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Abstract: In this paper, multivariate Padé approximation
is applied to power series solutions of nonlinear diffusion
equations. As it is seen from tables, multivariate Padé ap-
proximation (MPA) gives reliable solutions and numerical
results.
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1 Introduction

In recent times,univariate and multivariate Padé approx-
imation have been successfully applied to various prob-
lems in physical and engineering sciences [1-7]. As it is in-
dicated in [16] "a Padé approximation can be far more accu-
rate than a Taylor approximation. Essentially, it is a conse-
quence of the famous ‘Montessus de Ballore’ theorem,which
established in 1902 the uniform convergence of Padé ap-
proximants on compact subsets excluding the poles [16]".
Although most of the power series expansions fail to con-
verge outside the disk of convergence, a Padé approxi-
mation of a function can give better numerical solutions.
The definitions and theorems of multivariate Padé approx-
imations were constructed on univariate Padé approxima-
tions [14]. But if it is examined we realize that the appli-
cations of univariate and multivariate Padé approxima-
tion are different from each other [14], so new definitions
and theorems have been constructed to overcome difficul-
ties by the time [16]. Chisholm proposed one of the first
definitions in 1973 [17]. Levin developed a general defi-
nition [18], after that Cuyt also made important contri-
butions on homogeneous Padé approximations and uni-
form convergence results for the multivariate Padé approx-
imants [19, 20]. In this paper, multivariate Padé approxi-
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mations were applied to the solutions of nonlinear diffu-
sion equations in the form [8]:

ur = (D(Wux), ey
Subject to the initial condition:
u(x,0) = f(x) @

The details about nonlinear diffusion equations can be
seen in [8, 15].

2 Variational iteration method

The basic concepts and principles of variational iteration
method can be seen in [9-13]. Sadighi and Ganiji [8] con-
structed respectively the following correction functional
and iteration formula by using the basic concepts and
principles of variational iteration method:

t
et = Un - / Mune - (Buns) Jdr  G)
0

t
Up+1 = Un — / {unr - (D(un)unx)x} dr. (4)
0

where 8D(uy) is restricted variation. The Lagrange multi-
plier has been identified as A = —1.

3 Multivariate Padé approximation

Consider the bivariate function f(x, y) with Taylor power
series development

fO6Y) =3 cpx'y )
i,j=0
around the origin [14]. The Padé approximation problem
of order for f(x, y) consists in finding polynomials

pOGY) =) Ar(x,Y) 6)
k=0

CI(X’)’)=ZBk(X,J/) (7)
k=0
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such that in the power series (fg - p) (x, y) the coefficients of x and y’ by solving the following equation system;

Co(x, ¥)Bo(x,y) = Ao(x,y)
C1(x, y)Bo(x,y) + Co(x, y)B1(x, y) = A1(x,y) ®
Cm(x, y)Bo(x, y) + +++ + Cm-n(x, ¥)Bn(x,y) = Am(x, y)

Cm+1(X, ¥)Bo(x, ¥) + Cims1-n(x, y)Bn(x,y) = 0

; ©)
Cmen(x, y)Bo(x, y) + «++ + Cm(X, y)Bn(x,y) = 0

where C; = 0if k < 0. If the equations (8) and (9) are solved then the coefficients Ay (k= 0, ..., m)and By (k=0,...,n)

are obtained. So polynomials (6) and (7) are found. Polynomials p(x, y) and g(x, y) are called Padé equations[14]. So
the multivariate Padé approximant of order (m, n) for f(x, y) is defined as,

_py) (10)

D) )

4 Applications and results

In this section multivariate Padé series solutions of nonlinear diffusion equations shall be illustrated by two examples.
All the results were calculated by using the Maple software suite. The full VIM solutions of examples can be seen in
Sadighi and Ganiji [8].

Example 1. Consider a slow diffusion process [15]

ur = (Uux), (11)

u(,0)= X, 130 (12)

where ¢ > 0 is an arbitrary constant.
According to the iteration formulas (3), (4) Sadighi and Ganji [8] and by using decomposition method Wazwaz [15]
obtained following solution,

o1 6t 36t2 2163 1296t 33696t° 31104t° 5
ux,t)=x - ?+ 3 + o + s + o6 + 7 e (13)
X

The exact solution of (13) is given as u (x, t) = Z in [15]. If the multivariate Padé approximation is applied to
equation (13) for m = 4 and n = 2, according to the equation system (8) and (9) the following Padé equations are

obtained;
3664 (-1 +36x%) x*

p(x, t) = - 7 (14)
and 4 2 20,2
36t" (-c+ 6t+36x°Cc—216x"t) x
Q(X, t) == ( c7 ) (15)
So the multivariate Padé approximant of order (4, 2) for equation (13) is,
-1+ 36x%) x?
T4’2(X, t) = ( ) (16)

—C+ 6t +36x2c - 216x2t

If the multivariate Padé approximation is applied to equation (13) for m = 5 and n = 2, according to the equation
system (8) and (9) the following Padé equations are obtained;

9331207 x®
p(X, t) = —T (17)
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and ; .
933120t’ (c - 6t
qc, 1) = L (18)

So the multivariate Padé approximant of order (5, 2)for equation (13) is,
2

X
c-6t (19)

rS,Z(Xy t) =

If the multivariate Padé approximation is applied to equation (13) for m = 6 and n = 2, according to the equation
system (8) and (9) the following Padé equations are obtained;

1119744t8(5¢* + 633t - 600ct? - 3600ct> - 21600t*)x°
P, )= - ( o ) (20)

and

1119744t3(5¢% + 33ct - 978t%)x*
400 = G ) @

So the multivariate Padé approximant of order (6, 2) for equation (13) is,

(5¢* + 63¢3t - 600c%t% - 3600ct® - 21600t*)x2

= 22
ro.2(x: 0 3(5¢2 + 33t - 978t2) @)
Example 2. Consider another slow diffusion process [? ]
2
= 23
U (u ux)x (23)
xX+h

,0) = 2

u(e0)= 52 (24)

where h and c, ¢ > 0, are arbitrary constants.
According to the iteration formulas (3), (4) Sadighi and Ganji [8] and by using decomposition method Wazwaz [15]
obtained following solution,

u(x t)=X+h +i+£+ 56 +13t4+ oL oo (25)
’ 2./¢ 2c  8c¢2  16¢3  64c¢*  80c¢d
The exact solution of (23) is given as u (x, t) = % \’}% in [8]. If the multivariate Padé approximation is applied to

equation (25) for m = 2 and n = 2, according to the equation system (8) and (9) the following Padé equations are
obtained;
px, t) = —t2(64c*hx? + 64c*x> + 64> W2 tx + 323 htx? - 3203t

26
+8c2h3t% - 96¢2h2t2x — 104c*ht*x? - 40ch33x + 9h3t*)/ 4096152 (26)

and
qlx, t) = -t2(16¢*x? + 163 htx - 163 tx? + 2c?h?t? - 34c?h? t%x

27
+2¢2t2x% = 11ch? + 11cht® + 7Th2t*)/512¢7 @7)

So the multivariate Padé approximant of order (2, 2)for equation (25) is,

r2.20x, t) = (64c*hx® + 64c*X3 + 64 h?tx + 323 htx? - 323t + 8c? W12
—96c2h%t?x — 104c?ht*x? — 40ch® Bx + 9h3t*)/(8+/c(16c*x? + 163 htx — 163 tx* + 2c2h* t? (28)
—34Cc2h2 2 x + 2¢%t2x? = 11ch?t + 11cht® + 7Th%tY)

If the multivariate Padé approximation is applied to equation (25) for m = 3 and n = 2, according to the equation
system (8) and (9) the following Padé equations are obtained;

px, t) = —t*(480tx3c* - 329h3t> - 1372h3t*c + 112033 ¢2
+320x3¢® - 160t2x3¢3 + 22963 3 c? + 1760h%c*tx + 320hc° x>
+4408h%t>c3x + 2240htc*x? + 1124h% 3 c?x + 3128ht* 3 x?
-1437h%t*cx - 1172ht3x%¢?)/(163840c21/2)

(29)
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and
q(x, t) = —t*(280h?t2c? + 440htc3x + 434h%t3 ¢ + 602ht* c*x

30
+80x%c* + 80x%c3t — 7593 xch — 110t x%¢? — 665h%t*)/(20480c°) (30)

So the multivariate Padé approximant of order (3, 2)for equation (25) is,

r3.2(x, t) = (480tx>c* - 329R3t> - 1372h3t*c + 1120332

+320x3¢° - 160t2x3 3 + 229633 ¢? + 1760h%c* tx + 320hc’ X2
+4408h2t2c3 x + 2240htc*x? + 11240263 cx + 3128ht2c3 x2
~1437h%t" cx - 1172ht3x2c?)/(8¢C/D (2802 3¢ + 440htc3 x + 434h% B¢
+602ht?c?x + 80x%c* + 80x2c3t - 7593 xch — 110t2x%¢? - 665h%t*))

€3))

If the multivariate Padé approximation is applied to equation (25) for m = 4 and n = 2, according to the equation
system (8) and (9) the following Padé equations are obtained;

p(x, t) = —t(320c° ht3x? + 320c° 3x> + 1760c*h?t*x + 2240c*ht*x? + 480c*t* x>
+1120c3R3 % + 55603 h?t°x + 42803 ht°x? — 160ct° x> + 3160c’h>t°
+1700c?h?tx - 1460c*ht®x? - 1660ch>t” — 1725ch?*t’x - 365h°t8
-128c3h%x - 128c3hx? - 96¢ch>t — 6422 tx + 32¢*htx? + 32ch3t?

+32ch?t2x + 4h363)/ (163840c(21/2>)

(32

and
q(x, t) = =(80c*3x? + 4403 ht*x + 80c3 t*x? + 280c*h?t° + 890c?ht®x — 110c% > x?

33
+650ch?t® - 975¢cht®x — 845h%t7 — 32¢2hx - 24ch?t + 24chtx + 20h? )t/ (20480¢°) (33)

So the multivariate Padé approximant of order (4, 2)for equation (25) is,

r4.20x, £) = (320 ht*x? + 3203 X3 + 1760c*h?t*x + 2240¢*ht*x* + 480c*t*x3
+1120c3R3t> + 55603 h2t2x + 42803 ht°x? — 160c°x> + 3160c2h3¢°

+1700c%h?tx — 1460c?ht®x? - 1660ch>t’ — 1725ch?t’ x - 365h3t8

-128c3h?x - 1283 hx? - 96¢ch3t — 64c*h?tx + 32¢2htx? + 32ch>t?

+32ch2t2x + 4h313)/(8¢3/D(80c* X2 + 440c3 ht*x + 80c3 t*x2 + 280c2h2t° + 890c2ht°x
-110c2t°x? + 650ch?t® — 975¢cht®x — 845h%t” — 32¢2hx — 24ch?t + 24chtx + 20h?t2))

(34)

As it is presented above in Example 1, If the numerical results are compared at ¢ = 1 following table obtained
(Table 1).

Table 1: Comparison of Exact solution of equation (11) and MPA solutions of equation (13) for example 1.

X t Exact solution 4,2(x, ) r5.2(x, ) re.2(x, t)

0.001 0.001 0.1006036217 x10™> 0.1006036217 x 107> 0.1006036217 x 10> 0.1006036217 x 107>
0.002 0.002 0.4048582996 x 107 0.4048582996 x 107>  0.4048582996 x 10>  0.4048583000 x 107>
0.003 0.003 0.9164969450x10™ 0.9164969450x 10  0.9164969450 x 10>  0.9164969506 x 10~
0.004 0.004 0.00001639344262  0.00001639344262  0.00001639344262  0.00001639344305
0.005 0.005 0.00002577319588  0.00002577319588  0.00002577319588  0.00002577319791
0.006 0.006 0.00003734439834  0.00003734439834  0.00003734439834  0.00003734440562
0.007 0.007 0.00005114822547  0.00005114822547  0.00005114822547  0.00005114824697
0.008 0.008 0.00006722689076  0.00006722689076  0.00006722689076  0.00006722694565
0.009 0.009 0.00008562367865  0.00008562367865  0.00008562367865  0.00008562380421
0.01 0.01 0.0001063829787 0.0001063829787 0.0001063829787 0.0001063832422

As it is presented above in Example 2, According to the numerical results at ¢ = 1 and h = 1 following table obtained

(Table 2).
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Table 2: Comparison of Exact solution of equation (23) and MPA solutions of equation (25) for example 2.

X t Exact solution r2,2(x, ) r3,2(x, ) r4,2(x, t)
0.001 0.001 0.5007504375 0.5007504379 0.5007504380 0.5007504379
0.002 0.002 0.5015017525 0.5015017528 0.5015017524 0.5015017526
0.003 0.003 0.5022539465 0.5022539468 0.5022539469 0.5022539468
0.004 0.004 0.5030070220 0.5030070221 0.5030070220 0.5030070220
0.005 0.005 0.5037609805 0.5037609808 0.5037609810 0.5037609806
0.006 0.006 0.5040143180 0.5045158248 0.5045158248 0.5045158248
0.007 0.007 0.5047697970 0.5052715562 0.5052715560 0.5052715560
0.008 0.008 0.5060281770 0.5060281775 0.5060281776 0.5060281770
0.009 0.009 0.5067856900 0.5067856904 0.5067856905 0.5067856899
0.01 0.01 0.5075440965 0.5075440974 0.5075440974 0.5075440965

5 Conclusion

In this paper, rational power series solution of various kinds of nonlinear diffusion equations were constructed by mul-
tivariate Padé approximations.The approximation is effective, easy to use, and reliable.The main benefit of the approx-
imation is to offer rational approximation in a rapid convergent rational series form.
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