Open Phys. 2015; 13:210-217

DE GRUYTER OPEN

Research Article

Huichun Hua and Xiaohong Su*

Open Access

Unsteady MHD boundary layer flow and heat
transfer over the stretching sheets submerged in
a moving fluid with Ohmic heating and frictional

heating

DOI10.1515/phys-2015-0026
Received December 25, 2014; accepted March 27, 2015

Abstract: This paper is devoted to the analysis of the un-
steady magnetohydrodynamic (MHD) boundary layer flow
and heat transfer on a permeable stretching sheet embed-
ded in a moving incompressible viscous fluid. The com-
bined effects of Ohmic heating, thermal radiation, fric-
tional heating and internal heat absorption/generation
are taken into account. The governing time dependent
nonlinear boundary layer equations are converted into a
system of nonlinear ordinary differential equations by sim-
ilarity transformations. Some analytical results that give
the characteristics of the velocity field in the boundary
layer are presented and proved. The governing equations
are then solved by using the shooting technique along with
the fourth order Runge-Kutta method. The analytical prop-
erties proved in this paper are consistent with those ob-
tained by the numerical method. Furthermore, the effects
of the various parameters on the velocity and temperature
fields are presented graphically and discussed in detail.

Keywords: Boundary layer; heat transfer; ohmic heating;
analytical analysis
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1 Introduction

The study of momentum and heat transfer induced by a
continuous stretching heated sheet has gained tremen-
dous interest among researchers in recent years because
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of industrial and engineering applications, such as aero-
dynamic extrusion of plastic sheets and fibers, drawing,
annealing and thinning of copper wire, paper production,
crystal growing, glass blowing, and so on. The steady two-
dimensional flow over a stretching surface in a quiescent
fluid was first analyzed by Crane [1]. The pioneering work
of Crane was subsequently extended by many authors to
explore various aspects of the flow and heat transfer on a
steady stretching sheet and to obtain similarity solutions
[2-8]. Recently, some research has focused on the steady
MHD boundary layer flow and heat transfer of an electri-
cally conducting fluid over a stretching sheet [9-16].

It is worth mentioning that the above studies deal with
a steady flow. However, it is of great significance to include
unsteadiness into the governing equations of any problem
for the development of a more physically realistic charac-
terization of the flow configuration. Therefore, the study of
the unsteady flow and heat transfer phenomenon is very
interesting. The research related to the unsteady bound-
ary layer flow and heat transfer mainly focuses on the
boundary layer problem where the fluid passes through
an unmoving sheet or the sheet stretches in a quiescent
mainstream. The unsteady flow and heat transfer over the
stretching sheet submerged in a quiescent fluid were con-
sidered in some works in the literature [17-29]. The effects
of thermal radiation, internal absorption/generation and
frictional heating were respectively analyzed in the above
works. According to the the literature that we can find,
there are only a few results on unsteady boundary layer
problems in the case of a stretching sheet submerged in a
moving fluid. Moreover, it should be noted that there is a
lack of research on the analytical properties of the velocity
and temperature in boundary layers.

Motivated by the works mentioned above, we aim
here to present research on the unsteady MHD bound-
ary layer flow and heat transfer over the stretching sheets
submerged in a moving fluid in the presence of thermal
radiation, internal absorption/generation, Ohmic heating
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and frictional heating. The present paper is to extend the
research on the unsteady flow and heat transfer over a
stretching sheet in three directions (i) to present and prove
analytical properties of the dimensionless velocity, (ii) to
analyze the unsteady velocity and temperature boundary
layers over a stretching permeable sheet submerged in a
moving fluid, and (iii) to include the combined effects of
external magnetic field, Ohmic heating,frictional heating
and internal absorption/generation.

2 Mathematical formulation

VBL —_—

U, =ax(1-ct)™

Figure 1: Unsteady MHD boundary flow model and coordinate sys-
tem.

Consider an unsteady two-dimensional MHD bound-
ary layer flow and heat transfer over a continuous stretch-
ing permeable sheet embedded in a moving viscous, in-
compressible, electrically conducting fluid as shown in
Figure 1. The sheet is stretching with a velocity Uy = ax(1-
ct)"lin the positive direction, where a and ¢ are two con-
stants with dimension time™!. The free stream velocity far
away from the sheet is U = RUw. Here R > 0, a > 0, and
ct < 1. The fluid is under the influence of the magnetic
field B, which acts in the direction normal to the stretch-
ing sheet. The induced magnetic field is negligible, which
is valid under the assumption of small magnetic Reynolds
number. It is also assumed that the external electric field
is zero. Under these assumption along with the boundary
layer approximations, the basic unsteady boundary layer
equations governing for momentum and heat transfer in
the presence of Ohmic heating, thermal radiation, fric-
tional heating, and internal absorption/generation take
the following form:
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subject to the following boundary conditions
u=Uw,V:Vw, T:Twaty=0, (4)
U=Us, T=Teasy = oo, (5)

where u and v are respectively the velocity components
along x and y directions. Outside the boundary layer,
Eq.(2) gives ’71 P [yl 1 OV "B;UN . T'is the temper-
ature of the fluid inside the boundary layer, a is the ther-
mal conductivity, ¢, is the specific heat at constant pres-
sure, p is density of fluid, u is the fluid viscosity, v = u/p
is the kinematics viscosity of the fluid, ¢ is the time, Tw =
Teo+ax?(2v) 1 (1-ct)? is the temperature of the stretching
sheet, and T is the temperature of the fluid far away from
the stretching sheet. Vi = ~C(vUo)2x~1/2 represents the
mass transfer at the surface of the sheet with C < 0 for
injection and C > 0 for suction. Q = Qo(1 - ct)™! is the
heat generation when Qo > O or heat absorption when
Qo < 0, where Qq is a constant. The variable external mag-
netic field B is of the form B = By U&V/ 2(vx)"Y2. By using
the Rosseland approximation for radiation [21], the radia-
tive heat flux g is simplified as
4g" OT*

qr=_W67y’ (6)

where 0" and k" are respectively the Stefan-Boltzman con-
stant and the mean absorption coefficient. Assuming that
the temperature differences within the fluid in the bound-
ary layer are sufficiently small, we can express the term
T* as a linear function of temperature. Hence, by means
of expanding T* in a Taylor series about Te and neglect-
ing higher-order terms, we may obtain T* ~ 4T2,T - 3T=.
Then, Eq. (6) is expressed as
_ 16T,0" 0T

qr = T3k oy
In terms of Egs. (1)-(3), the following transformations are
introduced

n = UL w02y, d(x, y) = vxUw)?£(n)
T-Te
Tw - Too ’

@)

and 6(n) = 8
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where (x,y) is the stream function defined as u =
oY/dy = Uwf'(n) and v = —0p/dx = —(vUw)2x"V2f(n).
Then the continuity Eq.(1) are automatically satisfied. The
functions f' = u/Uw and 0 are the dimensionless veloc-
ity and temperature, respectively. Substituting Egs. (7)-(8)
into (2)-(5), we get

£+ _f’z —A(f' + gf/' -R)-M(f'-R) + R?= 0, (9)

Prii(1+Nno”’ + A-24)0 + Ec(f"* - R(R + A)f)

+EcM(f”? - Rf') - gne’ -20f'+f0' =0, (10)
with the following boundary conditions

fO)=C, f(0)=1, f'(eo) =R, (1)

0(0) =1, 6(c0) = 0. 12

Here the prime indicates differentiation with respect to 7,
Pr = jcp/a is the Prandtl number, A = c/a is a param-
eter that measures the unsteadiness of the flow of fluids,
and Nr = 16k™a/(30"T2,) is the thermal radiation pa-
rameter, M = UB%(pv) is the magnetic parameter, Rey =
Uwx/v is the local Reynolds number, Re, = Uwal/? /v,
Ec = U%/(cp(Tw - Tw)) is the local Eckert number, and
A = QaReyx/(ucpRe?) is the dimensionless heat absorp-
tion/generation parameter. Further, A > 0 corresponds to
heat generation, A < 0O corresponds to heat absorption.

The skin friction coefficient C; and local Nusselt num-
ber Nuy at the sheet are respectively given by

Cr = 2Rex'f"(0), Nux = -Re;'/26/(0)

3 Analytical properties of
dimensionless velocity

In this section, analytical properties of the dimensionless
velocity f'(n) are to be presented and proved.

Lemma 3.1 f'(n) is not identically a constant which is not
equal to R on each subinterval of (0, +o0), and has the fol-
lowing characteristics (i) if R > 1, then1 < f' < Rin
(0, +o0); (i) if0 < R < 1,then R < f/ < 1in (0, +o0).

Proof. Suppose that there is an interval Qg in which f’ is
identically a constant which is not R, then we have f”/ = 0
in Qo. In terms of Eq.(9), when " (1) = 0, we have

") = F ) -RF () +R+A+M). (13)
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Eq.13 implies that f/(n) # 0 when n € Qo, which contra-
dicts f”/ = 0. This indicates that f'() can not be equal to
the constant ( except for R) in any subinterval of (0, +o0).

(i) Suppose the value of f'(n) is greater than R at
some points in (0, +oo). In view of the boundary conditions
f'(0) = 1, f'(+o0) = R, and the continuity of the function
f'(n), we can draw the conclusion that f' (1) must have a lo-
cal maximum value f’ (o), which is greater than R and sat-
isfies f”(no) = 0. Then Eq.(13) reveals /(o) > 0, which
contradicts the result that (o) is a local maximum value
of f'(n).

As the value of f'(n) is less than 1 at some points, the
function f’(n) should have a local minimum value point
11 such that f/(n71) is less than 1. Consequently, f”/(171) = 0
holds and then Eq.(13) shows f"/(171) < 0. This contradicts
that f'(n1) is a local minimum value of f'(r). Thus, it is
proved that f'(r) satisfies f'(n) = 1 when n € [0, +o0).
On the other hand, we can prove that f’(n) # 1 when
n € (0, +o0). Because f’ (1) is not identically equal to a con-
stant which does not equal R in any subinterval of (0, +o0),
when there is a point n; € (0, +o0) satisfying f'(n1) = 1,
n1 will be a minimum point of f'(r). However, that is con-
tradictory to f"/(n1) < 0. Hence f’'(n) satisfies f'(7) > 1 in
(0, +o0). Further the inequality 1 < f’ < R is established in
(0, +o0). The proof of case (ii) proceeds in a manner similar
to the above case (i). O

Lemma 3.2 If f'(ne) = R, then f”’(ne) = 0 and f'(n) = R
holds identically in (ne, +o0).

Proof. Lemma 3.1 gives that a point . € (0, +oo) satisfy-
ing f'(ne) = R must be a maximum point of f'(n) when
R > 1. Suppose there is another point 71 € (e, +o0) such
that f'(n1) < R holds. In view of the continuity of f'(n) and
the inequality f'(171) < f/(+oc) = R, the function f’(n) has
at least one local minimum value which is less than R in
(ne, +o0). Supposing that f'(1,) is a local minimum value
of /() in the interval (1¢, +o0), it is clear that f”/(17,) = 0
and f"’(n2) = 0 hold. However, according to Eq. (13), we
get the inequality f”/(n2) < 0 which leads to a contradic-
tion. In addition, Lemma 3.2 can also be proved for the case
0 < R < 1 with a proof similar to the above. O

Lemma 3.3 /(1) has no extreme value in (0, +o0) and sat-
isfies (i) f/(0) > 0 and f” = 0 in (0, +o0) when R > 1; (ii)
f’(0)<0andf” <0in (0, +o0) when O < R < 1.

Proof. We only prove that Lemma 3.3 holds when R > 1
because the proof of Lemma 3.3 when 0 < R < 1 is very
similar to that of the case R > 1. Firstly, supposing that
f'(n) has a local minimum value f’(17x) in (0, +oc), we im-
mediately get the inequalities f'(m) < Rand f"”(nm) < 0
from Lemma 3.1 and Eq.(13). However, it is contrary to the
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above supposition that f'(1) is a local minimum value.
Hence f'(17) has no local minimum value in (0, +o0). On the
other hand, if f’(n) has a local maximum value f’(17,) in
(0, +o0), due to the boundary conditions (11), there will be
a positive constant §; satisfying "' () < 0in (11, Ny +61).
At the same time, the boundary condition f/'(+e0) = R
and the inequality f'(ny) < R, which can be obtained
by Lemma 3.2, indicate that f”/(r) > 0 in a subinterval of
(nu + 81, +o0). Moreover, it is clear from Lemma 3.1 that
f"(n) = 0and f'(n) < R are incompatible in each subinter-
val of (0, +o0). Thus there are a positive constants §, and
apoint 11 € (17y + 82, +eo) such that f'(n1) = 0, f"(17) < 0
in (1, n1) and f/(n7) > 0in (171, 1 + 62) hold. As a result,
f'(n1) is alocal minimum value of the function f’ (1), which
yields a contradiction. It is thus established that f’(r) has
no extreme value in (0, +oo).

(i) The above conclusion, that f/(17) has no extreme
value in (0, +o0), combined with the condition f’(+e0) = R
reveal f/(0) > 0, so there is a point 17 such that f”/(n) > 0
holds in (0,10) when R > 1. If inequality f/(7) > 0
in (0, +o0) is not true, there will be another point n; €
(no, +oo) satisfying f”/(n1) < 0. Consequently, f”'() < 0
holds in a subinterval of (1, +oo). From Lemmas 3.1 and
3.2, the above results indicate that f'(17) have at least one
local maximum value, which also leads to a contradiction.
Hence we have f”() > 0 in (0, +o0) when R > 1. For
0 < R < 1, namely the case (ii), the proof is similar to that
of the case (i). O

Lemma 3.4 If f"'(r0) = 0, then f"’ (1) = 0 and f’(n0) = R.
If f"'(no) = 0, then f(no) = 0 and f'(no) = R.

Proof. Lemma 3.1 and 3.3 show that if there is a point o €
(0, +o0) satisfying f”/ (170) = 0, the f”(no) is respectively the
minimum value and the maximum value of f”(17) under
the cases of R > 1 and 0 < R < 1. Thus f"”'(no) = 0 imme-
diately follows from f”(1o) = 0. Then we obtain f'(10) = R
from Eq. (13). Next we will show that /(1) = 0 leads to
f" (o) = 0 and f'(no) = R. When, Eq. (9) gives

F90) = £ 010)(F (o) + 23t + M).

f"(no) will be a local minimum value of f”/(n) in (0, +oc)
when f” (o) > 0. That is because Eq.(14) insures f(170) >
0. However, the boundary condition f”(+e0) = 0 and the
continuity of f”(n) show that if f”/(n0) is a positive local
minimum value of f”(x), f”'(n) will have at least one lo-
cal maximum value f” (1) satisfying 1y € (10, +o0) and
f""(num) > 0, which contradicts f*)(r,) > 0. Similarly, it
is also can proved that f”(no) < 0 does not hold when
f"(no) = 0. As a result, f”(no) = 0 also follows from
f"(no) = 0. So, in conclusion, f"’(no) = 0 will lead to
f'(no) = R for ng € (0, +o0). O

(14)
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Theorem 3.1 The dimensionless velocity /(1) has the fol-
lowing characteristics: (i) for R > 1, (1) is convex, mono-
tonically increasing and bounded in (0, +o0); (ii) for 0 <
R < 1, f'(n) is concave, monotonically decreasing and
bounded in (0, +oo).

Proof. (i) Due to f/(0) > 0, which is obtained by Lemma
3.3, and the boundary condition f”'(+e0) = 0, there should
be a point 17; € (0, +oo) which satisfies f/(n1) < 0. Sup-
pose there is another point 17, € (0, +o0) satisfies f"/(r12) >
0. Without loss of generality, Let n; < 17, then there are at
least one point n3 € (11, 172) satisfying f"/(n3) = 0 which
leads to f'(3) = R from Lemma 3.4. In view of n, > 13
and Lemma 3.2, we have f"/(17,) = 0 which contradicts the
above assumption f"/(2) > 0. Hence, f"/(n) < 0 holds
in (0, +o0), which implies that f'(n) is convex in (0, +oo).
From Lemma 3.1 and 3.3, it is clear that f’(17) is monotoni-
cally increasing and bounded. In a similar manner to the
above, the theorem can also be proved in Case (ii), and
therefore holds in all cases. Now, the proof of the theorem
has been completed. O

4 Results and discussion

We also solved the BVP (9)-(12) numerically using the
fourth-order Runge-Kutta and shooting method offered in
the literature [13] for the various values of the parameters
such as the unsteadiness parameter A, suction /injection
parameter C, magnetic parameter M, velocity ratio param-
eter R, radiation parameter Nr, heat absorption /gener-
ation parameter A, local Eckert number Ec, and Prandtl
number Pr. The values of the local Nusselt number —8’(0)
presented by this method are compared with previously
published results for some simple cases. From the compar-
ison listed in Table 1, we note that the present results agree
well with those in Ref. [23], which verifies the accuracy of
the method used. The solutions obtained numerically are
graphically presented in Figures 2-15. From these figures,
it is found that the dimensionless velocity f’(1) obtained
by the numerical method is consistent with the analytical
properties proved in Theorem 3.1.

Figures 2 and 3 display the effects of the suction /in-
jection parameter C on the velocity and temperature pro-
files. The gradients of the fluid velocity and the tempera-
ture both are found to increase with increasing value of
C. The injection at the sheet surface increases the veloc-
ity and the thermal boundary layer thickness, and gives
rise to decreasing the velocity and temperature gradients.
By contrast, the suction at the sheet surface produces the
opposite effect on the boundary layer.
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A=1.2, M=1.0, Nr=1.0,

0.9 R=0.5, Pr=1.0, Ec=0.01, A=-1.0
—~ 0.8
E
=

07 C=-15,-0.5,0,0.5,2

0.6

0.5

0 1 2 3 4
n

Figure 2: Velocity distribution against n for various
values of C.

12 M=1.0, C=0.5, Nr=1.0,
R=2.0, Pr=1.0, Ec=0.01, A=-1.0

Figure 4: Velocity distribution against n for various
values of A.

Table 1: Comparison of values of -6’(0) forM = 0,R = 0,C = O,
N=0,A=0andA=-1.

Pr Ec Present results  Ref. [23]

3 0 -3.082164 -3.082174
3 0.02 -3.069175 -3.069188
4 0 -3.585180 -3.585191
4 0.02 -3.569325 -3.569339
5 0 -4.028431 -4.028530
5 0.02 -4.010079 -4.010089

In Figures 4 and 5, the velocity and temperature pro-
files are shown for different values of the unsteadiness pa-
rameter A. It is seen that an increase in A leads to an in-
crease of the gradient of the velocity and a decrease of the
velocity boundary layer thickness. From Figure 5, it is ob-
served that the increase of A has the tendency to reduce the
thermal boundary layer thickness which results in reduc-
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A=1.2, M=1.0, Nr=1.0,
0.8 R=0.5, Pr=1.0, Ec=0.01, A=-1.0 1
—~0.6
E
e
0.4 C=-15,-0.5,0,0.5,2
0.2
0 i "
0 1 2 3 4
n

Figure 3: Temperature distribution against n for vari-
ous values of C.

M=1.0, C=0.5, Nr=1.0,
R=2.0, Pr=1.0, Ec=0.01, A=-1.0

A=0,5,15,30

Figure 5: Temperature distribution against n for vari-
ous values of A.

tion in the gradient of temperature in the thermal bound-
ary layer.

Figures 6 and 7 show the influences of the magnetic
parameter M on the velocity and temperature profiles in
the two cases 0 < R < 1 and R > 1. An increase in the mag-
netic parameter M is to decrease the momentum bound-
ary layer thickness and to increase the velocity gradient
in the boundary layer when O < R < 1 or R > 1. Figure
7 indicates the Ohmic heating due to the electromagnetic
work increases the thermal boundary layer thickness and
reduces the temperature gradient at the sheet surface with
the increasing of the magnetic parameter M when R < 1.
In addition, the opposite effects on the heat transfer are
observed when M increases in the case R > 1.

Figures 8 and 9 illustrate the effects of the velocity ra-
tio parameter R on the velocity and temperature. It can
be observed that with increasing values of R, the fluid ve-
locity decreases when R € [0, 1), however, have an op-
posite trend in the case R > 1. Figure 9 shows that the
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A=1.2, C=0.5, Nr=1.0,
Pr=1.0, Ec=0.01, A=-1.0

= M =0,5,10,20
= R=20

M=0,5,10,20
R=05

0 0.5 1 1.5 2 2.5

Figure 6: Velocity distribution against 1 for various
values of M and R.

1

A=1.2, C=0.5, Nr=1.0,
0.8 Pr=1.0, Ec=0.01, A=-1.0
—~ 0.6
E
5 , .
04 M =0, 25,100
R=05
0.2 M =100, 25,0
R=20
0
0 0.5 1 1.5 2 2.5 3 3.5

Figure 7: Temperature distribution against n for vari-
ous values of M and R.

temperature decreases with increasing values of R in both
Rc[0,1)and R > 1 cases.

Figures 10-13 aim to explore the effects of the radia-
tion parameter Nr, local Eckert number Ec, Prandtl num-
ber Pr, and heat absorption/generation A on the temper-
ature boundary layer, respectively. These four figures ex-
hibit that an increase in the radiation parameter Nr, heat
Eckert number Ec, or in the absorption/generation param-
eter A leads to a reduction in the temperature gradient at
the sheet, while the opposite effect is found for the Prandtl
number Pr.

Figures 14-15 show that the variations of the parame-
ters M and R bring essential effects on the wall shear stress
f(0) and the local Nusselt number, in terms of —-8'(0). It is
seen from Figure 14 that when R > 1 the wall shear stress
f"(0) increases with the increase of M, but when R < 1,
f'(0) decreases with the increase of M. Figure 15 reveals
that the local Nusselt number —6’(0) decreases with the
increase in the magnetic parameter M. In addition, it is
found that an increase in the velocity ratio parameter R
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25 A=1.2, M=1.0, C=0.5,
Nr=1.0, Pr=1.0, Ec=0.01, A=-1.0

R=13,1.6,2.0
R=0.6,0.3,0

Figure 8: Velocity distribution against n for various
values of R.

1

A=1.2, M=1.0, C=0.5,

0.8 Nr=1.0, Pr=1.0, Ec=0.01, A=-1.0

06
E
>
0.4
R=0,0.3,0.6,1.3, 1.6
0.2
) .
0 | 2 4 5 6

Iw

Figure 9: Temperature distribution against n for vari-
ous values of R.

leads to the increase of the wall shear stress f”/(0) and the
reduction of the local Nusselt number -6’ (0).

5 Conclusions

In this study, we have examined the effects of Ohmic heat-
ing , thermal radiation, frictional heating and internal
absorption/generation on unsteady MHD boundary layer
flow and heat transfer over a continuous stretching per-
meable sheet in a moving viscous, incompressible, electri-
cally conducting fluid. A theorem on the analytical proper-
ties of the dimensionless velocity has been presented and
proved. Then the similarity equations are solved by the
fourth-order Runge-Kutta with shooting method. The di-
mensionless velocity obtained by the numerical method is
consistent with the analytical properties prensented and
proved in this paper. The effects of all the various parame-
ters that appear in the governing equations on the temper-
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A=1.2, M=1.0, C=0.5,

0.8 Pr=1.0, Ec=0.01, R=0.5, A=-1.0
0.6
E
>
04 Nr=2,1.5,1.0,0.5,0
0.2
0
0 1 2 3
n

Figure 10: Temperature distribution against n for
various values of Nr.

A=1.2, M=1.0, C=0.5,
0.8 Nr=2.0, Ec=0.5, R=0, 1=-1.0
0.6
=
>
0.4
Pr=1,5,10
0.2
0
0 1 2 3 4 5
n

Figure 12: Temperature distribution against n for
various values of Pr.

A=1.2, C=0.5, Ec=0.01, Pr=1, Nr=1, A=-1

0 5 10 15 20 25
M

Figure 14: Variations of f/(0) with M for various val-

ues of R.
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A=1.2, M=1.0, C=0.5,
0.8 Nr=2.0, Pr=1.0, R=0, A=-1.0

Figure 11: Temperature distribution against n for
various values of Ec.

A=1.2, M=1.0, C=0.5,
0.8 Nr=2.0, Pr=5.0, R=0.5, Ec=0.01
__06
=
S
0.4
A=21,0,—1,-2
0.2
0 - . -
0 0.5 1 1.5 2 2.5 3
n

Figure 13: Temperature distribution against n for
various values of A.

A=1.2, C=0.5, Ec=0.01, Pr=1, Nr=1, A=-1

5 10 15 20 25 30
M

Figure 15: Variations of —6’(0) with M for various
values of R.

ature field and velocity field in the momentum and thermal ~Acknowledgement: This work is supported by the Fun-
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