Research Article Open Access

V. Turut*

Multivariate Padé Approximations For Solving Nonlinear Diffusion Equations

DOI 10.1515/phys-2015-0041

Received September 2, 2015; accepted October 27, 2015

Abstract: In this paper, multivariate Padé approximation is applied to power series solutions of nonlinear diffusion equations. As it is seen from tables, multivariate Padé approximation (MPA) gives reliable solutions and numerical results.

Keywords: Multivariate Padé approximation; nonlinear diffusion equations; variational iteration method

PACS: 02.60.-x, 02.60.Cb, 02.70.-c

1 Introduction

In recent times, univariate and multivariate Padé approximation have been successfully applied to various problems in physical and engineering sciences [1–7]. As it is indicated in [16] "a Padé approximation can be far more accurate than a Taylor approximation. Essentially, it is a consequence of the famous 'Montessus de Ballore' theorem, which established in 1902 the uniform convergence of Padé approximants on compact subsets excluding the poles [16]". Although most of the power series expansions fail to converge outside the disk of convergence, a Padé approximation of a function can give better numerical solutions. The definitions and theorems of multivariate Padé approximations were constructed on univariate Padé approximations [14]. But if it is examined we realize that the applications of univariate and multivariate Padé approximation are different from each other [14], so new definitions and theorems have been constructed to overcome difficulties by the time [16]. Chisholm proposed one of the first definitions in 1973 [17]. Levin developed a general definition [18], after that Cuyt also made important contributions on homogeneous Padé approximations and uniform convergence results for the multivariate Padé approximants [19, 20]. In this paper, multivariate Padé approxi-

$$u_t = (D(u)u_x)_{x} \tag{1}$$

Subject to the initial condition:

$$u\left(x,0\right) = f(x) \tag{2}$$

The details about nonlinear diffusion equations can be seen in [8, 15].

2 Variational iteration method

The basic concepts and principles of variational iteration method can be seen in [9–13]. Sadighi and Ganji [8] constructed respectively the following correction functional and iteration formula by using the basic concepts and principles of variational iteration method:

$$u_{n+1} = u_n - \int_0^t \lambda \left\{ u_{n\tau} - \left(\tilde{D}(u_n) u_{nx} \right)_x \right\} d\tau \tag{3}$$

$$u_{n+1} = u_n - \int_0^t \left\{ u_{n\tau} - \left(\tilde{D}(u_n) u_{nx} \right)_x \right\} d\tau.$$
 (4)

where $\delta \tilde{D}(u_n)$ is restricted variation. The Lagrange multiplier has been identified as $\lambda = -1$.

3 Multivariate Padé approximation

Consider the bivariate function f(x, y) with Taylor power series development

$$f(x,y) = \sum_{i,j=0}^{\infty} c_{ij} x^i y^j$$
 (5)

around the origin [14]. The Padé approximation problem of order for f(x, y) consists in finding polynomials

$$p(x, y) = \sum_{k=0}^{m} A_k(x, y)$$
 (6)

$$q(x, y) = \sum_{k=0}^{n} B_k(x, y)$$
 (7)

mations were applied to the solutions of nonlinear diffusion equations in the form [8]:

^{*}Corresponding Author: V. Turut: Department of Mathematics, Faculty of Science and Letters, Batman University, 72060 - Batman, Turkey, E-Mail: veyisturut@gmail.com

324 — V. Turut DE GRUYTER OPEN

such that in the power series (fq - p)(x, y) the coefficients of x^i and y^j by solving the following equation system;

$$\begin{cases}
C_0(x, y)B_0(x, y) = A_0(x, y) \\
C_1(x, y)B_0(x, y) + C_0(x, y)B_1(x, y) = A_1(x, y) \\
\vdots \\
C_m(x, y)B_0(x, y) + \dots + C_{m-n}(x, y)B_n(x, y) = A_m(x, y)
\end{cases} (8)$$

$$\begin{cases}
C_{m+1}(x,y)B_0(x,y) + C_{m+1-n}(x,y)B_n(x,y) = 0 \\
\vdots \\
C_{m+n}(x,y)B_0(x,y) + \dots + C_m(x,y)B_n(x,y) = 0
\end{cases}$$
(9)

where $C_k = 0$ if k < 0. If the equations (8) and (9) are solved then the coefficients A_k (k = 0, ..., m) and B_k (k = 0, ..., n) are obtained. So polynomials (6) and (7) are found. Polynomials p(x, y) and q(x, y) are called Padé equations[14]. So the multivariate Padé approximant of order (m, n) for f(x, y) is defined as,

$$r_{m,n}(x,y) = \frac{p(x,y)}{q(x,y)}.$$
 (10)

4 Applications and results

In this section multivariate Padé series solutions of nonlinear diffusion equations shall be illustrated by two examples. All the results were calculated by using the Maple software suite. The full VIM solutions of examples can be seen in Sadighi and Ganji [8].

Example 1. Consider a slow diffusion process [15]

$$u_t = (uu_x)_{\mathbf{y}} \tag{11}$$

$$u(x,0) = \frac{1}{c}x^2, \quad t > 0$$
 (12)

where c > 0 is an arbitrary constant.

According to the iteration formulas (3), (4) Sadighi and Ganji [8] and by using decomposition method Wazwaz [15] obtained following solution,

$$u(x,t) = x^2 \left(\frac{1}{c} + \frac{6t}{c^2} + \frac{36t^2}{c^3} + \frac{216t^3}{c^4} + \frac{1296t^4}{c^5} + \frac{33696t^5}{c^6} + \frac{31104t^6}{c^7} + \cdots \right)$$
 (13)

The exact solution of (13) is given as $u(x, t) = \frac{x^2}{c - 6t}$ in [15]. If the multivariate Padé approximation is applied to equation (13) for m = 4 and n = 2, according to the equation system (8) and (9) the following Padé equations are obtained;

$$p(x,t) = -\frac{36t^4 \left(-1 + 36x^2\right) x^4}{c^7} \tag{14}$$

and

$$q(x,t) = -\frac{36t^4 \left(-c + 6t + 36x^2c - 216x^2t\right)x^2}{c^7}$$
 (15)

So the multivariate Padé approximant of order (4, 2) for equation (13) is,

$$r_{4,2}(x,t) = \frac{\left(-1 + 36x^2\right)x^2}{-c + 6t + 36x^2c - 216x^2t} \tag{16}$$

If the multivariate Padé approximation is applied to equation (13) for m = 5 and n = 2, according to the equation system (8) and (9) the following Padé equations are obtained;

$$p(x,t) = -\frac{933120t^7x^6}{c^{10}} \tag{17}$$

and

$$q(x,t) = \frac{933120t^7 (c - 6t) x^4}{c^{10}}$$
 (18)

So the multivariate Padé approximant of order (5, 2) for equation (13) is,

$$r_{5,2}(x,t) = \frac{x^2}{c - 6t} \tag{19}$$

If the multivariate Padé approximation is applied to equation (13) for m = 6 and n = 2, according to the equation system (8) and (9) the following Padé equations are obtained;

$$p(x,t) = -\frac{1119744t^8(5c^4 + 63c^3t - 600c^2t^2 - 3600ct^3 - 21600t^4)x^6}{c^{15}}$$
(20)

and

$$q(x,t) = -\frac{1119744t^8(5c^2 + 33ct - 978t^2)x^4}{c^{12}}$$
 (21)

So the multivariate Padé approximant of order (6, 2) for equation (13) is,

$$r_{6,2}(x,t) = \frac{(5c^4 + 63c^3t - 600c^2t^2 - 3600ct^3 - 21600t^4)x^2}{c^3(5c^2 + 33ct - 978t^2)}. (22)$$

Example 2. Consider another slow diffusion process [?]

$$u_t = \left(u^2 u_X\right)_X \tag{23}$$

$$u(x,0) = \frac{x+h}{2\sqrt{c}} \tag{24}$$

where h and c, c > 0, are arbitrary constants.

According to the iteration formulas (3), (4) Sadighi and Ganji [8] and by using decomposition method Wazwaz [15] obtained following solution,

$$u(x,t) = \frac{x+h}{2\sqrt{c}} \left(1 + \frac{t}{2c} + \frac{3t^2}{8c^2} + \frac{5t^3}{16c^3} + \frac{13t^4}{64c^4} + \frac{9t^5}{80c^5} + \cdots \right)$$
 (25)

The exact solution of (23) is given as $u(x, t) = \frac{1}{2} \frac{x+h}{\sqrt{c-t}}$ in [8]. If the multivariate Padé approximation is applied to equation (25) for m=2 and n=2, according to the equation system (8) and (9) the following Padé equations are obtained;

$$p(x,t) = -t^{2}(64c^{4}hx^{2} + 64c^{4}x^{3} + 64c^{3}h^{2}tx + 32c^{3}htx^{2} - 32c^{3}tx^{3} + 8c^{2}h^{3}t^{2} - 96c^{2}h^{2}t^{2}x - 104c^{2}ht^{2}x^{2} - 40ch^{3}t^{3}x + 9h^{3}t^{4})/4096c^{15/2}$$
(26)

and

$$q(x,t) = -t^{2}(16c^{4}x^{2} + 16c^{3}htx - 16c^{3}tx^{2} + 2c^{2}h^{2}t^{2} - 34c^{2}h^{2}t^{2}x + 2c^{2}t^{2}x^{2} - 11ch^{2}t^{3} + 11cht^{3} + 7h^{2}t^{4})/512c^{7}$$
(27)

So the multivariate Padé approximant of order (2, 2) for equation (25) is,

$$r_{2,2}(x,t) = (64c^4hx^2 + 64c^4x^3 + 64c^3h^2tx + 32c^3htx^2 - 32c^3tx^3 + 8c^2h^3t^2 - 96c^2h^2t^2x - 104c^2ht^2x^2 - 40ch^3t^3x + 9h^3t^4)/(8\sqrt{c}(16c^4x^2 + 16c^3htx - 16c^3tx^2 + 2c^2h^2t^2 - 34c^2h^2t^2x + 2c^2t^2x^2 - 11ch^2t^3 + 11cht^3 + 7h^2t^4)$$
(28)

If the multivariate Padé approximation is applied to equation (25) for m = 3 and n = 2, according to the equation system (8) and (9) the following Padé equations are obtained;

$$p(x,t) = -t^{4}(480tx^{3}c^{4} - 329h^{3}t^{5} - 1372h^{3}t^{4}c + 1120h^{3}c^{3}t^{2} + 320x^{3}c^{5} - 160t^{2}x^{3}c^{3} + 2296h^{3}t^{3}c^{2} + 1760h^{2}c^{4}tx + 320hc^{5}x^{2} + 4408h^{2}t^{2}c^{3}x + 2240htc^{4}x^{2} + 1124h^{2}t^{3}c^{2}x + 3128ht^{2}c^{3}x^{2} - 1437h^{2}t^{4}cx - 1172ht^{3}x^{2}c^{2})/(163840c^{(21/2)})$$
(29)

326 — V. Turut DE GRUYTER OPEN

and

$$q(x,t) = -t^4 (280h^2t^2c^2 + 440htc^3x + 434h^2t^3c + 602ht^2c^2x + 80x^2c^4 + 80x^2c^3t - 759t^3xch - 110t^2x^2c^2 - 665h^2t^4)/(20480c^9)$$
(30)

So the multivariate Padé approximant of order (3, 2) for equation (25) is,

$$r_{3,2}(x,t) = (480tx^{3}c^{4} - 329h^{3}t^{5} - 1372h^{3}t^{4}c + 1120h^{3}c^{3}t^{2} + 320x^{3}c^{5} - 160t^{2}x^{3}c^{3} + 2296h^{3}t^{3}c^{2} + 1760h^{2}c^{4}tx + 320hc^{5}x^{2} + 4408h^{2}t^{2}c^{3}x + 2240htc^{4}x^{2} + 1124h^{2}t^{3}c^{2}x + 3128ht^{2}c^{3}x^{2} - 1437h^{2}t^{4}cx - 1172ht^{3}x^{2}c^{2})/(8c^{(3/2)}(280h^{2}t^{2}c^{2} + 440htc^{3}x + 434h^{2}t^{3}c + 602ht^{2}c^{2}x + 80x^{2}c^{4} + 80x^{2}c^{3}t - 759t^{3}xch - 110t^{2}x^{2}c^{2} - 665h^{2}t^{4}))$$

$$(31)$$

If the multivariate Padé approximation is applied to equation (25) for m = 4 and n = 2, according to the equation system (8) and (9) the following Padé equations are obtained;

$$p(x,t) = -t(320c^{5}ht^{3}x^{2} + 320c^{5}t^{3}x^{3} + 1760c^{4}h^{2}t^{4}x + 2240c^{4}ht^{4}x^{2} + 480c^{4}t^{4}x^{3} + 1120c^{3}h^{3}t^{5} + 5560c^{3}h^{2}t^{5}x + 4280c^{3}ht^{5}x^{2} - 160c^{3}t^{5}x^{3} + 3160c^{2}h^{3}t^{5} + 1700c^{2}h^{2}t^{6}x - 1460c^{2}ht^{6}x^{2} - 1660ch^{3}t^{7} - 1725ch^{2}t^{7}x - 365h^{3}t^{8} - 128c^{3}h^{2}x - 128c^{3}hx^{2} - 96ch^{3}t - 64c^{2}h^{2}tx + 32c^{2}htx^{2} + 32ch^{3}t^{2} + 32ch^{2}t^{2}x + 4h^{3}t^{3})/\left(163840c^{(21/2)}\right)$$

$$(32)$$

and

$$q(x,t) = -(80c^4t^3x^2 + 440c^3ht^4x + 80c^3t^4x^2 + 280c^2h^2t^5 + 890c^2ht^5x - 110c^2t^5x^2 + 650ch^2t^6 - 975cht^6x - 845h^2t^7 - 32c^2hx - 24ch^2t + 24chtx + 20h^2t^2)t/(20480c^9)$$
(33)

So the multivariate Padé approximant of order (4, 2) for equation (25) is,

$$r_{4,2}(x,t) = (320c^{5}ht^{3}x^{2} + 320c^{5}t^{3}x^{3} + 1760c^{4}h^{2}t^{4}x + 2240c^{4}ht^{4}x^{2} + 480c^{4}t^{4}x^{3} + 1120c^{3}h^{3}t^{5} + 5560c^{3}h^{2}t^{5}x + 4280c^{3}ht^{5}x^{2} - 160c^{3}t^{5}x^{3} + 3160c^{2}h^{3}t^{5} + 1700c^{2}h^{2}t^{6}x - 1460c^{2}ht^{6}x^{2} - 1660ch^{3}t^{7} - 1725ch^{2}t^{7}x - 365h^{3}t^{8} - 128c^{3}h^{2}x - 128c^{3}hx^{2} - 96ch^{3}t - 64c^{2}h^{2}tx + 32c^{2}htx^{2} + 32ch^{3}t^{2} + 32ch^{2}t^{2}x + 4h^{3}t^{3})/(8c^{(3/2)}(80c^{4}t^{3}x^{2} + 440c^{3}ht^{4}x + 80c^{3}t^{4}x^{2} + 280c^{2}h^{2}t^{5} + 890c^{2}ht^{5}x - 110c^{2}t^{5}x^{2} + 650ch^{2}t^{6} - 975cht^{6}x - 845h^{2}t^{7} - 32c^{2}hx - 24ch^{2}t + 24chtx + 20h^{2}t^{2}))$$

As it is presented above in Example 1, If the numerical results are compared at c = 1 following table obtained (Table 1).

Table 1: Comparison of Exact solution of equation (11) and MPA solutions of equation (13) for example 1.

x	t	Exact solution	$r_{4,2}(x,t)$	$r_{5,2}(x,t)$	$r_{6,2}(x,t)$
0.001	0.001	$0.1006036217 \times 10^{-5}$	$0.1006036217 \times 10^{-5}$	$0.1006036217 \times 10^{-5}$	$0.1006036217 \times 10^{-5}$
0.002	0.002	$0.4048582996 \times 10^{-5}$	$0.4048582996 \times 10^{-5}$	$0.4048582996 \times 10^{-5}$	$0.4048583000 \times 10^{-5}$
0.003	0.003	$0.9164969450 \times 10^{-5}$	$0.9164969450 \times 10^{-5}$	$0.9164969450 \times 10^{-5}$	$0.9164969506 \times 10^{-5}$
0.004	0.004	0.00001639344262	0.00001639344262	0.00001639344262	0.00001639344305
0.005	0.005	0.00002577319588	0.00002577319588	0.00002577319588	0.00002577319791
0.006	0.006	0.00003734439834	0.00003734439834	0.00003734439834	0.00003734440562
0.007	0.007	0.00005114822547	0.00005114822547	0.00005114822547	0.00005114824697
0.008	0.008	0.00006722689076	0.00006722689076	0.00006722689076	0.00006722694565
0.009	0.009	0.00008562367865	0.00008562367865	0.00008562367865	0.00008562380421
0.01	0.01	0.0001063829787	0.0001063829787	0.0001063829787	0.0001063832422

As it is presented above in Example 2, According to the numerical results at c = 1 and h = 1 following table obtained (Table 2).

Table 2: Comparison of Exact solution of equation (23) and MPA solutions of equation (25) for example 2.

х	t	Exact solution	$r_{2,2}(x,t)$	$r_{3,2}(x,t)$	$r_{4,2}(x,t)$
0.001	0.001	0.5007504375	0.5007504379	0.5007504380	0.5007504379
0.002	0.002	0.5015017525	0.5015017528	0.5015017524	0.5015017526
0.003	0.003	0.5022539465	0.5022539468	0.5022539469	0.5022539468
0.004	0.004	0.5030070220	0.5030070221	0.5030070220	0.5030070220
0.005	0.005	0.5037609805	0.5037609808	0.5037609810	0.5037609806
0.006	0.006	0.5040143180	0.5045158248	0.5045158248	0.5045158248
0.007	0.007	0.5047697970	0.5052715562	0.5052715560	0.5052715560
0.008	0.008	0.5060281770	0.5060281775	0.5060281776	0.5060281770
0.009	0.009	0.5067856900	0.5067856904	0.5067856905	0.5067856899
0.01	0.01	0.5075440965	0.5075440974	0.5075440974	0.5075440965

5 Conclusion

In this paper, rational power series solution of various kinds of nonlinear diffusion equations were constructed by multivariate Padé approximations. The approximation is effective, easy to use, and reliable. The main benefit of the approximation is to offer rational approximation in a rapid convergent rational series form.

References

- E.Celik, E. Karaduman and M. Bayram, Numerical Solutions of Chemical Differential- Algebraic Equations, Applied Mathematics and Computation (2003),139 (2-3),259-264.
- E. Celik, M. Bayram, Numerical solution of differential-algebraic equation systems and applications, Applied Mathematics and Computation (2004), 154 (2) 405-413.
- [3] V. Turut and N Guzel., Comparing Numerical Methods for Solving Time-Fractional Reaction-Diffusion Equations, ISRN Mathematical Analysis (2012), Doi:10.5402/2012/737206.
- [4] V. Turut, N. Güzel, Multivariate Padé approximation for solving partial differential equations of fractional order", Abstract and Applied Analysis (2013), Doi:10.1155/2013/746401.
- [5] V. Turut, E. Çelik, M. Yiğider, Multivariate Padé approximation for solving partial differential equations (PDE), International Journal For Numerical Methods In Fluids (2011), 66(9):1159-1173.
- [6] V. Turut," Application of Multivariate Padé approximation for partial differential equations", Batman University Journal of Life Sciences (2012), 2(1): 17-28.
- [7] V. Turut," Numerical approximations for solving partial differential equations with variable coefficients" Applied and Computational Mathematics. (2013), 2 (1),19-23
- [8] A. Sadighi, D.D. Ganji, Exact solutions of nonlinear diffusion equations by variational iteration method, Computers Mathematics with Applications (2007), 54: 1112-1121.
- [9] J.H. He, Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. Methods Appl. Mech. Eng. (1998), 167: 57-68.
- [10] J.H. He, Variational iteration method-a kind of non-linear analytical technique: some examples, Int. J. Non-Linear. Mech. (1999), 34: 699-708.
- [11] J.H. He, Variational iteration method-some recent results and new interpretations, J. Comput. Appl. Math. (2007), 207: 3-17.
- [12] J.H. He, X.H. Wu, Variational iteration method: new development and applications, Comput. Math. Appl. (2007), 54: 881-894.
- [13] J.H. He, G.-C. Wu, F. Austin, The variational iteration method which should be followed, Nonlinear Sci. Lett. A (2010), 1: 1-30.
- [14] A. Cuyt, L. Wuytack, Nonlinear Methods in Numerical Analysis, Elsevier Science Publishers B.V. (1987), Amsterdam.
- [15] A.M. Wazwaz, Exact solutions to nonlinear diffusion equations obtained by the decomposition method, Applied Mathematics and Computation, (2001), 109-122.
- [16] Ph. Guillaume, A. Huard, Multivariate Padé Approximants, Journal of Computational and Applied Mathematics, (2000), 121: 197-219.
- [17] J.S.R. Chisholm, Rational approximants defined from double power series, Math. Comp. (1973) 27: 841-848.
- [18] D. Levin, General order Padé-type rational approximants defined from double power series, J. Inst. Math. Appl. (1976) 18: 395-407.
- [19] A. Cuyt, Multivariate Padé approximants, J. Math. Anal. Appl. (1983) 96: 283-293.
- [20] A. Cuyt, A Montessus de Ballore Theorem for Multivariate Padé Approximants, J. Approx. Theory (1985) 43: 43-52.