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Abstract: This paper is concernedwith the numerical solu-
tion for a class of weakly singular Fredholm integral equa-
tions of the second kind. The Taylor series of the unknown
function, is used to remove the singularity and the trun-
cated Taylor series to second order of k(x, y) about the
point (x0, y0) is used. The integrals that appear in this
method are computed exactly and some of these integrals
are computed with the Cauchy principal value without us-
ing numerical quadratures. The solution in the Legendre
polynomial form generates a system of linear algebraic
equations, this system is solved numerically. Through nu-
merical examples, performance of the present method is
discussed concerning the accuracy of the method.
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1 Introduction
Integral equations with weakly singular kernel have many
practical applications in mathematical physics. These
equations arise in Dirichlet problems, mathematical prob-
lems of radiative equilibrium and radiative heat transfer
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problems [1–4]. Furthermore, Badr in [5] has cited impor-
tant applications of weakly singular integral equations in
the �elds of fracture mechanics, elastic contact problems,
the theory of porous �ltering, combined infrared radiation
and molecular conduction.

Although, in some special cases, analytical solutions
of weakly singular integral equations are obtained [6–8],
but generally this is not an easy task. Hence approximate
solutions are required.

In this paper, the following type of singular Fredholm
integral equation is used

µ(x)ϕ(x) + λ(x)
1∫

−1

k(x, y)ϕ(y)
(y − x)α dy = f (x), (1)

|x| < 1, 0 < α ≤ 1,

where µ(x) 6= 0, λ(x) 6= 0 and k(x, y) is a smooth function
and µ(x), λ(x), f (x), k(x, y) ∈ L2[−1, 1] are given functions
and ϕ(x) is the unknown function to be determined. It is
assumed that the function ϕ(y) has the Taylor series ex-
pansion. The main purpose of this paper is to present a
numerical method for solving integral Equation (1), which
is generalization of the paper [9] for k(x, y) = 1.

Until now, some di�erent numerical solutions for
weakly singular Fredholm integral equations are consid-
ered. In [9] Babolian et al. solved (1) with k(x, y) = 1,
they removed singularity with Taylor expansion of ϕ(y) at
point x, and then used Legendre functions as basis and
computed all de�nite integrals involved without numeri-
cal quadratures. In [10] Lakestani et al. utilized Legendre
multiwavelets as basis to reduce the solution of Fredholm
integro-di�erential equation to the solution of sparse lin-
ear system of algebraic equations. In [11] Jiang et al. gave
representation of the exact solution of third or �rst kind
weakly singular Fredholm integral equations by a series
in the reproducing kernel space. Pedas et al. [12], applied
fully discrete version of a piecewise polynomial colloca-
tionmethod to solve initial or boundary value problems of
Fredholm integro-di�erential equations with weakly sin-
gular kernel.

Generally for �nding thenumerical solution of an inte-
gral equation, �rst the equation is approximated using an
algebraic system of equations and then the solution of this
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system gives an approximate solution of original integral
equation.

In this paper by using Taylor expansion of ϕ(y) about
the point x, the singularity of integral equation(1) is re-
moved and then the truncated Taylor series to second or-
der of k(x, y) about the point (x0, y0) is used and some in-
tegrals that appear in this method are computed without
numerical quadratures to convert the integral Equation (1)
approximately to a system of algebraic equations. Finally
the Legendre functions are used as basis andwithGalerkin
method the approximate solution is computed.

The paper is organized as follows Section 2 presents
the method, Section 3 uses the Legendre function as the
base to implement the method, Section 4 consider the
estimation of errors and the convergence of the method
and Section 5 contains numerical examples of the applied
method. The paper is �nished with concluding remarks.

2 Numerical solution
By considering the Fredholm integral Equation (1) and ex-
panding the solution function ϕ(y) at point x ∈ (0, 1), the
following function is obtained:

ϕ(y) =ϕ(x) + (y − x)ϕ
′
(x) + (y − x)2

2! ϕ
′′
(x) + · · · + (2)

(y − x)n
n! ϕ(n)(x) + (y − x)n+1

(n + 1)! ϕ
(n+1)(ξx,y)

in which ξx,y, is between x and y. By substituting (2) into
Equation (1),

µ(x)ϕ(x) + λ(x)
n∑
k=0

ϕ(k)(x)
k!

1∫
−1

k(x, y)(y − x)k−αdy

+ En(x) = f (x), (3)

where
ϕ(0) = ϕ(x),

En(x) =
1

(n + 1)!

1∫
−1

k(x, y)(y − x)n+1−αϕ(n+1)(ξx,y)dy.
(4)

By using the truncated Taylor series of ϕ(y), the Equa-
tion (3) becomes

µ(x)ϕ(x) + λ(x)
n∑
k=0

ϕ(k)(x)
k! Iα,k ' f (x) (5)

where

Iα,k =
1∫

−1

k(x, y)(y − x)k−αdy,

|x| < 1, 0 < α ≤ 1, k = 0, 1, · · · , n.

With the Taylor series of k(x, y) about the point (x0, y0) the
equation becomes

k(x, y) =k(x0, y0) + (x − x0)kx(x0, y0) + (y − y0)ky(x0, y0)

+ 1
2!

[
(x − x0)2kxx(x0, y0) + (x − x0)(y − t0)kxy(x0, y0)

+ (y − y0)2kyy(x0, y0)
]
+ · · ·

=
[
k(x0, y0) + (x − x0)kx(x0, y0)

+ 1
2! (x − x0)

2kxx(x0, y0) + · · ·
]

+
[
ky(x0, y0) +

(
2
1

)
1
2! (x − x0)kyx(x0, y0)+

+
(
3
1

)
1
3! (x − x0)

2kyxx(x0, y0) + · · ·
]
(y − y0)

+
[
1
2! kyy(x0, y0) +

(
3
2

)
1
3! (x − x0)kyyx(x0, y0)

+
(
4
2

)
1
4! (x − x0)

2kyyxx(x0, y0) + · · ·
]
(y − y0)2 + · · · .

Equivalently,

k(x, y) = κ0(x)+κ1(x)(y−y0)+κ2(x)(y−y0)2+κ3(x)(y−y0)3+· · · ,
(6)

where

κi(x) =
∞∑
j=i

(
j
i

)
∂jk(x, y)
∂yi∂xj−i

(x − x0)j−i
j! , i = 0, 1, · · · .

By using the truncated Taylor series of k(x, y) about the
point (x0, y0) the de�nite integral, Iα,k,can be computed
exactly:

Iα,k =
m∑
i=0

κi(x)
1∫

−1

(y − y0)i(y − x)k−αdy,

|x| < 1, 0 < α ≤ 1, k = 0, 1, · · · , n.

For k = 0, i = 0, and 0 < α < 1, the integral becomes:

1∫
−1

(y − x)−αdy =
x∫

−1

(y − x)−αdy +
1∫
x

(y − x)−αdy

= 1
1 − α

[
(1 − x)1−α − (−1 − x)1−α

]
.

For k = 0, i = 0, and α = 1

c.p.v
1∫

−1

dy
(y − x) = ln

(1 − x
1 + x

)
, |x| < 1.
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For l > 0, k = 0, 1, · · · , n. and 0 < α ≤ 1,
1∫

−1

(y − x)k−α+ldy = (y − x)k−α+l+1
k − α + l + 1

∣∣∣∣1
−1

(7)

= 1
k − α + l + 1

[
(1 − x)k−α+l+1 − (−1 − x)k−α+l+1)

]
.

With Equation (7) and the binomial identity:
1∫

−1

(y − y0)i(y − x)k−αdy

=
1∫

−1

(y − x + x − y0)i(y − x)k−αdy

=
i∑
l=0

(
i
l

)
(x − y0)i−l

1∫
−1

(y − x)k−α+l

=
i∑
l=0

(
i
l

)
(x − y0)i−l

1
k − α + l + 1[

(1 − x)k−α+l+1 − (−1 − x)k−α+l+1)
]

=
i∑
l=0

(
i
l

)
(x − y0)i−l

1
k − α + l + 1[ ∞∑

j=0

(
k − α + l + 1

j

)
(−x)j

+(−1)k−α+l
(
k − α + l + 1

j

)
(x)j
]

=
i∑
l=0

(
i
l

)
(x − y0)i−l

1
k − α + l + 1[ ∞∑

j=0

((−1)j + (−1)k−α+l)
(
k − α + l + 1

j

)
xj
]
, (8)

Remark 1. In these computations, for 0 < α < 1, (−1)α is a
complex value equal to

cos(απ) + i sin(απ). (9)

Now, a new numerical method is proposed to solve Equa-
tion (5). Let {ϕn(x)}∞n=0 be a complete orthogonal ba-
sis with respect to the weight function ω(x) for vector
space L2[−1, 1], which has the property that any ϕ(x) ∈
L2[−1, 1], can be written uniquely as

ϕ(x) =
∞∑
i=0

ψiϕi(x). (10)

The residual function r(x) of Equation (5) is de�ned as

r(x) := µ(x)ϕ(x) + λ(x)
n∑
k=0

ϕ(k)(x)
k! Iα,k − f (x). (11)

To solve Equation (5) numerically, ϕ(x) is approximated as

ϕ(x) ' ϕN(x) =
N∑
i=0

ψiϕi(x). (12)

By substitution ϕN(x) from the Equation (12) into Equa-
tion (11) the residual function becomes:

r(x) = µ(x)
N∑
i=0

ψiϕi(x) + λ(x)
n∑
k=0

Iα,k
k!

N∑
i=0

ψiϕ(k)
i (x) − f (x)

=
N∑
i=0

ψi
[
µ(x)ϕi(x) + λ(x)

n∑
k=0

Iα,k
k! ϕ

(k)
i (x)

]
− f (x).

(13)
Using Galerkin method to �nd ψi , i = 0, 1, · · ·N,:

(r(x), ϕj(x)) = 0, j = 0, 1, · · · , N, (14)

where (r(x), ϕj(x)) is the inner product of two functions
r(x) and ϕj(x) with respect to the weight function w(x), i.e.

(r(x), ϕj(x)) =
1∫

−1

r(x)ϕj(x)w(x)dx. (15)

So the problem of solving the integral Equation (5), leads
to a system of linear equations, which can be solved nu-
merically.

3 Implementation of the method
with Legendre polynomials

In this section, Legendre polynomials are used as a basis.
Let ϕn(x) = Pn(x), where Pn(x) is the Legendre polynomial
of degree n. These polynomials are orthogonal over the in-
terval [−1, 1] with respect to the weight function w(x) = 1
and

1∫
−1

Pn(x)Pm(x)dx =
2

2n + 1 δm,n , (16)

where

δm,n =
{
1 m = n,
0 m 6= n.

(17)

When α = 1, Equation (1) turns into the following integral
equation

µ(x)ϕ(x)+λ(x)
1∫

−1

k(x, y)ϕ(y)
y − x dy = f (x), |x| < 1. (18)
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By substituting ϕ(x) ' ϕN(x) =
∑N

j=0 ψjPj(x) into (18)

µ(x)
N∑
j=0

ψjPj(x) + λ(x)
N∑
j=0

ψj

1∫
−1

k(x, y)Pj(y)
y − x dy '

f (x), |x| < 1, (19)

and using the truncated Taylor series of k(x, y) about the
point (x0, y0) in Eq(6) the equation becomes:

N∑
j=0

ψj
[
µ(x)Pj(x) + λ(x)

m∑
l=0

κl(x)
1∫

−1

Pj(y)(y − y0)l

y − x dy
]

= f (x), |x| < 1. (20)

Applying the expansion of (y − y0)l, based on Legendre
polynomials, gives:

(y − y0)l =
l∑
k=0

ckPk(y). (21)

Using Equation (21) in Equation (20):
N∑
j=0

ψj
[
µ(x)Pj(x) + λ(x)

m∑
l=0

κl(x)

l∑
k=0

ck

1∫
−1

Pk(y)Pj(y)
y − x dy

]
= f (x), |x| < 1. (22)

Using the famous relation [13–16]
1∫

−1

Pk(y)Pj(y)
y − x dy = −2Pk(x)Qj(x) k ≤ j, (23)

where Qj(x) is the Legendre function of the second kind
[17]. By substituting Equation (23) in Equation (22):

N∑
j=0

ψj
[
µ(x)Pj(x) + λ(x)

m∑
l=0

κl(x)
(∑

k≤j

−2 ckPk(x)Qj(x)+

∑
k>j

−2 ckPj(x)Qk(x)
)]

= f (x), |x| < 1. (24)

For determining coe�cients ψj both sides are multiplied
by Equation (24) by Pi(x), i = 0, ..., N and integrate from 1
to −1. This process leads to

N∑
j=0

Aijψj = bi , i = 0, · · · , N,

where for α = 1 and i, j = 0, 1, . . . , N,

Aij =
1∫

−1

[
µ(x)Pj(x) + λ(x)

m∑
l=0

κl(x)

(∑
k≤j

−2 ckPk(x)Qj(x) +
∑
k>j

−2 ckPj(x)Qk(x)
)]

Pi(x)dx, i = 0, · · · , N,

and for 0 < α < 1 and i, j = 0, 1, . . . , N,

Aij =
1∫

−1

[
µ(x)Pj(x) + λ(x)

n∑
k=0

Iα,k
k! P

(k)
j (x)

]
Pi(x)dx,

i = 0, · · · , N,

bi =
1∫

−1

f (x)Pi(x)dx, i = 0, · · · , N .

In both cases α = 1 and 0 < α < 1, Aij and bi are estimated
using the Gauss−Legendre quadrature rule.

4 Error estimate and convergence
In this section, error analysis and convergence of proposed
method based on Legendre polynomials is discussed.

Theorem 1. Let ϕ(x) ∈ L2[−1, 1], be the exact solution of
Equation (1), ϕN,m(x) =

∑N
i=0 ψi,mPi(x) be the solution of

equation

µ(x)ϕN,m(x) + λ(x)
1∫

−1

km(x, y)ϕN,m(y)
(y − x)α dy = f (x), (25)

in which km(x, y) is the truncated Taylor series to second or-
der of k(x, y), of order m, about the point (x0, y0), ‖(x, y) −
(x0, y0)‖2 < r where r is the radius of convergence of Taylor
series, ϕN(x) =

∑N
i=0 ψiPi(x) is the solution of equation

µ(x)ϕN(x) + λ(x)
1∫

−1

k(x, y)ϕN(y)
(y − x)α dy = f (x), (26)

then
1. lim

N,m→∞
‖ϕ(x) − ϕN,m(x)‖2 = 0,

2. lim
N→∞

‖EN(x)‖2 = 0,

Proof. To prove the �rst part consider the following

‖ϕ(x) − ϕN,m(x)‖2
=‖ϕ(x) − ϕN(x) + ϕN(x) − ϕN,m(x)‖2
≤‖ϕ(x) − ϕN(x)‖2 + ‖ϕN(x) − ϕN,m(x)‖2,

and

k(x, y) = k(x0, y0) + (x − x0)kx(x0, y0)

+(y − y0)ky(x0, y0) +
1
2!

[
(x − x0)2kxx(x0, y0)

+(x − x0)(y − t0)kxy(x0, y0)

+(y − y0)2kyy(x0, y0)
]
+ · · ·

=km(x, y) + Erm(x, y),



302 | E. Babolian et al.

where

Erm(x, y) =
1

(m + 1)!

m+1∑
l=0

(
m + 1
l

)
∂m+1k(ζx , ζy)
∂ym+1−l∂xl

(x − x0)l(y − y0)m+1−l ,

and using the Taylor series for k(x, y):

lim
m→∞

Erm(x, y) = 0, (27)

subtracting Equation (25) from Equation (26)

µ(x)(ϕN(x) − ϕN,m(x))

+λ(x)
1∫

−1

Erm(x, y)(ϕN(y) − ϕN,m(y))
(y − x)α dy = 0,

by Equation (27), since µ(x) 6= 0,

lim
m,N→∞

‖(ϕN(x) − ϕN,m(x))‖2 = 0. (28)

On the other hand the sequence {Pn(x)}∞n=0 of Legendre
polynomials is a complete orthogonal basis with respect
to the weight function ω(x) = 1 for vector space L2[−1, 1],
so ϕ(x) ∈ L2[−1, 1], can be written uniquely as a linear
combination of basis functions

ϕ(x) =
∞∑
i=0

ψiPi(x),

where

ψi =
2i + 1
2

1∫
−1

ϕ(x)Pi(x)dx,

Therefore,

ϕ(x) − ϕN(x) =
∞∑

i=N+1

ψiPi(x),

by orthogonality of Legendre functions,

‖ϕ(x) − ϕN(x)‖22 =
∞∑

i=N+1

2
2i + 1ψ

2
i ,

thus, Parseval’s identity holds and from [17] this property
in Hilbert space L2[−1, 1] ensures

lim
N→∞

‖ϕ(x) − ϕN(x)‖2 = 0, (29)

with (28) and (29) the �rst part of the proof is completed.
From Equation (4) and Cauchy Schwarz inequality

|En(x)|2 =
∣∣∣∣ 1
(n + 1)!

1∫
−1

k(x, y)(y − x)n+1−αϕ(n+1)(ξx,y)dy
∣∣∣∣2

≤ M2

((n + 1)!)2 ‖k(x, y)‖
2
2 ‖(y − x)n+1−α‖22

≤ M
2K222n−2α+3
((n + 1)!)2 ,

whereM = max
x∈[−1,1]

ϕ(n+1)(x), K = ‖k(x, y)‖2 and the proof is

complete.

5 Numerical examples
This section contains examples to demonstrate numeri-
cally the e�ectiveness of the proposed method. The er-
ror is de�ned as ErN = |ϕ(x) − ϕN(x)|, where ϕN(x) =∑N

j=0 ψjPj(x). Also, m is the number of terms of the Taylor
series of k(x, y) and n is the number of terms of the Taylor
series for ϕ(x).

Example 1. Consider the following integral equation

(1 + x2)ϕ(x) + (1 + x2)
1∫

−1

(x2 + y)ϕ(y)
(y − x) dy = f (x), (30)

where

f (x) = x3 + x(1 + x)
[
x3ln(1 − x1 + x ) + 2x

2 + 4 − π
2
]
,

is chosen such that

ϕ(x) = x3
1 + x2 ,

is the exact solution. The numerical results are given in Ta-
ble 1.

In Example 1 for m = 2, as n increases the solutions be-
come more accurate.

Example 2. Consider the following integral equation

sin(x)ϕ(x) + cos(x)
1∫

−1

ex+yϕ(y)
(y − x) 15

dy = f (x), (31)

where

f (x) =xe−x sin(x) + 5
36 e

x cos(x)((4 − 5x)(−1 − x)4/5

+ (1 − x)4/5(4 + 5x)),

is chosen such that

ϕ(x) = xe−x ,

is the exact solution. The numerical results are given in
Tables 2, 3. In Table 2 for �x n = 4 and increasing m =
2, 5, 10 absolute errors converge to zero, but the rate of
convergence is low. In Table 3 for �x n = 8 and increasing
m = 2, 5, 10, absolute errors tend to zero, the rate of con-
vergence is faster than when n = 4. Generally when n,m,
increase absolute errors tends to zero.
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Table 1: The Ern of Example 1 for n = 4, 8, 16 and m = 2.

x Er4(x) Er8(x) Er16(x)
−1 2.66166 × 10−2 1.13706 × 10−3 1.40121 × 10−6

−0.8 1.10254 × 10−2 3.1887 × 10−4 1.54474 × 10−7

−0.6 1.14159 × 10−4 1.62844 × 10−4 4.5442 × 10−7

−0.4 2.142 × 10−2 2.87953 × 10−4 3.81212 × 10−7

−0.2 2.43581 × 10−2 9.19528 × 10−4 2.02625 × 10−7

0 4.47326 × 10−3 2.42039 × 10−4 2.51121 × 10−7

0.2 1.80403 × 10−2 8.95789 × 10−4 3.1924 × 10−7

0.4 2.17433 × 10−2 1.48904 × 10−4 6.16621 × 10−8

0.6 7.35652 × 10−3 2.46889 × 10−4 1.86428 × 10−7

0.8 2.81081 × 10−3 2.31861 × 10−4 7.98199 × 10−8

1 2.11425 × 10−2 4.63129 × 10−4 2.17689 × 10−7

Table 2: The Er4 of Example 2 for m = 2, 5, 10.

x m = 2 m = 5 m = 10
0 8.24039 × 10−2 3.22493 × 10−3 3.05565 × 10−3

0.2 7.89611 × 10−2 2.51934 × 10−3 2.08542 × 10−3

0.4 4.98806 × 10−2 3.1168 × 10−3 2.86393 × 10−3

0.6 4.46485 × 10−2 1.99465 × 10−3 1.83149 × 10−3

0.8 5.07106 × 10−2 1.42699 × 10−3 1.26791 × 10−3

1 6.2562 × 10−2 1.8699 × 10−3 2.01917 × 10−3

Table 3: The Er8 of Example 2 for m = 2, 5, 10.

x m = 2 m = 5 m = 10
0 1.20729 × 10−1 6.55561 × 10−4 7.39673 × 10−8

0.2 9.18806 × 10−2 5.05137 × 10−4 1.77655 × 10−7

0.4 5.17136 × 10−2 2.67498 × 10−4 6.42829 × 10−8

0.6 3.23127 × 10−2 1.05396 × 10−4 4.18855 × 10−8

0.8 3.98924 × 10−2 6.16701 × 10−5 5.86223 × 10−8

1 5.95749 × 10−2 3.15855 × 10−4 1.34724 × 10−7

Table 4: The MaxError of Example 4 for m = 2, 5, 10.

n n = 16 n = 32
Our method for m = 1 1.59 × 10−16

Lakestani’s method[10] 1.27 × 10−6 2.71 × 10−8

Product integration method [18] 1.5 × 10−5 9.39 × 10−7

Lagrangian interpolate [18] 2.12 × 10−5 1.94 × 10−6
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Example 3. Consider the following integral equation

sinh(x)ϕ(x) + cosh(x)
1∫

−1

(1 + xy + 2y3)ϕ(y)
(y − x) 35

dy = f (x),

(32)

where f (x), is chosen such that

ϕ(x) = x5,

is the exact solution of Equation (32), the numerical result
for n = m = 5, is

ϕ5(x) = −1.3526 × 10−10 + 2.45121 × 10−9x − 8.09197×
10−9x2 + 1.09271 × 10−8x3 + 3.1628 × 10−9x4 + x5.

Generally when k(x, y), is a polynomial of degree ω, with
m = ω, approximate solution is very close to the exact so-
lution.

Example 4. Consider the following integral equation [10,
18],

ϕ(x) −
1∫

0

|x − y|
−1
2 ϕ(y)dy = f (x), (33)

where f (x), is chosen such that ϕ(x) = x, is the exact so-
lution of Equation (33). Table 4 shows the absolute errors
which computed by using proposed method. Also, Com-
parison is made with the result presented in [10, 18].

There the maximum error is de�ned as MaxError =
max|ϕ(x) − ϕN(x)|, to calculate the errors in Table 4.

6 Conclusion
This paper proposes a new method to solve Fredholm in-
tegral equations of the second kind with weakly singular

kernel. This method uses the Taylor series and Legendre
functions of the second kind to remove singularity. Legen-
dre polynomials were used as basis. Several test examples
are used to observe the e�ciency and applicability of the
new method.
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