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Abstract: In the paper, spin waves in a ferromagnetic nan-
otube of an elliptic cross-section in the presence of a spin-
polarized electric current are investigated. The linearized
Landau-Lifshitz equation in the magnetostatic approxima-
tion is used, with the exchange interaction, the dipole-
dipole magnetic interaction, the anisotropy effects and the
dissipation effects taken into account; the influence of the
spin-polarized current is considered by the Slonczewski-
Berger term. After elimination of the magnetization den-
sity perturbation, an equation for the magnetic potential
for the above-described spin excitations is obtained. From
this equation, a dispersion relation for spin waves in the
nanosystem described previously is obtained. Analysis of
the dispersion relation shows that the presence of the spin-
polarized current can strengthen or weaken the dissipa-
tion, creating an “effective dissipation”; the effect is analo-
gous to the “effective dissipation” in a two-layer ferromag-
netic film in the presence of a spin-polarized current. De-
pending on the direction and the density of the current the
spin wave can decay faster or slower than in the absence of
the current, transform into a self-sustained wave or grow
in amplitude, thus leading to a spin wave generation.
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1 Introduction

Spin waves in magnetically ordered materials have been
a popular topic of research during the last few decades.
Different aspects of spin waves in different types of media
have been studied intensively; spin excitations in nanosys-
tems are particularly promising, in particular, in the terms
of technical applications. Among them, magnonics - a sub-
field of modern solid state physics that studies spin waves
in nanosystems [1] - and spintronics (spin electronics) -
a sub-field of modern solid state physics that studies the
properties of the electron spin and ways of its manipu-
lation in solid-state devices [2] - are promising for creat-
ing new information storage, transmission, and process-
ing devices [3-5].

It is known that the magnetic properties of nanostruc-
tures depend essentially on their size and shape. There-
fore, spin waves have been studied in different types of
nanosystems individually. While spin waves in thin mag-
netic films have been studied for several decades (see,
e.g., [6]), spin waves in nanosystems of more complex ge-
ometries, in particular nanosystems with a one-axis trans-
lational symmetry, represent a relatively novel field of
research. Spin waves in magnetic nanowires [7-9] and
macroscopic magnetic wires with an elliptic cross-section
[10] were studied in the past few years. Spin waves in mag-
netic nanotubes were also studied (see, e.g., [11, 12]), but
currently they attract little attention. Known theoretical
papers on the subject investigate mostly spin solitons [13]
and waves on magnetic domains interfaces [14, 15].

Magnetic nanotubes has been synthesized only re-
cently [16], however, they have already found a wide range
of technical applications (especially in magnetobiology,
see, e.g., [17, 18]). In the past few years, nanotubes of
non-circular cross section were also synthesized (see, e.g.,
[19]); their properties differ from the properties of circular
nanotubes (see, e.g., [20]). In particular, nanotubes of el-
liptic cross-section [21-23] represent a special area of in-
terest for synthesis and research. (Note also that typical
nanotubes synthesized currently often have an essentially
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non-circular cross-section, see, e.g., [24]. For most cases,
the “elliptical cross-section” approximation is more pre-
cise for such nanotubes than the “circular cross-section”
approximation.) However, spin waves in elliptic magnetic
nanotubes remain practically unresearched, and known
papers on the subject consider purely dipole-dipole spin
waves (so the results cannot be used for nanoscale systems
when the exchange interaction becomes essential) with-
out account for the magnetic anisotropy, magnetic dump-
ing, and spin-polarized current (see, e.g., [25]). Therefore,
spin waves in elliptic magnetic nanotubes accounting for
the above-mentioned effects present a topical field of re-
search.

Dissipation effects can either essentially influence
a spin wave pattern in a nanosystem or be negligible
depending on the spin wave frequency as well as the
nanosystem’s size, shape, and material (see, e.g., [26] ).
Therefore, in general case, one must consider dissipation
effects when investigating spin waves in nanosystems.

Magnetic nanostructures, in particular magnetic nan-
otubes, can be used as waveguides for spin waves. There-
fore, a task of generating spin waves in magnetic nanos-
tructures becomes essential. One of the ways of generat-
ing spin waves (usually in the microwave range) in mag-
netic nanostructures is using so-called spin-torque effect:
change of the magnetization direction (switching or pre-
cession) in a thin layer of a ferromagnet as a spin-polarized
current passes through it [27-29]. As is known (see, e.g.,
[27]), the influence of the spin-torque effect on the spin
wave pattern of a nanosystem can be either negligible or
essential depending on the current density and, therefore,
must be considered in a general case. Therefore, investi-
gation of spin waves in magnetic nanotubes (in particu-
lar, nanotubes of elliptic cross-section) in the presence of
spin-polarized current and, in particular, investigation of
the spin waves generation in such systems is a topical field
of research.

This paper investigates dipole-exchange longitudinal
spin waves and orthogonal spin excitations in a ferromag-
netic nanotube with an elliptic cross-section in the pres-
ence of a spin-polarized current. The dipole-dipole mag-
netic interaction, anisotropy effects, dissipation effects
,and the influence of the spin-polarized current are taken
into account. For a two-layer nanotube, an equation for the
magnetic potential and a relation between the wave fre-
quency and two wavenumber components for such spin
wave are obtained. For a thin nanotube, a dispersion re-
lation for such spin wave is also obtained. Effective dissi-
pation - which can be either positive or negative depend-
ing on the direction and the density of the current - is ob-
served; the spin wave generation condition is obtained.
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For a one-layer ferromagnetic nanotube with an elliptic
cross-section in the absence of a spin-polarized current,
an orthogonal wavenumber spectrum of spin excitations
is also obtained.

2 Setting of the problem

Let us consider a two-layer ferromagnetic nanotube with
an elliptical cross-section (elliptical cylinder) and a spin-
polarized current passing through it. We assume that one
layer of the nanotube is “fixed” in the sense of the mag-
netization direction, the second - “free”, so that a spin-
polarized current can pass through the “free” layer. (Later
in the paper we will also consider the case of a single-layer
ferromagnetic nanotube placed between two nonmagnetic
metal surfaces.) Let us denote the “free” layer semiaxes as
a, b, (for the outer surface) and aq, b, (for the inner sur-
face), see Figure 1.

“free” layer

“fixed” layer

a
a,

“free” layer
“fixed” layer

Figure 1: A nanotube modelled as per the article.

Let us assume that the free layer is composed of
an “easy axis” uniaxial ferromagnet with the follow-
ing parameters: the exchange constant a, the uniaxial
anisotropy parameter 3, and the gyromagnetic ratio v. We
also assume that the ferromagnet anisotropy axis is di-
rected along the symmetry axis of the system.

Let us consider the case when the saturation magne-
tization of the “free” layer and the magnetization of the
“fixed” layer are both directed along the translational sym-
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metry axis of the system and let us choose this direction
as the Oz axis of our coordinate system. Let us consider
a spin wave propagating in the “free” layer of the above-
described system along the axis Oz. Considering a typi-
cal nanotube length and corresponding wavenumber lim-
itations, we have to take into account both the magnetic
dipole-dipole interaction and the exchange interaction in
the Landau-Lifshitz equation for a typical nanotube. We
also have to keep the anisotropy addend in this equation
as we consider a uniaxial ferromagnet.

We consider the magnetization m and the magnetic
field h of the spin wave as a small perturbation of the
overall magnetization density M and the overall internal
magnetic field H?, correspondingly. Thus, we can write
down || < ‘ZVIO‘, )ﬁ‘ < ‘Flg) (where My and Hg) are
the ground state magnetization and the internal magnetic
field, correspondingly, so M = Mo+ m, HO = Flg) + E) and
apply the linearized spin wave theory.

Our task is to obtain the dispersion relation for the
above-described spin waves and determine the condition
of spin wave generation in the “free” layer.

3 System of equations for a spin
wave in the “free” nanotube layer

Let us write down a linearized Landau-Lifshitz equation
for the “free” nanotube layer described in the previous sec-
tion. In the absence of a spin-polarized current this equa-
tion can be written as follows [30]:

N
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here 1 is the unit vector along the anisotropy axis of the
system (for our system, it coincides with the unit vector €;).

To consider dissipation effects, let us use a damping term
in the Gilbert form

+ pit (i)
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where ag is the Gilbert damping constant of a “free” layer
ferromagnet. In the linearized form of the Landau-Lifshitz
equation, this term can be rewritten as follows:
- - om
=ag |[Mox = |.
te ac[ 0% at} 3
In order to consider the spin-polarized current, let us

use the Slonczewski-Berger spin-transfer term. We assume
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that the “free” nanotube layer is thin enough to use the
form of the term obtained for a flat film [27]:

_ el
s 2eM3d

[M x [M x &p]], (4)

where ¢ is the dimensionless spin-polarization efficiency,
J is the electric current density (is considered constant),
U is the Bohr magneton, e is the modulus of the electron
charge, d = ((b; — a2) + (b1 — a1)) /2 is the mean “free”
layer thickness (we assume that the relative change of the
thickness is small enough), and €j, is the unit vector of the
magnetization direction in the “fixed” layer (in our case,
€p = €z). This Slonczewski—Berger term takes the follow-
ing form in the linearized Landau-Lifshitz equation:

. evh]

s = 2eM(2)d[M° x [m x ]l )

where we considered My||é;, mLé,. Therefore, the lin-
earized Landau-Lifshitz equation with the terms that con-
sider the energy dissipation and the spin-polarized current
influence can be rewritten as follows:

[ -
“zenga [7°%1)) ©

In particular, for perturbations in the form of oscilla-
tions periodic in time,

m (7, t) = mo (T) exp (iwt), h (7, t) = ho (7) exp (iwt),
@)
the linearized Landau-Lifshitz equation (after using the
system symmetry properties) can be rewritten as follows:

where I?Ige) is the external magnetic field.

In order to solve the Landau-Lifshitz equation, we
need one more relation between the magnetization and
the magnetic field. Let us use the magnetostatic approxi-
mation [30]. In this approximation, the magnetic field per-
turbation h is a potential field: h = -V, fzo = -V,
where @ is a magnetic potential and @ = @ (¥) exp (iwt).
In this way, we can obtain the sought relation from the
Maxwell equation divh = —47-divin. After introducing the
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magnetic potential, it can be rewritten as A® - 4ndivm =
0, or
ACDO - 4ﬂdl'VT’?l() =0 (9)

for perturbations in the form of oscillations periodic in
time (7).

The equations (8), (9) provide the necessary relation-
ship between m and h. Using this system of equations, we
can find the equation for the magnetic potential @.

4 Equation for the magnetic
potential

In order to obtain the equation for the magnetic potential
of a spin wave in the system, let us eliminate the magneti-
zation perturbation in the system of equations (8), (9).
For the system we consider, it is convenient to use
the elliptic cylindrical coordinates (u,v,z) with the follow-
ing relations describing the transition to Cartesian coordi-
nates:
x = 4ch(u) cos(v)
y = $sh(u)sin (v)
z=z

(10)

The equation u=const describes an elliptic cylinder
with semiaxes %ch (w), %sh (u). Therefore, the nanotube
boundaries can be specified by the equations u = uj,
u = uy (here ch(uy) = 2by/d, sh(uy) = 2a;/d, ch (uz) =
sz/d, sh (uz) = Zaz/d).

After substituting the Maxwell equation (9) into the
equation (8) and considering mg, = 0 we obtain

i T 0%d,
"M, (w t ix) div [é; x Thg| = - ADg + 52
1 ~
‘o (aA - /3) Ao, (11)
where x = gjﬁﬂ, B =B+ Hée)/Mo —iagw/yMop. The “+”

sign in the left side of the equation corresponds to the cur-
rent passing from the “fixed” nanotube layer to the “free”
one: >0, the “-” sign - vice versa. After applying the oper-
ator a/ — B to the equation (11) and making certain trans-
formations we finally obtain the equation for the magnetic
potential that does not contain m:

(w +ix)? (~ =
W) ﬁ—aA) (4n+ﬁ—aA) AD,
( v2M3
5 2@,
_ A)
+ 41 (/3 a 32
Note that if k=0 (no spin-polarized current), the equa-
tion (12) can be used for a one-layer ferromagnetic nan-

otube or nanowire of an arbitrary cross-section. In partic-
ular, the equation (12) with x=0 and a;=0 (no dissipation)

=0. (12)
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becomes similar to the known equation for the magnetic
potential of spin waves in a ferromagnetic cylinder, see,
e.g., [7].

5 Dispersion relation and condition
of spin wave excitation

Now we can find the dispersion relation for spin waves in
the “free” nanotube layer.

First, let us note that the equation (12) in the above-
described elliptic cylindrical coordinates admits a solution
in the following form:

D =(C1Cem (u, a)cem (v, a)

+Ca2Sem (u, @) sem (v, a)) exp (i (wt -k z))  (13)

where C;, C, are constants, Cem, cem, Sem, and se,, are
Mathieu functions of the order m (these functions are so-
lutions of the two-dimensional Helmholtz equation in the
plane xOy: A | F - kiF = 0, where k, is the orthogo-
nal wavenumber), k)| is the longitudinal wavenumber and
a = k% d*/16. After substituting the solution (13) into the
equation (12) we obtain a dispersion equation in the fol-
lowing form:
)

(((::AZZ)) - (B + akz) (471 +B+ ak2>) K

+4n (B + ak2> K% =0, (14)
where the general wavenumber k* = k3 + kﬁ.

As we can see, the dispersion equation (14) contains
two wavenumber components, orthogonal and longitudi-
nal. Therefore, in general case, we have to solve the equa-
tion (12) with boundary conditions for the magnetization
in order to obtain the dispersion relation. However, we can
eliminate the orthogonal wavenumber component from
(14) after noting that a typical nanotube thickness has
the same order as the characteristic exchange interaction
length l.x. Therefore, we can consider the case when the
“free” layer thickness is less than the exchange length and,
therefore, neglect the radial dependence of the magnetic
potential: k; = 0. Thus, we can put n = 0 and transform
the equation (14) for k # 0 in the following way:

)

% - (ﬁ+ak2) <4n+[3+ak2) + 47 (ﬁ+ak2) =0.

(15)

From the equation (15), we obtain the sought relations
between k and w:

k2=1<w(1—iaG)iix_ﬁ_ng)> (16)

[44 ’yMo Mo
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and the dispersion relation

(e)

1 2 Hy
= M k — |+
w T+ <7 0<a +[3+MO>+K

G

H(e)
+i (amMo <ak2 +B+ ]\/?) ¥ K)) .17
0

Note that if k=0, the dispersion relation (17) can also be
used for a nanotube of another cross-section (in the case
when a coordinate system that correspond to the nanotube
symmetry allows separation of the variables in the equa-
tion (12), and the resulting equation in the plane orthogo-
nal to Oz has a form of a two-dimensional Helmholtz equa-
tion in these coordinates).

6 Orthogonal wavenumber
spectrum for a one-layer
nanotube in the absence of the
spin-polarized current

If the “free” layer thickness cannot be considered small (so
we cannot put k| = 0), the dispersion relation (17), in a
general case, should be complemented with the orthogo-
nal wavenumber spectrum. (As the nanotube is considered
long compared to the exchange length lex, the longitudinal
wavenumber can be considered to change continuously;
on the other hand, the nanotube thickness is of the same
order of magnitude with ley, so the orthogonal wavenum-
ber has an essentially discrete spectrum). This spectrum
can be found, for instance, after applying boundary condi-
tions for the magnetic potential on the “free” layer bound-
aries.

In a general case, we have to solve the equation (12)
both inside and outside the “free” layer and match the
obtained solutions using the above-mentioned boundary
conditions. Because of the presence of the spin-polarized
current and the corresponding additional magnetic field,
the task of finding the orthogonal wavenumber spectrum
is rather complicated. However, for a one-layer ferromag-
netic nanotube in the absence of the current (x=0) the task
simplifies significantly. In particular, when the “free” fer-
romagnetic layer is bounded by nonmagnetic metal sur-
faces composed of a high-conductivity metal (so the con-
ductivity can be considered infinitely high when we write
down the boundary conditions), the boundary conditions
reduce to the condition of a zero normal derivative of the
magnetic potential on the surface of the ferromagnet:

Vdiip = 0, (18)
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here i is a unit vector of the interface normal. As the ellip-
tic coordinates are normal coordinates, the condition (18)
can be rewritten as

oD
u =0

u=ui,us

(19)

or

C1Cep (U1, @) cem (v, &) + CSem (ug, a) sem (v, @)

= C1Cem (Uz, @) cem (v, a) + C2Sen (Ua, ) sem (v, a) = 0.
(20)

In order for the conditions (20) to be satisfied for an
arbitrary vwe have to put C; = 0 or C, = 0. Thus, we obtain
two classes of solutions:

2 2
Jeon (156,

=0

K d?
F(u,v, k)= CiCem (u, kd
k* d? k* d?
Cepn (u1, i—é) = Cep (Uz, 1
kK d K d?
F(u,v,k ) =CSem (u, #) Ssem (V, #) s

Senm (ul, k%—gz) =Sen, (uz, k%—gz) =0.
1)
The system (21) defines the sought wavenumber spec-
trum.

7 Discussion

Thus, we applied a theory of linear spin waves in the pres-
ence of a spin-polarized current to a previously uninves-
tigated case - dipole-exchange spin waves in a ferromag-
netic nanotube with an elliptic cross-section. In the re-
sulting dispersion relation, we obtained addends that are
both mathematically analogous to those known for other
nanosystems, as well as different ones.

Let us compare the obtained dispersion relation (17)
with the dispersion relation obtained in the earlier paper
of the authors [31] for a cylindric nanotube without dis-
sipation and spin-polarized current. As we can see, the
expression (17) for k=0 and as=0 is mathematically sim-
ilar to the dispersion relation presented in [31] despite dif-
ferent geometry of the system. However, the expressions
for the orthogonal wavenumber spectrum for an elliptic
nanotube (21) and cylindric nanotube [31] differ; therefore
the wavenumber spectrum depends on the nanotube ge-
ometry. Consideration of the dissipation leads to the ap-
pearance the damping (non-zero imaginary part of the fre-
quency) and also changes the real part of the frequency by
the factor 1/(1 + aé). Consideration of the spin-polarized
current changes the real part of the frequency by the ad-
dend +x/(1 + aZ) and also changes the imaginary part of
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the frequency, leading to the appearance of the “effective
dissipation”.

Let us analyze the influence of the spin-polarized cur-
rent on imaginary part of the frequency given by the dis-
persion relation (17).

As we can see from (17), the imaginary part of the spin
wave frequency contains a positive (damping) addend that
describes the spin wave dissipation and an addend that
describes the effects of the spin-polarized current; the lat-
ter can be positive or negative depending on the direc-
tion of the current. The resulting imaginary part of the fre-
quency can be positive or negative (“effective dissipation”)
- and, therefore, the excitation or damping process can
dominate so that the spin wave can grow or attenuate in
amplitude with time, correspondingly. Let us analyze the
sign of the imaginary part of the frequency depending on
the value of the spin-polarized current.

In order for the spin wave to grow with time,
the following conditions must fulfill: the current
should be is positive (/>0), and the value x >
agyMo (ozk2 +B+ ng)/Mo). These two conditions to-
gether are equivalent to the following condition on the
value of the current:

2 H(e)
I Jor = 26%6Mo 4 (ak2+ﬁ+ 1\/;1)) @)

eh
In this case, a spin wave generation takes place. If the
current is positive, but its absolute value is less than the
value in the right side of (22), so that the condition 0<J< J¢r
is fulfilled, the process of damping dominates over the pro-
cess of generation, but the spin-polarized current weakens
the effective dissipation. Finally, for the case of a negative
current (J<0) the presence of the spin-polarized current in-
creases the damping. If the wave attenuates, the charac-
teristic relaxation time (for the case of a real wavenumber)
can be written in the following form:
27 27 (1+ag)

T = =
Imw

(23)
(e)
ag |yl Mo ((Jzk2 +B+ IXTOO) FK

We can also use this expression for a growing wave.
However, in this case the relaxation time obtained from
(23) has a negative value.

Note that if the current J is exactly equal to the expres-
sion in the right hand part of the equation (22), the damp-
ing and generation processes become balanced and, there-
fore, the spin wave does not grow or attenuate with time.
Therefore, a self-sustained magnetization precession oc-
curs.

Analogous effects have been obtained by Slavin and
Tiberkevich [32] for a simpler system - a ferromagnetic nan-
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odisc with a spin-polarized current passing through it. The
disc is thin enough for the magnetization precession to be
uniform on all of the nanodisc thickness, so its amplitude
does not depend on the longitudinal coordinate: only uni-
form magnetization precession is observed and no wave is
generated. This uniformity changes the entire scheme of
the investigation; however, in such a thin nanodisc analo-
gous “effective damping” — which can be either positive or
negative depending on the value and direction of the cur-
rent — is also present, and generation of spin oscillations
takes place when the value of the current exceeds certain
critical value. Analogous effects has been also described in
the earlier paper by Slavin and Tiberkevich [27] for a thin
film. This verifies the above-obtained results.

Let us compare the expression for the critical cur-
rent obtained in the current paper with the one obtained
by Slavin and Tiberkevich [32] for a ferromagnetic nan-
odisc. An expression for the critical current in the above-
mentioned paper has the following form:

d 2eaGMo (Hée) - 47TMO) d
Jor = h

The critical current for the nanosystem investigated
in the current paper (22) after omitting the exchange and
anisotropy addends neglected in [32] can be written in the
following form:

(24)

ZeaGMoHée)d

eh (25)

J ér =

These expressions are similar (internal field Hg") fora
nanotube corresponds to the internal field (H(Oe) - 4tMy)
for a nanodisc), thus verifying the obtained results.

Let us make numerical evaluations of the spin wave
frequency given by (17) in the absence of the external mag-
netic field, assuming that the wavenumber k is restricted,
on the one hand, by the nanotube length (which makes
unities or tens of micrometers for typical nanotubes) and,
on the other hand, by the exchange interaction length
(which has the order of several nanometers for typical fer-
romagnets). Thus, the wavenumber for a typical nanotube
change from 10? cm™! to 10® cm™! by the order of magni-
tude.

Let us choose the following values for the “free” layer
ferromagnet: f=1, a=10"'2 cm~2, =107 Hz/Gs, M, = 10>
Gs (typical values for ferromagnets used in synthesized re-
cently nanosystems, see, e.g., [33-35]). The Gilbert damp-
ing constant ag for a typical ferromagnetic nanosystem
used in experiments with a spin-polarized current can be
choosen in the range of approximately 0.02-0.2, see, e.g.,
[36, 37]. Dependence of the real part of the frequency on
the wavenumber for such nanotube parameters with ag
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=0.1 and in the absence of the spin-polarized current is
given on the Figure 2; as we can see, the spin wave fre-
quency has the order of magnitude of 10'° Hz throughout
all the wavenumbers range. The characteristic time given
by (23), therefore, has the order of magnitude 10781079 s.

Now, let us consider the spin-torque term. As we can
see from (17), the spin-torque component affects the ef-
fective dissipation (imaginary part of the frequency) es-
sentially on much smaller values of the current than it
starts to affect the real part of the frequency: the rela-
tion of corresponding critical values of the current den-
sity has the order of ag <« 1. The critical value k¢ =
agyMo (ak2 +B+ Hg)e)/Mo) — the value on which the sign
of the dissipation changes — has the order of magnitude
10810° Hz depending on the value of ag;, so the criti-
cal value of the current density /¢, has the order of 1016
Fr/(s - cm?) (3-10° A/cm?). These are typical values of the
current density used in corresponding experiments (see,
e.g., [28]), so the spin wave generation condition obtained
above can be used for technical applications. Moreover,
the limitations of the above-used linear theory on the value
of J (the value £ must have the order of 1 or less) lead
to the appearanceO of the upper limit of the current den-
sity of about J;max=10'7 Fr/(s - cm?) (approximately 3-107
A/cm?) which is much more than the critical value. There-
fore, the above-mentioned theory is applicable to the spin
wave generation on the current density interval from J, to

]max-

Re @,
GHz

20F

10k, 10° em!

Figure 2: Dependence of Re w on k for typical values of the nan-
otube parameters.

The graphical representation of the dependence of the
relation of the imaginary (damping) part of the spin wave
frequency to the real part on the current density for the ob-
tained above limiting values of the wavenumber interval —
k=10?cm ' and k = 10° cm™! - is given on the Figure 3.
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Figure 3: Dependence of Im w/Re w on J for typical values of the
nanotube parameters. Thinner line represents the dependence for
k =102 cm™1, thick line — for k = 106 cm™!.
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Figure 4: Dependence of Re w on ag for typical values of the nan-
otube parameters. The thinner line represents the dependence for
k =102 cm™1, thick line — for k = 106 cm™1.

The graphical representation of the dependence of the
real part of the spin wave frequency given by (17) on the
damping constant a; for the obtained above limiting val-
ues of the wavenumber interval is given in Figure 4. As
we can see, for typical values of the damping constants
of ferromagnets used in experiments with spin-polarized
current real part of the frequency only depends weakly
on the damping constant throughout all of the admissible
wavenumber interval.

The graphical representation of the dependence of the
imaginary part of the spin wave frequency given by (17) on
the damping constant a; for the obtained above limiting
values of the wavenumber interval is given in Figure 5. As
we can see, for the imaginary part of the frequency we ob-
tain a predictable result: it depends on the damping con-
stant essentially. The latter dependence is close to linear
on the same interval of damping constant values.



270 =—— Yuril. Gorobets and Volodymyr V. Kulish

Im @,
GHz ,[

030 g

Figure 5: Dependence of Im w on ag for typical values of the nan-
otube parameters. The thinner line represents the dependence for
k = 10% cm™1, thick line - for k = 106 cm™'.

~
2

~
w IR,

20

10 %, 10% em-!

Figure 6: Relation of critical current for a nanotube to a critical cur-
rent for a nanodisc for typical nanosystem parameters.

Finally, let us analyze the difference between the crit-
ical current value for spin waves in the nanosystem in-
vestigated in the current paper (22) and for spin oscilla-
tions in a ferromagnetic nanodisc (24) investigated in [32].
The relation between these critical currents for similar cor-
responding parameters of the nanosystems can be writ-
ten (after considering difference in expressions for internal
magnetic field) as follows:

Jer _ ak? +ﬁ +Hg)/MO
J& HY /M,

Let us make a graphical representation of that rela-
tion for a typical (given above) values of the parameters
of the ferromagnetic nanosystems. In this part of the anal-
ysis we cannot neglect the internal magnetic field as for
a disc the critical current corresponding to zero internal
magnetic field is also equal to zero. Let us choose a typi-
cal value Hg) = 103 Gs (see, e.g., [38]) for both cases (so
we can consider Hg) /Mg = 1). The resulting dependence

(26)
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of the relation J¢;/J% on the wavenumber is given on the
Fig. 6.

As we can see, the critical current for spin waves ex-
ceeds the critical current for spin oscillations. The cause
for that is absence of space dependence in the magnetiza-
tion density (and, therefore, the possibility to neglect the
exchange and anisotropy effects) for uniform oscillations
[32]. Even for the long waves (k ~ 102 cm™!), when the
exchange effects can be neglected, the critical current for
spin waves exceeds the critical current for spin oscillations
by approximately 2 times (for the given nanosystems pa-
rameters) because of the anisotropy effects.

8 Conclusions

In the paper, spin waves in a two-layer ferromagnetic nan-
otube with an elliptic cross-section in the presence of a
spin-polarized current are investigated. One of the nan-
otube layers is considered “free” in the sense of the mag-
netization orientation (and is composed of an “easy axis”
uniaxial ferromagnet), the other - “fixed”, and the spin-
polarized current passes through the “free” layer in the
direction orthogonal to its surface. For such nanotube, a
differential equation for the magnetic potential of the spin
wave in the magnetostatic approximation — with account
for the dipole-dipole magnetic interaction, anisotropy ef-
fects, dissipation effects, and the influence of the spin-
polarized current - is obtained. The equation is solved and
a relation between the wave frequency and two wavenum-
ber components is obtained. For a thin shell, a dispersion
relation for such spin waves is obtained.

For a one-layer ferromagnetic nanotube with an ellip-
tic cross-section (in the absence of the spin-polarized cur-
rent) the orthogonal wavenumber spectrum of such spin
waves is also obtained (in a non-explicit form).

The presence of the spin-polarized current can
strengthen or weaken the spin wave damping, creating
the “effective dissipation” (analogous to the effective dis-
sipation for a two-layer ferromagnetic film with a spin-
polarized current). The effective dissipation can be posi-
tive or negative (depending on the direction and the den-
sity of the current); for the negative dissipation, the spin
wave grows in amplitude with time, thus leading to a
spin wave generation. The condition for this generation is
found.
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