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Abstract: In this paper, the AKNS isospectral problem and
its corresponding time evolution are generalized by em-
bedding three coefficient functions. Starting from the gen-
eralized AKNS isospectral problem, a mixed spectral AKNS
hierarchy with variable coefficients is derived. Thanks to
the selectivity of these coefficient functions, the mixed
spectral AKNS hierarchy contains not only isospectral
equations but also nonisospectral equations. Based on a
systematic analysis of the related direct and inverse scat-
tering problems, exact solutions of the mixed spectral
AKNS hierarchy are obtained through the inverse scatter-
ing transformation. In the case of reflectionless potentials,
the obtained exact solutions are reduced to n-soliton so-
lutions. This paper shows that the AKNS spectral prob-
lem being nonisospectral is not a necessary condition to
construct a nonisospectral AKNS hierarchy and that the
inverse scattering transformation can be used for solv-
ing some other variable-coefficient mixed hierarchies of
isospectral equations and nonisospectral equations.

Keywords: mixed spectral AKNS hierarchy; spectral prob-
lem; exact solution; soliton solution; inverse scattering
transformation
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1 Introduction

It is well known that solving nonlinear partial differen-
tial equations (PDEs) plays an important role in the study
of nonlinear physical phenomena in many fields such as
fluid dynamics, plasma physics and nonlinear optics. In
the past several decades, many effective methods have
been proposed for obtaining exact solutions of nonlin-
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ear PDEs, such as the inverse scattering transformation
(IST) [1], Hirota’s bilinear method [2], Backlund transfor-
mation [3, 4], Painlevé expansion [5], homogeneous bal-
ance method [6], similarity transformation method [7, 8],
ansatz method [9, 10], function expansion methods, and
some others [11-17]. Among these methods, the IST [1]
is a systematic method. Since being put forward in 1967,
the IST has achieved considerable development and re-
ceived a wide range of applications [18-33]. As a famous
method in mathematical physics, the IST is a milestone
in the process of developing analytical methods for solv-
ing nonlinear PDEs. The IST is also known as the nonlin-
ear Fourier transformation of nonlinear PDEs, one of the
advantages of which is that it can solve the whole hierar-
chy of equations associated with the same spectral prob-
lem. In general, starting from the related spectral prob-
lem with a time-independent spectral parameter one could
derive isospectral equations which often describe solitary
waves in lossless and uniform media, while nonisospec-
tral equations describing the solitary waves in a certain
type of nonuniform media are usually resulted from the
time-varying spectral problem.

When the inhomogeneities of media and nonuni-
formities of boundaries are taken into account, the
variable-coefficient equations could describe more real-
istic physical phenomena than their constant-coefficient
counterparts [34]. Recently, the study of nonlinear PDEs
with variable coefficients has attracted much attention
[28-30, 33, 34]. How to construct and solve such nonlin-
ear PDEs is worthy of exploring. Motivated by this desire,
in the present paper we shall consider a new and more gen-
eral ANKS hierarchy with variable coefficients:

(‘j) {W(t) [L - 2pOF ] O p@oEK
t

a(t) a(t)
zxﬁ’(t)} <‘f> , (m=1,2,--), @
where g = g(x, t) and r = r(x, t) are functions of the indi-
cated variables; the derivatives of any order with respect
to x of g and r vanish as x tends to infinity; a(t), B(t) and
~(t) are differentiable functions of ¢, a(t) is nonzero and
bounded, a'(t) = da(t)/dt, B (t) = dB(t)/dt; E is a two or-
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der unit matrix; and the operator L is employed as

L=00+2 (q) o Yr, q), ()]
with

-r
(-1 0 o0 o 1]
0—(0 1), a_ax, 0 —2</ /7dx.

It is obvious to see that the AKNS hierarchy (1) is a
mixed hierarchy of isospectral equations and nonisospec-
tral equations. In particular, when a(t) = 1, B(t) = 0 and
~(t) = 1, Equation (1) becomes the constant-coefficient
isospectral AKNS hierarchy [32]:

<q> —Lm <_q>, (m=1,2,---). 3)
r ; r

When a(t) = 1 and B(t) = t, Equation (1) gives a variable-
coefficient nonisospectral AKNS hierarchy:

<q> = ~(6)(L - 2tE)" (_q> +2 (_Xq> ,
r . r Xr

(m=1,2,.-+). %)
If we select m = 2, then Equation (1) reads
qc = Zz((tg) [_qxx — 4B(t)gx - 4B (t)q + Zqzr]
* iT(tt)) [xax+q+2xB()g] -2x (g, (©5)
e = 7o [f —4B(O)ry + 4B (t)r - 2 rz}
‘ a2(t) L X q
+ (IXXT(l‘t)) [xrx +r-— 2xﬂ(t)r] +2xB (O, 6)

which include the following nonisospectral equations as a
special case:

qc = ~Qux + 24°T + Xqx + q, @)

Te=Txx—2qr2 + XTx +1. (8)

In fact, Equations (7) and (8) can be easily obtained as long
as we substitute a(t) = e, f(t) = 0 and 4(t) = e* into
Equations (5) and (6).

The rest of the paper is organized as follows. In Sec-
tion 2, we derive the mixed spectral AKNS hierarchy (1)
from a generalized AKNS spectral problem. In Section 3,
following the steps of IST method we present a systematic
analysis on the direct and inverse scattering problems re-
lating to the AKNS hierarchy (1). As a result, the uniform
formulae of exact solutions of the AKNS hierarchy (1) are
obtained. In the special case of reflectionless potentials,
the obtained exact solutions are reduced to n-soliton solu-
tions. In Section 4, we conclude this paper.
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2 Derivation of the mixed spectral
AKNS hierarchy

In order to construct the mixed spectral AKNS hierarchy
(1), in this section we embed the coefficient functions a(t),
B(t) and ~(t) to the known AKNS spectral problem [23, 24,
32] and its time evolution [30, 32] so as to consider a gen-
eralized AKNS spectral problem with spectral parameter n
independent of x and t:

_ [ —a(On - () q
ox=Mp, M = < r alt)n +ﬁ(t)> ’

- [P
9 = <§02> ’ (9)

and the time evolution:

A B
=Ny, N-=
Pt ¢ (C —A>

with the boundary condition:

(10)

22 O@D" - [ (O + B (0] x

Nlgn=0,0 = (0

0

1 , , .(11)

510" + o (On +B(©)] x >
Then we have the following Theorem 1.

Theorem 1. Suppose that

A-07(q) (‘f) - xla (O + B 0] - 350", (12

-B\ _ “ —b; m—i -b4 _ zm_l'Y(t) -q
()5 (&)er ()72 (7)
(13)
then the compatibility condition of Equation (9) and (10),

the zero curvature equation My — Nx + [M, N] = 0, leads to
the mixed spectral AKNS hierarchy (1).

Proof. We substitute Equation (12) into Equation (10), then
M; — Ny + [M, N] = 0 can be reduced to:

(fj)[ _ (‘f) ~2[a(dn + BO)] <_f )

(O™ (‘f) + 2x[a (6 + B (O] <‘r‘1) . 1)
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Substituting Equation (13) into Equation (14) and compar-
ing the coefficients of the same order of  yields

( ) =[L- 2,8(t)E]< b'") +2xB() (‘f), (15)
t
~bm\ _L-2B(E (~bm a (-q
( . ) = 720((0 (Cm—l ) +xm ( r> , (16)
-b1) _ 2" (1) (-4
C1 a(t) r ’
From Equations (15)-(18) we have
~bm\ _ [L-2B()E]™"  a(0)
<cm> - O a(t)}< ) )
and finally reach the mixed spectral AKNS hierarchy (1)

by substituting Equation (19) into Equation (15). Therefore,
the proof is finished. O

(18)

Remark 1. We introduced in this section three functions
a(t), B(t) and ~(t) so that the AKNS hierarchy (1) has much
generality. For example, when a(t) = 1, B(t) = 0 and
~(t) = 1, the matrixes M and N in Equations (9) and (10)
become the ones [32] which can be utilized to derive the
known AKNS hierarchy (3) by similar manipulations.

3 Exact solutions of the mixed
spectral AKNS hierarchy

In this section, the IST method will be extended to solve
the mixed spectral AKNS hierarchy (1). Firstly, we give a
systematic analysis of the direct and inverse scattering
problems relating to Equation (1). Secondly, we obtain the
uniform formulae of exact solutions of Equation (1). Fi-
nally, we reduce the obtained exact solutions to generate
n-soliton solutions.

3.1 The direct scattering problem
For convenience, we replace n with ik, here and hereafter

i always stands for the imaginary unit in similar circum-
stances. The following Lemma 1 can be used.
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Lemma 1. If the real potentials (q(x), r(x))T satisfy

7‘xiq(x)‘dx < oo, 7’xjr(x)‘dx <+oo, (j=0,1),

(20)
then the spectral problem (9) has a set of Jost solutions
o(x, k), p(x, k), Y(x, k) and Y(x, k), which are bounded for
all values of x and also have the following asymptotic be-
haviors when |x| > +oo:

o(x, k) ~ ( ) elika @Ol - (x 5 4o0),  (21)

Px, k) ~ ( ) e ka@BOK (x5 1oo),  (22)
Px, k) ~ (é) e lika@+BO (5 o) (23)
l])(X k) ~ < > [zka(t)+ﬁ(t)]x’ (x > —o0), (24)

Px(x, k) ~ [ika(t) + B(0)] (;’) IO O, (x> +o0),

(25)
Px(x, k) ~ —[ika(t) + B(t)] <é> *[lka(t)#?(t)]x (X > +00),
(26)
lllx(X, k) ~ —[ika(t) +B(t) (é) [lka(t)+ﬁ(t)]x (x> —o0),
@7

alc, ) ~ [ika(t) + B(O) ( ° ) MO RO, (x 5 —oo),

1
(28)
©i(x, k) ~ ixa(t <(1)> lika@®+BOl (x5 1o0),  (29)
Pr(x, k) ~ —ixa(t) (é) ~lika@+BO (4 5 1o0),  (30)
Pr(x, k) ~ —ixa(t) (é) e kaWHBON - (x 5 —o0), (31)
D, K) ~ ixalt) (_01> kOO (x5 o) (32)

and these Jost solutions can be expressed as:
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_ / e—[ika(l)+ﬁ(t)](x—)’)q(y)(pz(y, k)dy

P(x, K) = <2‘;l> - o , (33)
2 . .
elika(®+B(Ox _ / QlikeOBOIA) () . (y, K)dy
X
_ o likad1+B(Ox _ / o kaOBOI) g5 (4, K)dy
Plx, k) = (2;”) - o X , (34)
2 .
_ / Sl BO) ()5 (7, K)dy
X
X
o-lika®+BOX / o kOO g () (y, k) dy
Wix, 1) - @1) - . = , (35)
2 .
/ QlikaOBOI (). (y, K)dy
J oo €7 HAOBOIN gy ), (y)dy
] i p
xk=(>"|= . : B} (36)
U R _elika(®+(O1x | / e[lka(t)+B(t)](xfy)r(y)lpl(y)dy
Since the Jost solutions ¢(x, k) and @(x, k) are indepen- o
dent, we suppose that + / e kB0 g (), (y, k)dy
Y(x, k) = a(k)p(x, k) + b(k)p(x, k), (37 oo
- [ OBy, lody, (42
P(x, k) = —a()e(x, k) + b()(x, k). (38) "
Using the Wronskians [30] of ¢ (x, k) = (@1(x, k), @2 (x, k)T $a(x, k) = / e IkalOBOICY)y(yyyh, (y, k)dy
and Y(x, k) = (P1(x, k), P, (x, k)T, from Equations (37) 7
and (38) we have -
_ _ ~lika(O)+B(O)](x-y)
a(k) = Wap(x, K), (e, ), a(k) = W, k), plx, k), / e Ty, oy “3)
(39) X
Thus, ¢1(x, k) and ¢, (x, k) can be rewritten as:
b(k) = W(@(x, k), p(x, k), b(k) = WR(x, k), p(x, k). r
9] (@, k), Y(x, k) (k) (Y(x, k), o (Z)O) b1(x, k) = _/ef[zka(t)+B(t)](fo)q(y)(pz(y’ k)dy, (44)

Theorem 2. The function a(k)(a(k)) is analytical in the up-
per half k-plane (the lower half k-plane).

Proof. We suppose that

(P1(x, k), a(x, k)"
l/)(X, k) - a(k)(p(X’ k) = b(k)(p(X, k)’ (41)

o(x, k)

then using Equatios (21)—(23) yields:

_ alika(O+B(O]x _ ~lika(t)+p(6)]x
¢1(x, k) =e a(k)e

X

$2(x, k) b(k)elika®+B0Ox

oo

/ e kaOBON () (y, k)dy, (45)

X

then it follows from Equations (39), (40), (44) and (45) that

oo

al) =1+ / elika B0l g () (v, K)dy,

—oo

(46)
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oo

b(K) = / o lkaOBOY (), (v, K)dy.

—oo

(47)

We therefore complete the proof. O

It should be noted that a(k)(a(k)) has only a finite number
of zeros because that a(k) > 1(a(k) > 1) when k - oo. As-
suming a(k)(a(k)) has a zero «;(k;), we can see from Equa-
tions (39) and (40) that Y (x, x;) and @(x, k;)(P(x, k;) and
®(x, k;)) are linearly dependent, then there must exist con-
stants b; and b; such that

ll)(X, K]') = b}'QD(X, Kj), (48)
{b(X, I_(j) = Bj(i)(x, )_(j). (49)
From Equation (9), we have
(pkx(xa k) (pXk(X’ k) = [M(p(X7 k)]k
= Mk‘P(Xy k) + M(pk(x! k)! (50)

then using Equation (50) and Equation (9) yields

Wi, k), 9r(x, K) = ia(®) [@1(x, Dha(x, k)

+ @20, Y1 (x, K)]. (51)

Similarly, we have

Wx(r(x, k), o(x, k) ~ta(t)[p1(x, K2 (x, k)

@2(x, K1 (x, K. (52)

+

Integrating Equation (51) from x to l and Equation (52) from
-l to x, respectively, and then subtracting them, we obtain
when k = x;

Wi(p(x, x;), p(x, ;) = —2ia(t)b]-/<p1(x, k)2 (x, xj)dx.

(53)
From Equation (39), we have
Wi ((x, x5), p(x, k7)) = ar(x;), (54)
then using Equations (53) and (54) yields
2 / ©1(x, k)2 (x, k;)dx = _ak(Kj). (55)
* ) lb]a(t)
By similar manipulations we have
e Y
ibja(t)
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If k; and ; are the single roots of a(k) and a(k), respec-
tively, there must exist constants c; and ¢; such that

Z/quol(x, K)2(x, kj)dx = 1, (57)
Z/Efq?n(x, k))@2(x, kj)dx = 1, (58)
then from Equations (55)—(58) we obtain
2 lb]a(t)
G =——"""7> 59
] ak(K]-) ( )
) IB]a(t)
G =—= . 60
] ak(Kj) ( )

Definition 1. We name c; and ¢; satisfying Equations (57)
and (58) to be the normalization constants for the eigen-
functions @(x, x;) and @(x, k;), respectively; c;@(x, ;) and
C;j@(x, k;) are named the normalization eigenfunctions.

Beside the discrete spectra x; and k;, the spectral prob-
lem (9) also includes continuous spectral k which can-
not be normalized but contain the whole real axis of
the k-plane. Note that the Jost functions ¢(x, k), ¢(x, k),
P(x, k) and P(x, k) satisfying Equations (9), (21)-(32) are
bounded. Therefore, for any real number k the linear ex-
pressions (37) and (38) still hold in the real axis. Thus, we
have

T(ly(x, k) = p(x, k) + R(e(x, k), (61)
Tk (x, k) = -p(x, k) + R(K)@(x, k), (62)
where T(k) = &5, T(k) = k5 and R(k) = 28, R(k) = 2

are the transmission coefficients and the reflection coeffi-
cients, respectively.

Definition 2. The sets

{k(Imk = 0), R(k), x;(Imx; > 0), ¢, j=1,2,-- ,n},
(63)

{k(Imk = 0), R(k), k;(Imk; < 0), &j,j=1,2,--, 7} (64)

are named the scattering data of the spectral problem (9).

3.2 Theinverse scattering problem

Lemma 2. Supposing the improper integrals (20) consist-
ing of the real potentials q(x) and r(x) are convergent, then



DE GRUYTER OPEN

there must exist the following unique differentiable vectors:

K(x,y) = (Ki(x,y), K07,

Ki,y) = &KiGo,y), K06y, (x>y), (65

Jo,y) = (166 ), LG ),

Jo,y) = (6o y), Lo, (x>y),  (66)
such that

oo

o(x, k) = <(1)> e[ika(t)+l3(f)]x+/K(X’ y)e[ika(f)Jrﬁ(t)]ydy’ (67)

X

oo

P0x, k) = <é> o lika(@+B(Ox / R(x, y)e lika@80l gy,

X

(68)

X
l/J(X k) _ (1) e—[ik(x(t)+ﬁ(l)]x+ /](X y)e—[ika(t)+ﬁ(t)]ydy
’ 0 ’ ’

(69)

X
D, k) = (_01> Qlika®+(Ox / J(x, y)elika®B0ly g,

(70)
where K(x, y) satisfies the integral equations

X+y

Kily) = -54C50) - [ a@kas,x+y-s)ds, )

oo

K(x,y) =- / r(s)Ki(s, —x + y + s)ds, (72)
X
particularly, wheny = s
1
Ki(x, ) = =5, 73)
1 (=]
K(x,x) = —Z/q(s)r(s)ds. (74)
X
Theorem 3. If set
FC(X) _ % /R(k)e[ika(t)+ﬁ(t)]xdk,
) A
Fd(X) — Z C}ze[ikjﬂ(t)JrB(t)]X, (75)

j=1
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F = i i R ~lika(e)+B(6)lx
Fe) 2 /R(k)e dk,
n
Fa0 = =) cFe likaOBOk 76)
j=1
F(x) = Fe() + Fq(x), F(x)=Fc()+Fq(x),  (77)

then the vector functions K(x, y) and K(x, y) satisfy

oo

Kx+y)+ <(1)) F(x+y)+/K(x,z)F(z+y)dZ=0, (78)

X

oo

K(x+y)- (2) F(x+y) +/f<(x,z)F(z+y)dZ =0. (79)

X

Proof. Letting both sides of Equation(61) be substracted

by e [ika@+BOK  simyltaneously, then taking the

Fourier transformation to k, we have

oo

/ <T(k)¢,(x, k) - <(1)> e—[ika(t)+ﬁ(t)]X> Qlika®+B(0ly g

—oo

oo

= / ((P(x, k) + R()o(x, k) - (é) e—[ika(r)+ﬁ(z>]x)

—oco

x  elika®BOl g (80)

the left side of which equals to

oo

/ (T(k)l,b(x, k) - (é) e[ika(t)+ﬁ(t)]x> e[ika(t)+ﬁ(t)]ydk

—oo

n
- 27a(t) Z P, K1) alixaO+p@ly (81)
j=1

ak(Kj)

In view of Equations (48), (59) and (67), we can rewrite
Equation (81) as

zna(t) n l/)(X, in)e[iKia(t)ﬁ;(t)]y
3 : ay

j=1

0 n
= E : 2 likja()+B(1)](x+y)
=-21 <1> 2 cje j

oo

n
—Zﬂ/K(X, y) Z C}‘ze[ixia(t)+ﬁ(t)](y+z)dz_

X Jj=1

(82)
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Substituting Equation (60) into the first term of the right
side of Equation (80) and using the inverse Fourier trans-
formation, we have

/ <¢(X, k) - <(1)> e—[ika(t)+/3(t)1x> Qlika(0+BOly g

—co

= 2aK(x,y). (83)

Taking advantage of Equation (59), we obtain from the sec-
ond term of the right side of Equation (80)

oo

/ R (x, k)elkO+FOl g

—oco

_ ((1)> /R(k)e[ika(t)+ﬁ(t)](>c+y)dk

—oo

)

; / K(x, 2) / Rk OBODgraz  (84)

X

Finally, using Equations (75), (82)—(84), we can write (79)
as

- <2> Fylx+y) - / KO, DFz+y)dz  (85)

oo

=K(x+y)+ (?) FC(x+y)+/K(x,z)FC(z+y)dz =0, (86)

X

which is namely Equation (78). In the same way, we can
prove Equation (79). The proof is ended. O

3.3 The time dependence of the scattering
data

Lemma 3. Suppose that
L'=-00+2 <—qr> o' (q.r), L=oLo,

then L” is the conjugation operator of L.

Theorem 4. The scattering data in Equations (63) and (64)
for the spectral problem (9) possess the following time de-
pendence:

Kj(t) = Kj, f(j(f) = )_(j, (87)
A (f) = c3(0)el)" J3 7(0ds+2Inla(0)] (88)
Z‘}'Z(t) _ (—:]2 (O)e—(zi;}i)'" fo[ ~(t)ds+2 In|a(t)| , (89)
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a(t, k) = a(0, k), af(t, k) = a(o, k), (90)

b(t,k) = b(0, k)e@W" Jo s,

b(t,k) = b(0, k)e N Js s (91)
where ¢;(0), ¢;(0), R(0,k) = 208 and R(0,k) = 50K

are the scattering data of Equation (9) in the cases of
(q(0,x), (0, x)).

Proof. Tt is easy to verify that if ¢(x, k) is a solution of
Equation (9) and satisfies the asymptotic condition (22),
then

P(x, k) = ¢¢(x, k) - No(x, k) (92)

is also a solution of Equation (9) and can be represented
linearly by ¢(x, k) and ¢(x, k) satisfying Equation (9) but
is independent of @(x, k), i.e., there exist two functions
0(t, k) and 7(¢, k) such that

i(x, k) - No(x, k) = 6(t, K)p(x, k) + 7(t, ) p(x, k). (93)

Under the above preparation, we first consider k =
kj(Imk; > 0). Since @(x, k;) decays exponentially while
@(x, xj) must increase exponentially as x > +oo, we can
determine 7(t, k) = 0. Thus Equation (93) is simplified as:

oi(x, ;) = No(x, k;) = +(t, k) p(x, k). (94)

Left-multiplying Equation (94) by the inner product
(p2(x, x7), p1(x, k;)) yields:

d
35106 )92 (6, K7) - [Coi(x, x;) + Bo3(x, K;)]

= 20(t, Kj)§01(X, Kj)(Pz(X, Kj). (95)

Supposing ¢(x, ;) to be the normalization eigen-
function and further integrating Equation (95) with
respect to x from -oo to +oo, then noting that
2 f_"; c]-2<p1(x, K;)@2(x, x;)dx = 1 we have

oo

6, x;) = —c? / [Co2(x, k) + Bo3(x, k)ldx.  (96)
For convenience, we rewrite Equation (96) as
e(ts K}) = _Cjz(((p%(xa K]')a (P%(X, K]'))Ts (B’ C)T)’ (97)

where the following inner product is employed
(F(), () = / (f1()g1(x) + f2(x)g2(x))dx (98)

for arbitrary two vectors f(x) = (fi(x), 2(x))T and g(x) =
(8100, g200)7.
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Using the spectral problem (9), we have

oo

P1x(x, ;) + [iga(t) + B(O]p1(x, k) = qp2(x, x;),  (99) / x[p1(t, k)2 (t, k;)]xdx = —i (105)

—co

©2x(x, k) = [ixga(t) + B(Olga(x, k;) = ro1(x, x;),  (100) ([i* - 2B(OEV (%g :} > ( >>
)
from which we derive
[010x, K)@2(x, 1)]x = @2(x, k)P 1x(X, K;) = 2[ix;a(t) + BOEY <<‘p§(t’ Kj ) ( )) (106)
+ @200, K)P1(x, K7) = g3 (x, K;) + rei (x, k;)(101) o1t x5)
and then obtain from Equation (104) we have
3 a (6
/ [q93(x, k) + re? (x, k;)ldx 0t %) = Sa (107)
- where we have used
= [p1(x, k)@ (x, x;)]xdx = 0. (102) {02t K 20t .
Z e L (Ziéﬁi :ﬁ) = 2ixja(?) (;‘;ggz :ﬁ) . ao®)
On the other hand, if we rewrite Equation (13) as .
Thus, Equation (94) reads
B\ <« moi[L=2BOEV" (q) a(©) (xq
(C) ]21:7(0(2’{’) al(t) <r>+a(t) <xr> ’ @:(x, k) - No(x, x;) = 5 ((t))<p(x K;j). (109)
(103)
then from Equation (97) we obtain Noting that Equation (11) and
ot x) = - ((Zzg :'D P, K) > ¢ (?) elkaO+ 0l (110)
1\ Kj
mj [L = 2B(EP ,
Z;w(t)(ZK,) 7 (57(0 < r)) Pelx, 5) > ¢ (?) alac(O+8 (O
-

_ 290 ((e3t5)) (xq
7 a(t) it k) ) \ xr

+xc;jlix;a () + ikjca(t) + B ()] (?) elixaO+BOK — (q17)
- 2 2x; )m_' @3(t, x;)
= —C Z ( ) a]](t) ( %(t, Kj)) ’

as x » +oo, then we derive

[L - 2B(OEV (f)) Ke=0, G- a2 = ¢ D ((tt)) (112)
_ 2 a@t) (o5t x) xq In a similar way, we have
T a(t) it x) ) \ xr ) ©
(2x)m K =0, &+ g51(0Q2iK)" = & ;a(t), (13)

_ 2 _ j-1
- Z (0=~ [L - 2B(0E] |
then from Equations (112) and (113) we obtain Equa-

) (p%(t, ;) q tions (87)-(89). .
@it x)) "\ r We next consider k as a real continuous spectrum
and take a solution 1(x, k) of Equation (9) satisfying the
ya(t) Q3 (t, K;) xq asymptotic condition (22), then from Equations (92) and
~Cj —= 5 . (104) Kk h
a(t) Pit, x;) xr (93) we know that
Further, using the results Q(x, k) = Pe(x, k) - Np(x, k) (114)

<(<P§(t, Kj)) ’ <Xq>> _ /x[qq)%(t, K;) + rg3 (¢, x;)]dx is also a solution of Equation (9) and can be represented
Pi(t, x;) xr linearly by 1 (x, k) and 1 (x, k) which satisfies Equation (9)

—oo
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butisindependent of Y(x, k), i.e., there exist two functions
w(t, k) and 9(t, k) such that

Pelx, k) = Np(x, k) = w(t, p(x, k) + 9(t, p(x, k). (115)

Using the asymptotic properties

Pelx, k) > —%x[ika’(t) + ikea(t) + B (6)] <(1) e likaO+hOlx

(116)
1 .
, k- —[1ka(t)+ﬁ([)]x’ 1
Y(x, k) <0> e (117)
as x - —oo, from Equation (34) and (115) we obtain
9, k) =0, wtk = %y(t)(Zk)’". (118)

Substituting Equations (37) and (118) into Equation (115)
yields

[a(t’ k)(p(x’ k) + b(t’ k)(p(x) k)]t
- Nla(t, k)@(x, k) + b(t, kK)o(x, k)]

= %v(t)(Zk)'"[a(t, K)@(x, k) + b(t, K)p(x, k)],(119)

then letting x - +o0 and using
00, 1) > <(1>> QlikaO+B@x
P0x, k) > (;) e kB0 (120)

from Equation (119) we obtain

ai(t,k) =0, be(t, k) =~(6)QK)™b(t, k). (121)
Similarly, we have
ait, k) =0, bt k) = —()2k)™b(t, k). (122)

Solving Equations (121) and (122) directly gives Equa-
tions (90) and (91). We finish the proof. O

3.4 Exact solutions

According to Equations (73), (74) and Theorem 4, we have
the following Theorem 5.

Theorem 5. Given the scattering data (63) and (64) deter-
mined by Equations (87)-(91) for the spectral problem (9),
we can obtain exact solution of the AKNS hierarchy (1):

q = _ZI(I(ty X, X)y (123)

DE GRUYTER OPEN

r= KZX(t’ X, X)
I<1(t’ X, X) ’

where K(t,x,y) = (Ki(t,x,y), Ka(t, x,y))T satisfies the
Gel’fand-Levitan-Marchenko (GLM) integral equation:

(124)

oo

K(t,x,y)- (2) Ft,x+y)+ (?) /F(t,z+x)F(t,z+y)dz

X

oo

+ /K(t, X, S) /F(t, z+8)F(t,z+y)dzds =0, (125)
X X

with
17 .
_ lika(6)+B(6)]x 2 glija(O+B(Olx
F(t,x) = E/R(t, k)e dk+;c,e i ,
o

—oo

(126)

oo

n
F(t,0 = 5 / R(t, Kelik OO g 4 3 g2elikad ),
j=1

—oco

(127)

3.5 Soliton Solutions

In order to give explicit form of solutions (123) and (124),
we consider the reflectionless potentials q(x, t) and r(x, t),
namely R(t, k) = R(t, k) = 0. In this reflectionless case, the
GLM integral equation (125) can be solved exactly. If we let
E be a 1 x i unit matrix and take

W(t,x) = E+P(t x)PT(t,x),
P(t, X) _ ( Cj(t)z'm(_t) eia(t)(x,-—f(m)x) , (128)
a(O)(x; — Km) e
A - <C1e—[i¢<1a(t)+ﬂ(t)]x,Cze—[ixza(t)+ﬁ(t)]x’
T
. Cnef[ikna(t)Jrﬁ(t)]X) (129)
i <Ele—[if<1a(t)+ﬁ(t)]x’Eze—[il?za(t%ﬁ(t)]x’
T
. Eﬁef[ma(mﬁ(tnx) (130)
then it is easy to obtain
I<1 (X’ y) t) = _tr(Wil(t’ X)/_l(t’ X)AT(t5 )/)), (131)
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K>(x,y, t) = —itt(W (¢, x)P(t, x)A(t, x)AT(¢, y), (132

where tr(A) means the trace of a given matrix 4, W™(t, x)
is the inverse matrix of W(t, x).

Substituting Equations (131) and (132) into Equa-
tions (123) and (124), we can obtain n-soliton solutions of
the mixed spectral AKNS hierarchy (1):

g = 2tr(W (¢, x)A(t, x)AT (¢, X)), (133)

L _LrWH(E, 0E(E, 0 Ex(t, ) (134)
tr(W-1(¢, x)A(t, x)AT(t, x))
In particular, when n = n = 1, Equations (133) and (134)

give the single-soliton solutions:

25‘% (O)e—z[ia(t)kl +B(Ox+Q2ix)™ [ (s)ds+In |a(t)]
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As a result, the uniform formulae (123) and (124) of ex-
act solutions of the mixed spectral AKNS hierarchy (1) are
obtained. In the case of reflectionless potentials, the ob-
tained exact solutions (123) and (124) are reduced to n-
soliton solutions (133) and (134). Usually, the procedures
of the IST for solving nonlinear PDEs are analogous, the
steps of which can be outlined as follows: the first step is
to solve the initial-value problem of linear spectral prob-
lem for the required scattering data; the second step is to
determine the time dependence of scattering data via the
time evolution equation of eigenfunction associated with
the linear spectral problem; the last step is to reconstruct
the potential function by the time dependence of scatter-
ing data obtained in the second step. To make the proce-
dure of the IST self-contained, these three steps need to be
included. Though some of the obtained results are simi-
lar to those given in Ref. [30], there are substantial differ-

14 [ CI(O)@I(O)J 2 Q210K R+ (20" -(2iR1)"] [ A(5)ds+In [a(O)] >ences. For example, Equations (39) and (40) are similar to

a(t)(c1-k1

(135)

ZC% (O)ez[ia(t)k1+/3(t)]x+(2ix1)"‘ S ~v(s)ds+In |a(d)|

r =
a(t)(x1—k1)

(136)
Clearly, solutions (133) and (134) have three functions a(t),
B(t) and ~(t), the arbitrariness of which provide enough
freedom to construct enriched local structures of solu-
tions. In Figures 1 and 2, the single-soliton solutions (135)
and (136) are shown by selecting c1(0) = i, ¢;(0) = 1,
k1 = 0.51, k; = i, a(t) = 0.2sech(0.2t), B(t) = 0.01t,
~(t) = 0.01£. In Figures 3 and 4, we select ¢1(0) = 1,
¢1(0) = 2i, c2(0) = 3, ¢2(0) = 4i, x1(0) = 0.51, k1(0) = 1,
K2(0) = 2i, k2(0) = -3, a(t) = 0.2sech(0.2£3), B(t) = 0.01t
and y(f) = —0.01£ to show the double-soliton solutions
determined by (133) and (134) whenn = i = 2.

4 Conclusions

In summary, starting from the related isospectral problem
we have derived a new and more general AKNS hierarchy
(1), called the mixed spectral AKNS hierarchy, which in-
cludes the known constant-coefficient isospectral AKNS
hierarchy (3) and a new variable-coefficient nonisospec-
tral AKNS hierarchy (4) as special cases. Since the ob-
tained AKNS hierarchy (1) contains nonisospectral equa-
tions (7) and (8), the AKNS spectral problem (9) being
nonisospectral is not a necessary condition to construct
nonisospectral AKNS hierarchy (1). In order to solve the
mixed spectral AKNS hierarchy (1), we utilized the IST.

Equations (3.4a) and (3.4b) in Ref. [30], but they are dif-
ferent because of the different eigenfunctions (33)-(36) in
the Wronskians. Especially, the mixed spectral AKNS hier-
archy (1), exact solutions (123) and (124), and n-soliton so-

1+ [ 1(0)21(0) ] 2 @2ia(00c -k +[(2ixy)" ik [ y(s)ds+1n [a(0) " lutions (133) and (134) obtained in this paper cannot be ob-

tained by the work of Ref. [30]. For the convenience of sub-
sequent discussions, we have done some similar but nec-
essary expressions in advance. Such similar expressions
also provide convenience in comparing our results and
those in references. In Ref. [30], a nonisospectral AKNS hi-
erarchy is derived from the AKNS nonisospectral problem
with n7¢ = 1(21)*" and then the nonisospectral AKNS hier-
archy is solved by means of the IST, where

(‘:) =" (‘;‘rq) , (n=0,1,2,--), (137)
t

-Z2n)"x 0
Nign-00 = 2" 1 , (138)
m
0 =(2n)"x
2
_ -1 -B _ 1 n
A = 0 (r,q)<c> 5(211) X,

(139)

B . o yn-mim-1 [ Xq
<C> ;(2119) L 1<Xr>’

which differ from the ones in Equations (1), (9), (11), (12)
and (106) of this paper.



320 —— S.Zhangand X.-D. Gao DE GRUYTER OPEN

10 — _._-_.'-4

Figure 1: Spatial structure of single-soliton solution (135).
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Figure 2: Spatial structure of single-soliton solution (136).
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Figure 3: Spatial structure of double-soliton solution determined by (133).

Figure 4: Spatial structure of double-soliton solution determined by (134).
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More importantly, the mixed spectral AKNS hierarchy (1)
obtained in this paper is resulted from the AKNS isospec-
tral problem (9), i.e., n¢ = 0. Other main differences, such
as Lemmata 1 and 2, Theorems 1-5, solutions (120), (121),
(133) and (134), caused by the coefficient functions a(t),
B(t) and ~(t) are omitted here for simplicity. To the best
of our knowledge, the mixed spectral AKNS hierarchy (1)
and its solutions (123), (124), (133) and (134) obtained in
this paper have not been reported in literature. How to ex-
tend the method used in this paper for some other variable-
coefficient mixed hierarchies of isospectral equations and
nonisospectral equations is worthy of study. This is our
task in the future.
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