
framework, the derivative AA[Cqbﬁ] becomes an identically
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vanishing contribution in both formalisms, and Equa-
tions (93)-(98) all "evaporate" together with the source s*
and the curvature spinor &4 5. Under this circumstance, the
world-spin scalar s bears reality and satisfies the equality

43 =R,

with R being the Ricci scalar of V. Hence, the electro-
magnetic wave equations of Ref. [32] may be recovered,
with the physical significance described in Ref. [33] being
of course effectively ascribed to them.

We expect that the subsidiary conditions involved in
the derivation of the wave equations for the dark energy
background could perhaps shed some light on the phys-
ical meaning of the right-hand side of Einstein-Cartan’s
field equations. We also believe that a distributional treat-
ment of our wave equations could be of considerable im-
portance insofar as it may provide us with local theoret-
ical evaluations of the dynamical properties of dark en-
ergy, including the feasibility of performing explicit calcu-
lations towards making direct comparisons with data com-
ing from the observed anisotropy of the CMB. One of our
hopes is that the role played by spacetime torsion could
be actually further strengthened. It is considerably inter-
esting to point out that the calculational techniques de-
veloped in Section 4 can supply geometric tools for de-
scribing the propagation of gravitons and Dirac particles
in torsional cosmic environments, in combination with the
mechanisms that may avert gravitational singularities as
particularly exhibited in Ref. [43].

Acknowledgement: Ishould like to thank the referees for
making some suggestions that have produced a significant
improvement on the paper presented here.
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