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Abstract: In this paper, the AKNS isospectral problem and
its corresponding time evolution are generalized by em-
bedding three coe�cient functions. Starting from the gen-
eralizedAKNS isospectral problem, amixed spectral AKNS
hierarchy with variable coe�cients is derived. Thanks to
the selectivity of these coe�cient functions, the mixed
spectral AKNS hierarchy contains not only isospectral
equations but also nonisospectral equations. Based on a
systematic analysis of the related direct and inverse scat-
tering problems, exact solutions of the mixed spectral
AKNS hierarchy are obtained through the inverse scatter-
ing transformation. In the case of re�ectionless potentials,
the obtained exact solutions are reduced to n-soliton so-
lutions. This paper shows that the AKNS spectral prob-
lem being nonisospectral is not a necessary condition to
construct a nonisospectral AKNS hierarchy and that the
inverse scattering transformation can be used for solv-
ing some other variable-coe�cient mixed hierarchies of
isospectral equations and nonisospectral equations.

Keywords:mixed spectral AKNS hierarchy; spectral prob-
lem; exact solution; soliton solution; inverse scattering
transformation

PACS: 05.45.Yv; 02.30.Jr; 04.20.Jb

1 Introduction
It is well known that solving nonlinear partial di�eren-
tial equations (PDEs) plays an important role in the study
of nonlinear physical phenomena in many �elds such as
�uid dynamics, plasma physics and nonlinear optics. In
the past several decades, many e�ective methods have
been proposed for obtaining exact solutions of nonlin-
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ear PDEs, such as the inverse scattering transformation
(IST) [1], Hirota’s bilinear method [2], Bäcklund transfor-
mation [3, 4], Painlevé expansion [5], homogeneous bal-
ance method [6], similarity transformation method [7, 8],
ansatz method [9, 10], function expansion methods, and
some others [11–17]. Among these methods, the IST [1]
is a systematic method. Since being put forward in 1967,
the IST has achieved considerable development and re-
ceived a wide range of applications [18–33]. As a famous
method in mathematical physics, the IST is a milestone
in the process of developing analytical methods for solv-
ing nonlinear PDEs. The IST is also known as the nonlin-
ear Fourier transformation of nonlinear PDEs, one of the
advantages of which is that it can solve the whole hierar-
chy of equations associated with the same spectral prob-
lem. In general, starting from the related spectral prob-
lemwith a time-independent spectral parameter one could
derive isospectral equations which often describe solitary
waves in lossless and uniform media, while nonisospec-
tral equations describing the solitary waves in a certain
type of nonuniform media are usually resulted from the
time-varying spectral problem.

When the inhomogeneities of media and nonuni-
formities of boundaries are taken into account, the
variable-coe�cient equations could describe more real-
istic physical phenomena than their constant-coe�cient
counterparts [34]. Recently, the study of nonlinear PDEs
with variable coe�cients has attracted much attention
[28–30, 33, 34]. How to construct and solve such nonlin-
ear PDEs is worthy of exploring. Motivated by this desire,
in thepresent paperwe shall consider anewandmore gen-
eral ANKS hierarchy with variable coe�cients:(

q
r

)
t

=
{
γ(t)

[
L − 2β(t)E
α(t)

]m
+ α′(t)
α(t) [L − 2β(t)E]x

+ 2xβ′(t)
}(

−q
r

)
, (m = 1, 2, · · · ), (1)

where q = q(x, t) and r = r(x, t) are functions of the indi-
cated variables; the derivatives of any order with respect
to x of q and r vanish as x tends to in�nity; α(t), β(t) and
γ(t) are di�erentiable functions of t, α(t) is nonzero and
bounded, α′(t) = dα(t)/dt, β′(t) = dβ(t)/dt; E is a two or-
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der unit matrix; and the operator L is employed as

L = σ∂ + 2
(
q
−r

)
∂−1(r, q), (2)

with

σ =
(
−1 0
0 1

)
, ∂ = ∂

∂x , ∂−1 = 1
2

 x∫
−∞

−
+∞∫
x

dx.

It is obvious to see that the AKNS hierarchy (1) is a
mixed hierarchy of isospectral equations and nonisospec-
tral equations. In particular, when α(t) = 1, β(t) = 0 and
γ(t) = 1, Equation (1) becomes the constant-coe�cient
isospectral AKNS hierarchy [32]:(

q
r

)
t

= Lm
(
−q
r

)
, (m = 1, 2, · · · ). (3)

When α(t) = 1 and β(t) = t, Equation (1) gives a variable-
coe�cient nonisospectral AKNS hierarchy:(

q
r

)
t

= γ(t)(L − 2tE)m
(
−q
r

)
+ 2
(
−xq
xr

)
,

(m = 1, 2, · · · ). (4)

If we select m = 2, then Equation (1) reads

qt = γ(t)
α2(t)

[
−qxx − 4β(t)qx − 4β2(t)q + 2q2r

]
+ α′(t)

α(t)
[
xqx + q + 2xβ(t)q

]
− 2xβ′(t)q, (5)

rt = γ(t)
α2(t)

[
rxx − 4β(t)rx + 4β2(t)r − 2qr2

]
+ α′(t)

α(t)
[
xrx + r − 2xβ(t)r

]
+ 2xβ′(t)r, (6)

which include the following nonisospectral equations as a
special case:

qt = −qxx + 2q2r + xqx + q, (7)

rt = rxx − 2qr2 + xrx + r. (8)

In fact, Equations (7) and (8) canbe easily obtained as long
as we substitute α(t) = et, β(t) = 0 and γ(t) = e2t into
Equations (5) and (6).

The rest of the paper is organized as follows. In Sec-
tion 2, we derive the mixed spectral AKNS hierarchy (1)
from a generalized AKNS spectral problem. In Section 3,
following the steps of IST method we present a systematic
analysis on the direct and inverse scattering problems re-
lating to the AKNS hierarchy (1). As a result, the uniform
formulae of exact solutions of the AKNS hierarchy (1) are
obtained. In the special case of re�ectionless potentials,
the obtained exact solutions are reduced to n-soliton solu-
tions. In Section 4, we conclude this paper.

2 Derivation of the mixed spectral
AKNS hierarchy

In order to construct the mixed spectral AKNS hierarchy
(1), in this section we embed the coe�cient functions α(t),
β(t) and γ(t) to the known AKNS spectral problem [23, 24,
32] and its time evolution [30, 32] so as to consider a gen-
eralized AKNS spectral problemwith spectral parameter η
independent of x and t:

φx = Mφ, M =
(
−α(t)η − β(t) q

r α(t)η + β(t)

)
,

φ =
(
φ1

φ2

)
, (9)

and the time evolution:

φt = Nφ, N =
(
A B
C −A

)
(10)

with the boundary condition:

N|(q,r)=(0,0) =
(
−1

2γ(t)(2η)m −
[
α′(t)η + β′(t)

]
x

0

0
1
2γ(t)(2η)m +

[
α′(t)η + β′(t)

]
x

)
.(11)

Then we have the following Theorem 1.

Theorem 1. Suppose that

A = ∂−1(r, q)
(
−B
C

)
− x[α′(t)η + β′(t)] − 1

2γ(t)(2η)m , (12)

(
−B
C

)
=

m∑
i=1

(
−bi
ci

)
(2η)m−i ,

(
−b1

c1

)
= 2m−1γ(t)

α(t)

(
−q
r

)
,

(13)
then the compatibility condition of Equation (9) and (10),
the zero curvature equation Mt − Nx + [M, N] = 0, leads to
the mixed spectral AKNS hierarchy (1).

Proof. Wesubstitute Equation (12) into Equation (10), then
Mt − Nx + [M, N] = 0 can be reduced to:

(
q
r

)
t

= L
(
−B
C

)
− 2[α(t)η + β(t)]

(
−B
C

)

+γ(t)(2η)m
(
−q
r

)
+ 2x[α′(t)η + β′(t)]

(
−q
r

)
. (14)
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Substituting Equation (13) into Equation (14) and compar-
ing the coe�cients of the same order of η yields(

q
r

)
t

= [L − 2β(t)E]
(
−bm
cm

)
+ 2xβ′(t)

(
−q
r

)
, (15)

(
−bm
cm

)
= L − 2β(t)E

2α(t)

(
−bm−1

cm−1

)
+ x α

′(t)
α(t)

(
−q
r

)
, (16)

(
−bi
ci

)
= L − 2β(t)E

2α(t)

(
−bi−1
ci−1

)
, (i = 2, · · · ,m−1), (17)

(
−b1

c1

)
= 2m−1γ(t)

α(t)

(
−q
r

)
. (18)

From Equations (15)–(18) we have(
−bm
cm

)
=
{
γ(t) [L − 2β(t)E]m−1

αm(t) + x α
′(t)
α(t)

}(
−q
r

)
, (19)

and �nally reach the mixed spectral AKNS hierarchy (1)
by substitutingEquation (19) into Equation (15). Therefore,
the proof is �nished.

Remark 1. We introduced in this section three functions
α(t), β(t) and γ(t) so that the AKNS hierarchy (1) has much
generality. For example, when α(t) = 1, β(t) = 0 and
γ(t) = 1, the matrixes M and N in Equations (9) and (10)
become the ones [32] which can be utilized to derive the
known AKNS hierarchy (3) by similar manipulations.

3 Exact solutions of the mixed
spectral AKNS hierarchy

In this section, the IST method will be extended to solve
the mixed spectral AKNS hierarchy (1). Firstly, we give a
systematic analysis of the direct and inverse scattering
problems relating to Equation (1). Secondly, we obtain the
uniform formulae of exact solutions of Equation (1). Fi-
nally, we reduce the obtained exact solutions to generate
n-soliton solutions.

3.1 The direct scattering problem

For convenience, we replace η with ik, here and hereafter
i always stands for the imaginary unit in similar circum-
stances. The following Lemma 1 can be used.

Lemma 1. If the real potentials (q(x), r(x))T satisfy
+∞∫
−∞

∣∣∣xjq(x)
∣∣∣dx < +∞,

+∞∫
−∞

∣∣∣xjr(x)
∣∣∣dx < +∞, (j = 0, 1),

(20)
then the spectral problem (9) has a set of Jost solutions
φ(x, k), φ̄(x, k), ψ(x, k) and ψ̄(x, k), which are bounded for
all values of x and also have the following asymptotic be-
haviors when |x| → +∞:

φ(x, k) ∼
(

0
1

)
e[ikα(t)+β(t)]x , (x → +∞), (21)

φ̄(x, k) ∼
(

1
0

)
e−[ikα(t)+β(t)]x , (x → +∞), (22)

ψ(x, k) ∼
(

1
0

)
e−[ikα(t)+β(t)]x , (x → −∞), (23)

ψ̄(x, k) ∼
(

0
−1

)
e[ikα(t)+β(t)]x , (x → −∞), (24)

φx(x, k) ∼ [ikα(t) + β(t)]
(

0
1

)
e[ikα(t)+β(t)]x , (x → +∞),

(25)

φ̄x(x, k) ∼ −[ikα(t) + β(t)]
(

1
0

)
e−[ikα(t)+β(t)]x , (x → +∞),

(26)

ψx(x, k) ∼ −[ikα(t) + β(t)]
(

1
0

)
e−[ikα(t)+β(t)]x , (x → −∞),

(27)

ψ̄x(x, k) ∼ [ikα(t) + β(t)]
(

0
−1

)
e[ikα(t)+β(t)]x , (x → −∞),

(28)

φk(x, k) ∼ ixα(t)
(

0
1

)
e[ikα(t)+β(t)]x , (x → +∞), (29)

φ̄k(x, k) ∼ −ixα(t)
(

1
0

)
e−[ikα(t)+β(t)]x , (x → +∞), (30)

ψk(x, k) ∼ −ixα(t)
(

1
0

)
e−[ikα(t)+β(t)]x , (x → −∞), (31)

ψ̄k(x, k) ∼ ixα(t)
(

0
−1

)
e[ikα(t)+β(t)]x , (x → −∞), (32)

and these Jost solutions can be expressed as:
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φ(x, k) =
(
φ1

φ2

)
=


−

∞∫
x

e−[ikα(t)+β(t)](x−y)q(y)φ2(y, k)dy

e[ikα(t)+β(t)]x −
∞∫
x

e[ikα(t)+β(t)](x−y)r(y)φ1(y, k)dy

 , (33)

φ̄(x, k) =
(
φ̄1

φ̄2

)
=


e−[ikα(t)+β(t)]x −

∞∫
x

e−[ikα(t)+β(t)](x−y)q(y)φ̄2(y, k)dy

−
∞∫
x

e[ikα(t)+β(t)](x−y)r(y)φ̄1(y, k)dy

 , (34)

ψ(x, k) =
(
ψ1

ψ2

)
=


e−[ikα(t)+β(t)]x +

x∫
−∞

e−[ikα(t)+β(t)](x−y)q(y)ψ2(y, k)dy

x∫
−∞

e[ikα(t)+β(t)](x−y)r(y)ψ1(y, k)dy

 , (35)

ψ̄(x, k) =
(
ψ̄1

ψ̄2

)
=


∫ x
−∞ e−[ikα(t)+β(t)](x−y)q(y)ψ̄2(y)dy

−e−[ikα(t)+β(t)]x +
x∫

−∞

e[ikα(t)+β(t)](x−y)r(y)ψ̄1(y)dy

 . (36)

Since the Jost solutions φ(x, k) and φ̄(x, k) are indepen-
dent, we suppose that

ψ(x, k) = a(k)φ̄(x, k) + b(k)φ(x, k), (37)

ψ̄(x, k) = −ā(k)φ(x, k) + b̄(k)φ̄(x, k). (38)

Using theWronskians [30] ofφ(x, k) = (φ1(x, k), φ2(x, k))T

and ψ(x, k) = (ψ1(x, k), ψ2(x, k))T , from Equations (37)
and (38) we have

a(k) = W(ψ(x, k), φ(x, k)), ā(k) = W(ψ̄(x, k), φ̄(x, k)),
(39)

b(k) = W(φ̄(x, k), ψ(x, k)), b̄(k) = W(ψ̄(x, k), φ(x, k)).
(40)

Theorem 2. The function a(k)(ā(k)) is analytical in the up-
per half k-plane (the lower half k-plane).

Proof. We suppose that

ϕ(x, k) = (ϕ1(x, k), ϕ2(x, k))T

= ψ(x, k) − a(k)φ̄(x, k) = b(k)φ(x, k), (41)

then using Equatios (21)–(23) yields:

ϕ1(x, k) = e−[ikα(t)+β(t)]x − a(k)e−[ikα(t)+β(t)]x

+
∞∫

−∞

e−[ikα(t)+β(t)](x−y)q(y)ψ2(y, k)dy

−
∞∫
x

e−[ikα(t)+β(t)](x−y)q(y)ϕ2(y, k)dy, (42)

ϕ2(x, k) =
∞∫

−∞

e−[ikα(t)+β(t)](x−y)r(y)ψ1(y, k)dy

−
∞∫
x

e−[ikα(t)+β(t)](x−y)r(y)ϕ1(y, k)dy. (43)

Thus, ϕ1(x, k) and ϕ2(x, k) can be rewritten as:

ϕ1(x, k) = −
∞∫
x

e−[ikα(t)+β(t)](x−y)q(y)ϕ2(y, k)dy, (44)

ϕ2(x, k) = b(k)e[ikα(t)+β(t)]x

−
∞∫
x

e−[ikα(t)+β(t)](x−y)r(y)ϕ1(y, k)dy, (45)

then it follows from Equations (39), (40), (44) and (45) that

a(k) = 1 +
∞∫

−∞

e[ikα(t)+β(t)]yq(y)ψ2(y, k)dy, (46)
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b(k) =
∞∫

−∞

e−[ikα(t)+β(t)]yr(y)ψ1(y, k)dy. (47)

We therefore complete the proof.

It should be noted that a(k)(ā(k)) has only a �nite number
of zeros because that a(k) → 1(ā(k) → 1) when k → ∞. As-
suming a(k)(ā(k)) has a zero κj(κ̄j), we can see from Equa-
tions (39) and (40) that ψ(x, κj) and φ(x, κj)(ψ̄(x, κ̄j) and
φ̄(x, κ̄j)) are linearly dependent, then theremust exist con-
stants bj and b̄j such that

ψ(x, κj) = bjφ(x, κj), (48)

ψ̄(x, κ̄j) = b̄jφ̄(x, κ̄j). (49)

From Equation (9), we have

φkx(x, k) = φxk(x, k) = [Mφ(x, k)]k
= Mkφ(x, k) + Mφk(x, k), (50)

then using Equation (50) and Equation (9) yields

Wx(ψ(x, k), φk(x, k)) = iα(t)
[
φ1(x, k)ψ2(x, k)

+ φ2(x, k)ψ1(x, k)
]
. (51)

Similarly, we have

Wx(ψk(x, k), φ(x, k)) = −iα(t)
[
φ1(x, k)ψ2(x, k)

+ φ2(x, k)ψ1(x, k)
]
. (52)

IntegratingEquation (51) from x to l andEquation (52) from
−l to x, respectively, and then subtracting them, we obtain
when k = κj

Wk(ψ(x, κj), φ(x, κj)) = −2iα(t)bj
∞∫

−∞

φ1(x, κj)φ2(x, κj)dx.

(53)
From Equation (39), we have

Wk(ψ(x, κj), φ(x, κj)) = ak(κj), (54)

then using Equations (53) and (54) yields

2
∞∫

−∞

φ1(x, κj)φ2(x, κj)dx =
−ak(κj)
ibjα(t) . (55)

By similar manipulations we have

2
∞∫

−∞

φ̄1(x, κ̄j)φ̄2(x, κ̄j)dx =
−āk(κ̄j)
ib̄jα(t)

. (56)

If κj and κ̄j are the single roots of a(k) and ā(k), respec-
tively, there must exist constants cj and c̄j such that

2
∞∫

−∞

c2
j φ1(x, κj)φ2(x, κj)dx = 1, (57)

2
∞∫

−∞

c̄2
j φ̄1(x, κ̄j)φ̄2(x, κ̄j)dx = 1, (58)

then from Equations (55)–(58) we obtain

c2
j = −

ibjα(t)
ak(κj)

, (59)

c̄2
j = −

ib̄jα(t)
āk(κj)

. (60)

De�nition 1. We name cj and c̄j satisfying Equations (57)
and (58) to be the normalization constants for the eigen-
functions φ(x, κj) and φ̄(x, κ̄j), respectively; cjφ(x, κj) and
c̄jφ̄(x, κ̄j) are named the normalization eigenfunctions.

Beside the discrete spectra κj and κ̄j, the spectral prob-
lem (9) also includes continuous spectral k which can-
not be normalized but contain the whole real axis of
the k-plane. Note that the Jost functions φ(x, k), φ̄(x, k),
ψ(x, k) and ψ̄(x, k) satisfying Equations (9), (21)–(32) are
bounded. Therefore, for any real number k the linear ex-
pressions (37) and (38) still hold in the real axis. Thus, we
have

T(k)ψ(x, k) = φ̄(x, k) + R(k)φ(x, k), (61)

T̄(k)ψ̄(x, k) = −φ(x, k) + R̄(k)φ̄(x, k), (62)

where T(k) = 1
a(k) , T̄(k) = 1

ā(k) and R(k) = b(k)
a(k) , R̄(k) = b̄(k)

ā(k)
are the transmission coe�cients and the re�ection coe�-
cients, respectively.

De�nition 2. The sets{
k(Imk = 0), R(k), κj(Imκj > 0), cj , j = 1, 2, · · · , n

}
,
(63)

{
k(Imk = 0), R̄(k), κ̄j(Imκ̄j < 0), c̄j , j = 1, 2, · · · , n̄

}
(64)

are named the scattering data of the spectral problem (9).

3.2 The inverse scattering problem

Lemma 2. Supposing the improper integrals (20) consist-
ing of the real potentials q(x) and r(x) are convergent, then



Mixed spectral AKNS hierarchy from linear isospectral problem and its exact solutions | 315

there must exist the following unique di�erentiable vectors:

K(x, y) = (K1(x, y), K2(x, y))T ,
K̄(x, y) = (K̄1(x, y), K̄2(x, y))T , (x > y), (65)

J(x, y) = (J1(x, y), J2(x, y))T ,
J̄(x, y) = (J̄1(x, y), J̄2(x, y))T , (x > y), (66)

such that

φ(x, k) =
(

0
1

)
e[ikα(t)+β(t)]x +

∞∫
x

K(x, y)e[ikα(t)+β(t)]ydy, (67)

φ̄(x, k) =
(

1
0

)
e−[ikα(t)+β(t)]x +

∞∫
x

K̄(x, y)e−[ikα(t)+β(t)]ydy,

(68)

ψ(x, k) =
(

1
0

)
e−[ikα(t)+β(t)]x +

x∫
−∞

J(x, y)e−[ikα(t)+β(t)]ydy,

(69)

ψ̄(x, k) =
(

0
−1

)
e[ikα(t)+β(t)]x +

x∫
−∞

J̄(x, y)e[ikα(t)+β(t)]ydy,

(70)
where K(x, y) satis�es the integral equations

K1(x, y) = −1
2q( x + y

2 ) −

x+y
2∫
x

q(s)K2(s, x + y − s)ds, (71)

K2(x, y) = −
∞∫
x

r(s)K1(s, −x + y + s)ds, (72)

particularly, when y = s

K1(x, x) = −1
2q(x), (73)

K2(x, x) = −1
2

∞∫
x

q(s)r(s)ds. (74)

Theorem 3. If set

Fc(x) = 1
2π

∞∫
−∞

R(k)e[ikα(t)+β(t)]xdk,

Fd(x) =
n∑
j=1

c2
j e[iκjα(t)+β(t)]x , (75)

F̄c(x) = 1
2π

∞∫
−∞

R̄(k)e−[ikα(t)+β(t)]xdk,

F̄d(x) = −
n̄∑
j=1

c̄2
j e−[iκ̄jα(t)+β(t)]x , (76)

F(x) = Fc(x) + Fd(x), F̄(x) = F̄c(x) + F̄d(x), (77)

then the vector functions K(x, y) and K̄(x, y) satisfy

K̄(x + y) +
(

0
1

)
F(x + y) +

∞∫
x

K(x, z)F(z + y)dz = 0, (78)

K(x + y) −
(

0
1

)
F̄(x + y) +

∞∫
x

K̄(x, z)F̄(z + y)dz = 0. (79)

Proof. Letting both sides of Equation(61) be substracted

by
(

1
0

)
e−[ikα(t)+β(t)]x simultaneously, then taking the

Fourier transformation to k, we have
∞∫

−∞

(
T(k)ψ(x, k) −

(
1
0

)
e−[ikα(t)+β(t)]x

)
e[ikα(t)+β(t)]ydk

=
∞∫

−∞

(
φ̄(x, k) + R(k)φ(x, k) −

(
1
0

)
e−[ikα(t)+β(t)]x

)

× e[ikα(t)+β(t)]ydk, (80)

the left side of which equals to
∞∫

−∞

(
T(k)ψ(x, k) −

(
1
0

)
e−[ikα(t)+β(t)]x

)
e[ikα(t)+β(t)]ydk

= 2πα(t)
n∑
j=1

ψ(x, κj)
ak(κj)

e[iκjα(t)+β(t)]y . (81)

In view of Equations (48), (59) and (67), we can rewrite
Equation (81) as

2πα(t)
n∑
j=1

ψ(x, iκj)
ak

e[iκjα(t)+β(t)]y

= −2π
(

0
1

) n∑
j=1

c2
j e[iκjα(t)+β(t)](x+y)

−2π
∞∫
x

K(x, y)
n∑
j=1

c2
j e[iκjα(t)+β(t)](y+z)dz. (82)
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Substituting Equation (60) into the �rst term of the right
side of Equation (80) and using the inverse Fourier trans-
formation, we have

∞∫
−∞

(
φ̄(x, k) −

(
1
0

)
e−[ikα(t)+β(t)]x

)
e[ikα(t)+β(t)]ydk

= 2πK̄(x, y). (83)

Taking advantage of Equation (59), we obtain from the sec-
ond term of the right side of Equation (80)

∞∫
−∞

R(k)φ(x, k)e[ikα(t)+β(t)]ydk

=
(

0
1

) ∞∫
−∞

R(k)e[ikα(t)+β(t)](x+y)dk

+
∞∫
x

K(x, z)
∞∫

−∞

R(k)e[ikα(t)+β(t)](y+z)dkdz. (84)

Finally, using Equations (75), (82)–(84), we can write (79)
as

−
(

0
1

)
Fd(x + y) −

∞∫
x

K(x, z)Fd(z + y)dz (85)

= K̄(x+y)+
(

0
1

)
Fc(x+y)+

∞∫
x

K(x, z)Fc(z+y)dz = 0, (86)

which is namely Equation (78). In the same way, we can
prove Equation (79). The proof is ended.

3.3 The time dependence of the scattering
data

Lemma 3. Suppose that

L̄* = −σ∂ + 2
(
−r
q

)
∂−1 (q, r) , L̄ = σLσ,

then L̄* is the conjugation operator of L̄.

Theorem 4. The scattering data in Equations (63) and (64)
for the spectral problem (9) possess the following time de-
pendence:

κj(t) = κj , κ̄j(t) = κ̄j , (87)

c2
j (t) = c2

j (0)e(2iκj)m
∫ t

0 γ(t)ds+2 ln|α(t)|, (88)

c̄2
j (t) = c̄2

j (0)e−(2iκ̄j)m
∫ t

0 γ(t)ds+2 ln|α(t)|, (89)

a(t, k) = a(0, k), ā(t, k) = ā(0, k), (90)

b(t, k) = b(0, k)e(2ik)m
∫ t

0 γ(s)ds ,
b̄(t, k) = b̄(0, k)e−(2ik)m

∫ t
0 γ(s)ds , (91)

where cj(0), c̄j(0), R(0, k) = b(0,k)
a(0,k) and R̄(0, k) = b̄(0,k)

ā(0,k)
are the scattering data of Equation (9) in the cases of
(q(0, x), r(0, x))T .

Proof. It is easy to verify that if φ(x, k) is a solution of
Equation (9) and satis�es the asymptotic condition (22),
then

P(x, k) = φt(x, k) − Nφ(x, k) (92)

is also a solution of Equation (9) and can be represented
linearly by φ(x, k) and φ̃(x, k) satisfying Equation (9) but
is independent of φ(x, k), i.e., there exist two functions
θ(t, k) and τ(t, k) such that

φt(x, k) − Nφ(x, k) = θ(t, k)φ(x, k) + τ(t, k)φ̃(x, k). (93)

Under the above preparation, we �rst consider k =
κj(Imκj > 0). Since φ(x, κj) decays exponentially while
φ̃(x, κj) must increase exponentially as x → +∞, we can
determine τ(t, k) = 0. Thus Equation (93) is simpli�ed as:

φt(x, κj) − Nφ(x, κj) = γ(t, κj)φ(x, κj). (94)

Left-multiplying Equation (94) by the inner product
(φ2(x, κj), φ1(x, κj)) yields:

d
dt φ1(x, κj)φ2(x, κj) − [Cφ2

1(x, κj) + Bφ2
2(x, κj)]

= 2θ(t, κj)φ1(x, κj)φ2(x, κj). (95)

Supposing φ(x, κj) to be the normalization eigen-
function and further integrating Equation (95) with
respect to x from −∞ to +∞, then noting that
2
∫ ∞
−∞ c

2
j φ1(x, κj)φ2(x, κj)dx = 1 we have

θ(t, κj) = −c2
j

∞∫
−∞

[Cφ2
1(x, κj) + Bφ2

2(x, κj)]dx. (96)

For convenience, we rewrite Equation (96) as

θ(t, κj) = −c2
j ((φ2

2(x, κj), φ2
1(x, κj))T , (B, C)T), (97)

where the following inner product is employed

(f (x), g(x)) =
∞∫

−∞

(f1(x)g1(x) + f2(x)g2(x))dx (98)

for arbitrary two vectors f (x) = (f1(x), f2(x))T and g(x) =
(g1(x), g2(x))T .
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Using the spectral problem (9), we have

φ1x(x, κj) + [iκjα(t) + β(t)]φ1(x, κj) = qφ2(x, κj), (99)

φ2x(x, κj) − [iκjα(t) + β(t)]φ2(x, κj) = rφ1(x, κj), (100)

from which we derive

[φ1(x, κj)φ2(x, κj)]x = φ2(x, κj)φ1x(x, κj)
+ φ2x(x, κj)φ1(x, κj) = qφ2

2(x, κj) + rφ2
1(x, κj),(101)

and then obtain
∞∫

−∞

[qφ2
2(x, κj) + rφ2

1(x, κj)]dx

=
∞∫

−∞

[φ1(x, κj)φ2(x, κj)]xdx = 0. (102)

On the other hand, if we rewrite Equation (13) as(
B
C

)
=

m∑
j=1

γ(t)(2κj)m−j
[L̄ − 2β(t)E]j−1

αj(t)

(
q
r

)
+α

′(t)
α(t)

(
xq
xr

)
,

(103)
then from Equation (97) we obtain

θ(t, κj) = −c2
j

((
φ2

2(t, κj)
φ2

1(t, κj)

)
,

m∑
j=1

γ(t)(2κj)m−j
[L̄ − 2β(t)E]j−1

αj(t)

(
q
r

))

− c2
j
α′(t)
α(t)

((
φ2

2(t, κj)
φ2

1(t, κj)

)
,
(
xq
xr

))

= −c2
j

m∑
j=1

γ(t)
(2κj)m−j

αj(t) (
(
φ2

2(t, κj)
φ2

1(t, κj)

)
,

[L̄ − 2β(t)E]j−1

(
q
r

))

− c2
j
α′(t)
α(t)

((
φ2

2(t, κj)
φ2

1(t, κj)

)
,
(
xq
xr

))

= −c2
j

m∑
j=1

γ(t)
(2κj)m−j

αj(t) [L̄ − 2β(t)E]j−1

×
((

φ2
2(t, κj)

φ2
1(t, κj)

)
,
(
q
r

))

−c2
j
α′(t)
α(t)

((
φ2

2(t, κj)
φ2

1(t, κj)

)
,
(
xq
xr

))
. (104)

Further, using the results((
φ2

2(t, κj)
φ2

1(t, κj)

)
,
(
xq
xr

))
=

∞∫
−∞

x[qφ2
2(t, κj) + rφ2

1(t, κj)]dx

=
∞∫

−∞

x[φ1(t, κj)φ2(t, κj)]xdx = − 1
2c2

j
, (105)

(
[L̄* − 2β(t)E]j−1

(
φ2

2(t, κj)
φ2

1(t, κj)

)
,
(
q
r

))

= 2[iκjα(t) + β(t)E]j−1

((
φ2

2(t, κj)
φ2

1(t, κj)

)
,
(
q
r

))
= 0, (106)

from Equation (104) we have

θ(t, κj) = α′(t)
2α(t) , (107)

where we have used

L̄*
(
φ2

2(t, κj)
φ2

1(t, κj)

)
= 2iκjα(t)

(
φ2

2(t, κj)
φ2

1(t, κj)

)
. (108)

Thus, Equation (94) reads

φt(x, κj) − Nφ(x, κj) = α′(t)
2α(t)φ(x, κj). (109)

Noting that Equation (11) and

φ(x, κj) → cj

(
0
1

)
e[κjαt(t)+β′(t)]x , (110)

φt(x, κj) → cjt

(
0
1

)
e[κjαt(t)+β′(t)]x

+xcj[iκjα′(t) + iκjtα(t) + β′(t)]
(

0
1

)
e[iκjα(t)+β(t)]x . (111)

as x → +∞, then we derive

κjt = 0, cjt − cj
1
2γ(t)(2iκj)m = cj

α′(t)
2α(t) . (112)

In a similar way, we have

κ̄jt = 0, c̄jt + c̄j
1
2γ(t)(2iκ̄j)m = c̄j

α′(t)
2α(t) , (113)

then from Equations (112) and (113) we obtain Equa-
tions (87)–(89).

We next consider k as a real continuous spectrum
and take a solution ψ(x, k) of Equation (9) satisfying the
asymptotic condition (22), then from Equations (92) and
(93) we know that

Q(x, k) = ψt(x, k) − Nψ(x, k) (114)

is also a solution of Equation (9) and can be represented
linearly by ψ(x, k) and ψ̃(x, k) which satis�es Equation (9)
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but is independent ofψ(x, k), i.e., there exist two functions
ω(t, k) and ϑ(t, k) such that

ψt(x, k) −Nψ(x, k) = ω(t, k)ψ(x, k) + ϑ(t, k)ψ̃(x, k). (115)

Using the asymptotic properties

ψt(x, k) → −1
2 x[ikα′(t) + iktα(t) + β′(t)]

(
1
0

)
e−[ikα(t)+β(t)]x ,

(116)

ψ(x, k) →
(

1
0

)
e−[ikα(t)+β(t)]x , (117)

as x → −∞, from Equation (34) and (115) we obtain

ϑ(t, k) = 0, ω(t, k) = 1
2γ(t)(2k)m . (118)

Substituting Equations (37) and (118) into Equation (115)
yields

[a(t, k)φ̄(x, k) + b(t, k)φ(x, k)]t
− N[a(t, k)φ̄(x, k) + b(t, k)φ(x, k)]

= 1
2γ(t)(2k)m[a(t, k)φ̄(x, k) + b(t, k)φ(x, k)],(119)

then letting x → +∞ and using

φ(x, k) →
(

0
1

)
e[ikα(t)+β(t)]x ,

φ̄(x, k) →
(

1
0

)
e−[ikα(t)+β(t)]x , (120)

from Equation (119) we obtain

at(t, k) = 0, bt(t, k) = γ(t)(2k)mb(t, k). (121)

Similarly, we have

āt(t, k) = 0, b̄t(t, k) = −γ(t)(2k)m b̄(t, k). (122)

Solving Equations (121) and (122) directly gives Equa-
tions (90) and (91). We �nish the proof.

3.4 Exact solutions

According to Equations (73), (74) and Theorem 4, we have
the following Theorem 5.

Theorem 5. Given the scattering data (63) and (64) deter-
mined by Equations (87)–(91) for the spectral problem (9),
we can obtain exact solution of the AKNS hierarchy (1):

q = −2K1(t, x, x), (123)

r = K2x(t, x, x)
K1(t, x, x) , (124)

where K(t, x, y) = (K1(t, x, y), K2(t, x, y))T satis�es the
Gel’fand-Levitan-Marchenko (GLM) integral equation:

K(t, x, y)−
(

0
1

)
F̄(t, x+y)+

(
0
1

) ∞∫
x

F(t, z + x)F̄(t, z + y)dz

+
∞∫
x

K(t, x, s)
∞∫
x

F(t, z + s)F̄(t, z + y)dzds = 0, (125)

with

F(t, x) = 1
2π

∞∫
−∞

R(t, k)e[ikα(t)+β(t)]xdk +
n∑
j=1

c2
j e[iκjα(t)+β(t)]x ,

(126)

F̄(t, x) = 1
2π

∞∫
−∞

R̄(t, k)e[ikα(t)+β(t)]xdk +
n̄∑
j=1

c̄2
j e[iκ̄jα(t)+β(t)]x .

(127)

3.5 Soliton Solutions

In order to give explicit form of solutions (123) and (124),
we consider the re�ectionless potentials q(x, t) and r(x, t),
namely R(t, k) = R̄(t, k) = 0. In this re�ectionless case, the
GLM integral equation (125) can be solved exactly. If we let
E be a n̄ × n̄ unit matrix and take

W(t, x) = E + P(t, x)PT(t, x),

P(t, x) =
(

cj(t)c̄m(t)
α(t)(κj − κ̄m) eiα(t)(κj−κ̄m)x

)
n̄×n

, (128)

Λ =
(
c1e−[iκ1α(t)+β(t)]x , c2e−[iκ2α(t)+β(t)]x ,

· · · , cne−[iκnα(t)+β(t)]x
)T

, (129)

Λ̄ =
(
c̄1e−[iκ̄1α(t)+β(t)]x , c̄2e−[iκ̄2α(t)+β(t)]x ,

· · · , c̄n̄e−[iκ̄n̄α(t)+β(t)]x
)T

, (130)

then it is easy to obtain

K1(x, y, t) = −tr(W−1(t, x)Λ̄(t, x)Λ̄T(t, y)), (131)
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K2(x, y, t) = −itr(W−1(t, x)P(t, x)Λ(t, x)Λ̄T(t, y)), (132)

where tr(A) means the trace of a given matrix A,W−1(t, x)
is the inverse matrix ofW(t, x).

Substituting Equations (131) and (132) into Equa-
tions (123) and (124), we can obtain n-soliton solutions of
the mixed spectral AKNS hierarchy (1):

q = 2tr(W−1(t, x)Λ̄(t, x)Λ̄T(t, x)), (133)

r = −[tr(W−1(t, x)E(t, x)ETx (t, x))]x
tr(W−1(t, x)Λ̄(t, x)Λ̄T(t, x))

. (134)

In particular, when n = n̄ = 1, Equations (133) and (134)
give the single-soliton solutions:

q = 2c̄2
1(0)e−2[iα(t)κ̄1+β(t)]x+(2iκ1)m

∫ t
0 γ(s)ds+ln |α(t)|

1 +
[
c1(0)c̄1(0)
α(t)(κ1−κ̄1)

]2
e2iα(t)(κ1−κ̄1)x+[(2iκ1)m−(2iκ̄1)m ]

∫ t
0 γ(s)ds+ln |α(t)|

,

(135)

r = 2c2
1(0)e2[iα(t)κ̄1+β(t)]x+(2iκ1)m

∫ t
0 γ(s)ds+ln |α(t)|

1 +
[
c1(0)c̄1(0)
α(t)(κ1−κ̄1)

]2
e2iα(t)(κ1−κ̄1)x+[(2iκ1)m−(2iκ̄1)m ]

∫ t
0 γ(s)ds+ln |α(t)|

.

(136)
Clearly, solutions (133) and (134) have three functions α(t),
β(t) and γ(t), the arbitrariness of which provide enough
freedom to construct enriched local structures of solu-
tions. In Figures 1 and 2, the single-soliton solutions (135)
and (136) are shown by selecting c1(0) = i, c̄1(0) = 1,
κ1 = 0.5i, κ̄1 = i, α(t) = 0.2sech(0.2t), β(t) = 0.01t,
γ(t) = 0.01t3. In Figures 3 and 4, we select c1(0) = 1,
c̄1(0) = 2i, c2(0) = 3, c̄2(0) = 4i, κ1(0) = 0.5i, κ̄1(0) = i,
κ2(0) = 2i, κ̄2(0) = −3i, α(t) = 0.2sech(0.2t3), β(t) = 0.01t
and γ(t) = −0.01t3 to show the double-soliton solutions
determined by (133) and (134) when n = n̄ = 2.

4 Conclusions
In summary, starting from the related isospectral problem
we have derived a new and more general AKNS hierarchy
(1), called the mixed spectral AKNS hierarchy, which in-
cludes the known constant-coe�cient isospectral AKNS
hierarchy (3) and a new variable-coe�cient nonisospec-
tral AKNS hierarchy (4) as special cases. Since the ob-
tained AKNS hierarchy (1) contains nonisospectral equa-
tions (7) and (8), the AKNS spectral problem (9) being
nonisospectral is not a necessary condition to construct
nonisospectral AKNS hierarchy (1). In order to solve the
mixed spectral AKNS hierarchy (1), we utilized the IST.

As a result, the uniform formulae (123) and (124) of ex-
act solutions of the mixed spectral AKNS hierarchy (1) are
obtained. In the case of re�ectionless potentials, the ob-
tained exact solutions (123) and (124) are reduced to n-
soliton solutions (133) and (134). Usually, the procedures
of the IST for solving nonlinear PDEs are analogous, the
steps of which can be outlined as follows: the �rst step is
to solve the initial-value problem of linear spectral prob-
lem for the required scattering data; the second step is to
determine the time dependence of scattering data via the
time evolution equation of eigenfunction associated with
the linear spectral problem; the last step is to reconstruct
the potential function by the time dependence of scatter-
ing data obtained in the second step. To make the proce-
dure of the IST self-contained, these three steps need to be
included. Though some of the obtained results are simi-
lar to those given in Ref. [30], there are substantial di�er-
ences. For example, Equations (39) and (40) are similar to
Equations (3.4a) and (3.4b) in Ref. [30], but they are dif-
ferent because of the di�erent eigenfunctions (33)–(36) in
theWronskians. Especially, the mixed spectral AKNS hier-
archy (1), exact solutions (123) and (124), and n-soliton so-
lutions (133) and (134) obtained in this paper cannot be ob-
tained by thework of Ref. [30]. For the convenience of sub-
sequent discussions, we have done some similar but nec-
essary expressions in advance. Such similar expressions
also provide convenience in comparing our results and
those in references. In Ref. [30], a nonisospectral AKNS hi-
erarchy is derived from the AKNS nonisospectral problem
with ηt = 1

2 (2η)2n and then the nonisospectral AKNS hier-
archy is solved by means of the IST, where

(
q
r

)
t

= Ln
(
−xq
xr

)
, (n = 0, 1, 2, · · · ), (137)

M =
(
−η q
r η

)
,

N|(q,r)=(0,0) =

−1
2 (2η)nx 0

0 1
2 (2η)mx

 , (138)

A = ∂−1(r, q)
(
−B
C

)
− 1

2 (2η)nx,(
B
C

)
=

n∑
m=1

(2ikj)n−m L̄m−1

(
xq
xr

)
, (139)

which di�er from the ones in Equations (1), (9), (11), (12)

and (106) of this paper.
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Figure 1: Spatial structure of single-soliton solution (135).

Figure 2: Spatial structure of single-soliton solution (136).
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Figure 3: Spatial structure of double-soliton solution determined by (133).

Figure 4: Spatial structure of double-soliton solution determined by (134).
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More importantly, the mixed spectral AKNS hierarchy (1)
obtained in this paper is resulted from the AKNS isospec-
tral problem (9), i.e., ηt = 0. Other main di�erences, such
as Lemmata 1 and 2, Theorems 1–5, solutions (120), (121),
(133) and (134), caused by the coe�cient functions α(t),
β(t) and γ(t) are omitted here for simplicity. To the best
of our knowledge, the mixed spectral AKNS hierarchy (1)
and its solutions (123), (124), (133) and (134) obtained in
this paper have not been reported in literature. How to ex-
tend themethodused in this paper for someother variable-
coe�cient mixed hierarchies of isospectral equations and
nonisospectral equations is worthy of study. This is our
task in the future.
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