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Abstract: This paper is devoted to the analysis of the un-
steadymagnetohydrodynamic (MHD) boundary layer flow
and heat transfer on a permeable stretching sheet embed-
ded in a moving incompressible viscous fluid. The com-
bined effects of Ohmic heating, thermal radiation, fric-
tional heating and internal heat absorption/generation
are taken into account. The governing time dependent
nonlinear boundary layer equations are converted into a
systemofnonlinear ordinarydifferential equationsby sim-
ilarity transformations. Some analytical results that give
the characteristics of the velocity field in the boundary
layer are presented and proved. The governing equations
are then solvedbyusing the shooting technique alongwith
the fourth order Runge-Kuttamethod. The analytical prop-
erties proved in this paper are consistent with those ob-
tained by the numerical method. Furthermore, the effects
of the various parameters on the velocity and temperature
fields are presented graphically and discussed in detail.

Keywords: Boundary layer; heat transfer; ohmic heating;
analytical analysis
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1 Introduction
The study of momentum and heat transfer induced by a
continuous stretching heated sheet has gained tremen-
dous interest among researchers in recent years because
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of industrial and engineering applications, such as aero-
dynamic extrusion of plastic sheets and fibers, drawing,
annealing and thinning of copper wire, paper production,
crystal growing, glass blowing, and so on. The steady two-
dimensional flow over a stretching surface in a quiescent
fluid was first analyzed by Crane [1]. The pioneering work
of Crane was subsequently extended by many authors to
explore various aspects of the flow and heat transfer on a
steady stretching sheet and to obtain similarity solutions
[2–8]. Recently, some research has focused on the steady
MHD boundary layer flow and heat transfer of an electri-
cally conducting fluid over a stretching sheet [9–16].

It is worthmentioning that the above studies dealwith
a steady flow. However, it is of great significance to include
unsteadiness into the governing equations of any problem
for the development of a more physically realistic charac-
terization of the flow configuration. Therefore, the study of
the unsteady flow and heat transfer phenomenon is very
interesting. The research related to the unsteady bound-
ary layer flow and heat transfer mainly focuses on the
boundary layer problem where the fluid passes through
an unmoving sheet or the sheet stretches in a quiescent
mainstream. The unsteady flow and heat transfer over the
stretching sheet submerged in a quiescent fluid were con-
sidered in some works in the literature [17–29]. The effects
of thermal radiation, internal absorption/generation and
frictional heating were respectively analyzed in the above
works. According to the the literature that we can find,
there are only a few results on unsteady boundary layer
problems in the case of a stretching sheet submerged in a
moving fluid. Moreover, it should be noted that there is a
lack of research on the analytical properties of the velocity
and temperature in boundary layers.

Motivated by the works mentioned above, we aim
here to present research on the unsteady MHD bound-
ary layer flow and heat transfer over the stretching sheets
submerged in a moving fluid in the presence of thermal
radiation, internal absorption/generation, Ohmic heating
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and frictional heating. The present paper is to extend the
research on the unsteady flow and heat transfer over a
stretching sheet in three directions (i) to present and prove
analytical properties of the dimensionless velocity, (ii) to
analyze the unsteady velocity and temperature boundary
layers over a stretching permeable sheet submerged in a
moving fluid, and (iii) to include the combined effects of
external magnetic field, Ohmic heating,frictional heating
and internal absorption/generation.

2 Mathematical formulation

Figure 1: Unsteady MHD boundary flow model and coordinate sys-
tem.

Consider an unsteady two-dimensional MHD bound-
ary layer flow and heat transfer over a continuous stretch-
ing permeable sheet embedded in a moving viscous, in-
compressible, electrically conducting fluid as shown in
Figure 1. The sheet is stretchingwith a velocityUw = ax(1−
ct)−1 in the positive direction, where a and c are two con-
stants with dimension time−1. The free stream velocity far
away from the sheet is U∞ = RUw. Here R ≥ 0, a > 0, and
ct < 1. The fluid is under the influence of the magnetic
field B, which acts in the direction normal to the stretch-
ing sheet. The induced magnetic field is negligible, which
is valid under the assumption of small magnetic Reynolds
number. It is also assumed that the external electric field
is zero. Under these assumption along with the boundary
layer approximations, the basic unsteady boundary layer
equations governing for momentum and heat transfer in
the presence of Ohmic heating, thermal radiation, fric-
tional heating, and internal absorption/generation take
the following form:

∂u
∂x + ∂v∂y = 0, (1)

∂u
∂t + u

∂u
∂x + v ∂u∂y = −1ρ

∂p
∂x + ν ∂

2u
∂y2 −

σB2
ρ u, (2)

ρcp
(︂
∂T
∂t + u

∂T
∂x + v ∂T∂y

)︂
=

u ∂p∂x + α ∂
2T
∂y2 −

∂qr
∂y + Q(T − T∞) + µ

(︂
∂u
∂y

)︂2
+ σB2u2

(3)

subject to the following boundary conditions

u = Uw, v = Vw, T = Tw at y = 0, (4)

u = U∞, T = T∞ as y = ∞, (5)

where u and v are respectively the velocity components
along x and y directions. Outside the boundary layer,
Eq.(2) gives −1ρ

∂p
∂x = U∞

∂U∞
∂x + ∂U∞

∂t + σB2U∞
ρ . T is the temper-

ature of the fluid inside the boundary layer, α is the ther-
mal conductivity, cp is the specific heat at constant pres-
sure, ρ is density of fluid, µ is the fluid viscosity, ν = µ/ρ
is the kinematics viscosity of the fluid, t is the time, Tw =
T∞+ax2(2ν)−1(1−ct)−2 is the temperature of the stretching
sheet, and T∞ is the temperature of the fluid far away from
the stretching sheet. Vw = −C(νU∞)1/2x−1/2 represents the
mass transfer at the surface of the sheet with C < 0 for
injection and C > 0 for suction. Q = Q0(1 − ct)−1 is the
heat generation when Q0 > 0 or heat absorption when
Q0 < 0, where Q0 is a constant. The variable external mag-
netic field B is of the form B = B0U1/2

w (νx)−1/2. By using
the Rosseland approximation for radiation [21], the radia-
tive heat flux qr is simplified as

qr = −
4σ*
3k*

∂T4
∂y , (6)

where σ* and k* are respectively the Stefan-Boltzman con-
stant and the mean absorption coefficient. Assuming that
the temperature differences within the fluid in the bound-
ary layer are sufficiently small, we can express the term
T4 as a linear function of temperature. Hence, by means
of expanding T4 in a Taylor series about T∞ and neglect-
ing higher-order terms, we may obtain T4 ≈ 4T3∞T − 3T4∞.
Then, Eq. (6) is expressed as

qr = −
16T3∞σ*
3k*

∂T
∂y . (7)

In terms of Eqs. (1)-(3), the following transformations are
introduced

η = U1/2
w (νx)−1/2y, ψ(x, y) = (νxUw)1/2f (η)

and θ(η) = T − T∞
Tw − T∞

, (8)
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where ψ(x, y) is the stream function defined as u =
∂ψ/∂y = Uwf ′(η) and v = −∂ψ/∂x = −(νUw)1/2x−1/2f (η).
Then the continuity Eq.(1) are automatically satisfied. The
functions f ′ = u/Uw and θ are the dimensionless veloc-
ity and temperature, respectively. Substituting Eqs. (7)-(8)
into (2)-(5), we get

f ′′′ + � ′′ − f ′2 − A(f ′ + η2 f
′′ − R) −M(f ′ − R) + R2 = 0, (9)

Pr−1(1 + Nr)θ′′ + (λ − 2A)θ + Ec(f ′′2 − R(R + A)f ′)

+ EcM(f ′2 − Rf ′) − A2 ηθ
′ − 2θf ′ + fθ′ = 0, (10)

with the following boundary conditions

f (0) = C, f ′(0) = 1, f ′(∞) = R, (11)

θ(0) = 1, θ(∞) = 0. (12)

Here the prime indicates differentiation with respect to η,
Pr = µcp/α is the Prandtl number, A = c/a is a param-
eter that measures the unsteadiness of the flow of fluids,
and Nr = 16k*α/(3σ*T3∞) is the thermal radiation pa-
rameter, M = σB20(ρν) is the magnetic parameter, Rex =
Uwx/ν is the local Reynolds number, Reα = Uwα1/2/ν,
Ec = U2

w/(cp(Tw − T∞)) is the local Eckert number, and
λ = QαRex/(µcpRe2α) is the dimensionless heat absorp-
tion/generation parameter. Further, λ > 0 corresponds to
heat generation, λ < 0 corresponds to heat absorption.

The skin friction coefficient Cf and local Nusselt num-
ber Nux at the sheet are respectively given by

Cf = 2Re−1/2x f ′′(0), Nux = −Re−1/2x θ′(0)

.

3 Analytical properties of
dimensionless velocity

In this section, analytical properties of the dimensionless
velocity f ′(η) are to be presented and proved.
Lemma 3.1 f ′(η) is not identically a constant which is not
equal to R on each subinterval of (0, +∞), and has the fol-
lowing characteristics (i) if R > 1, then 1 < f ′ ≤ R in
(0, +∞); (ii) if 0 ≤ R < 1, then R ≤ f ′ < 1 in (0, +∞).

Proof. Suppose that there is an interval Ω0 in which f ′ is
identically a constant which is not R, then we have f ′′ ≡ 0
in Ω0. In terms of Eq.(9), when f ′′(η) = 0, we have

f ′′′(η) = (f ′(η) − R)(f ′(η) + R + A +M). (13)

Eq.13 implies that f ′′′(η) ≠ 0 when η ∈ Ω0, which contra-
dicts f ′′ ≡ 0. This indicates that f ′(η) can not be equal to
the constant ( except for R) in any subinterval of (0, +∞).

(i) Suppose the value of f ′(η) is greater than R at
somepoints in (0, +∞). In viewof the boundary conditions
f ′(0) = 1, f ′(+∞) = R, and the continuity of the function
f ′(η), we candraw the conclusion that f ′(η)must have a lo-
calmaximumvalue f ′(η0), which is greater than R and sat-
isfies f ′′(η0) = 0. Then Eq.(13) reveals f ′′′(η0) > 0, which
contradicts the result that f ′(η0) is a local maximum value
of f ′(η).

As the value of f ′(η) is less than 1 at some points, the
function f ′(η) should have a local minimum value point
η1 such that f ′(η1) is less than 1. Consequently, f ′′(η1) = 0
holds and then Eq.(13) shows f ′′′(η1) < 0. This contradicts
that f ′(η1) is a local minimum value of f ′(η). Thus, it is
proved that f ′(η) satisfies f ′(η) ≥ 1 when η ∈ [0, +∞).
On the other hand, we can prove that f ′(η) ≠ 1 when
η ∈ (0, +∞). Because f ′(η) is not identically equal to a con-
stantwhich does not equal R in any subinterval of (0, +∞),
when there is a point η1 ∈ (0, +∞) satisfying f ′(η1) = 1,
η1 will be a minimum point of f ′(η). However, that is con-
tradictory to f ′′′(η1) < 0. Hence f ′(η) satisfies f ′(η) > 1 in
(0, +∞). Further the inequality 1 < f ′ ≤ R is established in
(0, +∞). The proof of case (ii) proceeds in amanner similar
to the above case (i).

Lemma 3.2 If f ′(ηe) = R, then f ′′(ηe) = 0 and f ′(η) = R
holds identically in (ηe , +∞).

Proof. Lemma 3.1 gives that a point ηe ∈ (0, +∞) satisfy-
ing f ′(ηe) = R must be a maximum point of f ′(η) when
R > 1. Suppose there is another point η1 ∈ (ηe , +∞) such
that f ′(η1) < R holds. In view of the continuity of f ′(η) and
the inequality f ′(η1) < f ′(+∞) = R, the function f ′(η) has
at least one local minimum value which is less than R in
(ηe , +∞). Supposing that f ′(η2) is a local minimum value
of f ′(η) in the interval (ηe , +∞), it is clear that f ′′(η2) = 0
and f ′′′(η2) ≥ 0 hold. However, according to Eq. (13), we
get the inequality f ′′′(η2) < 0 which leads to a contradic-
tion. In addition, Lemma3.2 canalso beproved for the case
0 ≤ R < 1 with a proof similar to the above.

Lemma 3.3 f ′(η) has no extreme value in (0, +∞) and sat-
isfies (i) f ′′(0) > 0 and f ′′ ≥ 0 in (0, +∞) when R > 1; (ii)
f ′′(0) < 0 and f ′′ ≤ 0 in (0, +∞) when 0 ≤ R < 1.

Proof. We only prove that Lemma 3.3 holds when R > 1
because the proof of Lemma 3.3 when 0 ≤ R < 1 is very
similar to that of the case R > 1. Firstly, supposing that
f ′(η) has a local minimum value f ′(ηm) in (0, +∞), we im-
mediately get the inequalities f ′(ηm) < R and f ′′′(ηm) < 0
from Lemma 3.1 and Eq.(13). However, it is contrary to the
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above supposition that f ′(ηm) is a local minimum value.
Hence f ′(η) has no localminimumvalue in (0, +∞). On the
other hand, if f ′(η) has a local maximum value f ′(ηM) in
(0, +∞), due to the boundary conditions (11), there will be
a positive constant δ1 satisfying f ′′(η) < 0 in (ηM , ηM +δ1).
At the same time, the boundary condition f ′(+∞) = R
and the inequality f ′(ηM) < R, which can be obtained
by Lemma 3.2, indicate that f ′′(η) > 0 in a subinterval of
(ηM + δ1, +∞). Moreover, it is clear from Lemma 3.1 that
f ′′(η) ≡ 0 and f ′(η) < R are incompatible in each subinter-
val of (0, +∞). Thus there are a positive constants δ2 and
a point η1 ∈ (ηM + δ2, +∞) such that f ′(η1) = 0, f ′′(η) < 0
in (ηM , η1) and f ′′(η) > 0 in (η1, η1 + δ2) hold. As a result,
f ′(η1) is a localminimumvalueof the function f ′(η),which
yields a contradiction. It is thus established that f ′(η) has
no extreme value in (0, +∞).

(i) The above conclusion, that f ′(η) has no extreme
value in (0, +∞), combined with the condition f ′(+∞) = R
reveal f ′′(0) > 0, so there is a point η0 such that f ′′(η) > 0
holds in (0, η0) when R > 1. If inequality f ′′(η) > 0
in (0, +∞) is not true, there will be another point η1 ∈
(η0, +∞) satisfying f ′′(η1) < 0. Consequently, f ′′(η) < 0
holds in a subinterval of (η0, +∞). From Lemmas 3.1 and
3.2, the above results indicate that f ′(η) have at least one
local maximum value, which also leads to a contradiction.
Hence we have f ′′(η) > 0 in (0, +∞) when R > 1. For
0 ≤ R < 1, namely the case (ii), the proof is similar to that
of the case (i).

Lemma 3.4 If f ′′(η0) = 0, then f ′′′(η0) = 0 and f ′(η0) = R.
If f ′′′(η0) = 0, then f ′′(η0) = 0 and f ′(η0) = R.

Proof. Lemma 3.1 and 3.3 show that if there is a point η0 ∈
(0, +∞) satisfying f ′′(η0) = 0, the f ′′(η0) is respectively the
minimum value and the maximum value of f ′′(η) under
the cases of R > 1 and 0 ≤ R < 1. Thus f ′′′(η0) = 0 imme-
diately follows from f ′′(η0) = 0. Then we obtain f ′(η0) = R
from Eq. (13). Next we will show that f ′′′(η0) = 0 leads to
f ′′(η0) = 0 and f ′(η0) = R. When , Eq. (9) gives

f (4)(η0) = f ′′(η0)(f ′(η0) +
3A
2 +M). (14)

f ′′(η0) will be a local minimum value of f ′′(η) in (0, +∞)
when f ′′(η0) > 0. That is because Eq.(14) insures f (4)(η0) >
0. However, the boundary condition f ′′(+∞) = 0 and the
continuity of f ′′(η) show that if f ′′(η0) is a positive local
minimum value of f ′′(η), f ′′(η) will have at least one lo-
cal maximum value f ′′(ηM) satisfying ηM ∈ (η0, +∞) and
f ′′(ηM) > 0, which contradicts f (4)(ηM) > 0. Similarly, it
is also can proved that f ′′(η0) < 0 does not hold when
f ′′′(η0) = 0. As a result, f ′′(η0) = 0 also follows from
f ′′′(η0) = 0. So, in conclusion, f ′′′(η0) = 0 will lead to
f ′(η0) = R for η0 ∈ (0, +∞).

Theorem 3.1 The dimensionless velocity f ′(η) has the fol-
lowing characteristics: (i) for R > 1, f ′(η) is convex, mono-
tonically increasing and bounded in (0, +∞); (ii) for 0 ≤
R < 1, f ′(η) is concave, monotonically decreasing and
bounded in (0, +∞).

Proof. (i) Due to f ′′(0) > 0, which is obtained by Lemma
3.3, and the boundary condition f ′′(+∞) = 0, there should
be a point η1 ∈ (0, +∞) which satisfies f ′′′(η1) < 0. Sup-
pose there is another point η2 ∈ (0, +∞) satisfies f ′′′(η2) >
0. Without loss of generality, Let η1 < η2 then there are at
least one point η3 ∈ (η1, η2) satisfying f ′′′(η3) = 0 which
leads to f ′(η3) = R from Lemma 3.4. In view of η2 > η3
and Lemma 3.2, we have f ′′′(η2) = 0 which contradicts the
above assumption f ′′′(η2) > 0. Hence, f ′′′(η) ≤ 0 holds
in (0, +∞), which implies that f ′(η) is convex in (0, +∞).
From Lemma 3.1 and 3.3, it is clear that f ′(η) is monotoni-
cally increasing and bounded. In a similar manner to the
above, the theorem can also be proved in Case (ii), and
therefore holds in all cases. Now, the proof of the theorem
has been completed.

4 Results and discussion
We also solved the BVP (9)-(12) numerically using the
fourth-order Runge-Kutta and shooting method offered in
the literature [13] for the various values of the parameters
such as the unsteadiness parameter A, suction /injection
parameter C, magnetic parameterM, velocity ratio param-
eter R, radiation parameter Nr, heat absorption /gener-
ation parameter λ, local Eckert number Ec, and Prandtl
number Pr. The values of the local Nusselt number −θ′(0)
presented by this method are compared with previously
published results for some simple cases. From the compar-
ison listed in Table 1, we note that the present results agree
well with those in Ref. [23], which verifies the accuracy of
the method used. The solutions obtained numerically are
graphically presented in Figures 2–15. From these figures,
it is found that the dimensionless velocity f ′(η) obtained
by the numerical method is consistent with the analytical
properties proved in Theorem 3.1.

Figures 2 and 3 display the effects of the suction /in-
jection parameter C on the velocity and temperature pro-
files. The gradients of the fluid velocity and the tempera-
ture both are found to increase with increasing value of
C. The injection at the sheet surface increases the veloc-
ity and the thermal boundary layer thickness, and gives
rise to decreasing the velocity and temperature gradients.
By contrast, the suction at the sheet surface produces the
opposite effect on the boundary layer.
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Figure 2: Velocity distribution against η for various
values of C.

Figure 3: Temperature distribution against η for vari-
ous values of C.

Figure 4: Velocity distribution against η for various
values of A.

Figure 5: Temperature distribution against η for vari-
ous values of A.

Table 1: Comparison of values of −θ′(0) for M = 0, R = 0, C = 0,
N = 0, A = 0 and λ = −1.

Pr Ec Present results Ref. [23]
3 0 −3.082164 −3.082174
3 0.02 −3.069175 −3.069188
4 0 −3.585180 −3.585191
4 0.02 −3.569325 −3.569339
5 0 −4.028431 −4.028530
5 0.02 −4.010079 −4.010089

In Figures 4 and 5, the velocity and temperature pro-
files are shown for different values of the unsteadiness pa-
rameter A. It is seen that an increase in A leads to an in-
crease of the gradient of the velocity and a decrease of the
velocity boundary layer thickness. From Figure 5, it is ob-
served that the increase ofA has the tendency to reduce the
thermal boundary layer thickness which results in reduc-

tion in the gradient of temperature in the thermal bound-
ary layer.

Figures 6 and 7 show the influences of the magnetic
parameter M on the velocity and temperature profiles in
the two cases 0 < R < 1 and R > 1. An increase in the mag-
netic parameter M is to decrease the momentum bound-
ary layer thickness and to increase the velocity gradient
in the boundary layer when 0 < R < 1 or R > 1. Figure
7 indicates the Ohmic heating due to the electromagnetic
work increases the thermal boundary layer thickness and
reduces the temperature gradient at the sheet surface with
the increasing of the magnetic parameter M when R < 1.
In addition, the opposite effects on the heat transfer are
observed when M increases in the case R > 1.

Figures 8 and 9 illustrate the effects of the velocity ra-
tio parameter R on the velocity and temperature. It can
be observed that with increasing values of R, the fluid ve-
locity decreases when R ∈ [0, 1), however, have an op-
posite trend in the case R > 1. Figure 9 shows that the
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Figure 6: Velocity distribution against η for various
values of M and R.

Figure 7: Temperature distribution against η for vari-
ous values of M and R.

temperature decreases with increasing values of R in both
R ∈ [0, 1) and R > 1 cases.

Figures 10–13 aim to explore the effects of the radia-
tion parameter Nr, local Eckert number Ec, Prandtl num-
ber Pr, and heat absorption/generation λ on the temper-
ature boundary layer, respectively. These four figures ex-
hibit that an increase in the radiation parameter Nr, heat
Eckert number Ec, or in the absorption/generation param-
eter λ leads to a reduction in the temperature gradient at
the sheet, while the opposite effect is found for the Prandtl
number Pr.

Figures 14–15 show that the variations of the parame-
tersM and R bring essential effects on thewall shear stress
f ′′(0) and the local Nusselt number, in terms of −θ′(0). It is
seen from Figure 14 that when R > 1 the wall shear stress
f ′′(0) increases with the increase of M, but when R < 1,
f ′′(0) decreases with the increase of M. Figure 15 reveals
that the local Nusselt number −θ′(0) decreases with the
increase in the magnetic parameter M. In addition, it is
found that an increase in the velocity ratio parameter R

Figure 8: Velocity distribution against η for various
values of R.

Figure 9: Temperature distribution against η for vari-
ous values of R.

leads to the increase of the wall shear stress f ′′(0) and the
reduction of the local Nusselt number −θ′(0).

5 Conclusions
In this study, we have examined the effects of Ohmic heat-
ing , thermal radiation, frictional heating and internal
absorption/generation on unsteady MHD boundary layer
flow and heat transfer over a continuous stretching per-
meable sheet in amoving viscous, incompressible, electri-
cally conducting fluid. A theoremon the analytical proper-
ties of the dimensionless velocity has been presented and
proved. Then the similarity equations are solved by the
fourth-order Runge-Kutta with shooting method. The di-
mensionless velocity obtained by the numerical method is
consistent with the analytical properties prensented and
proved in this paper. The effects of all the various parame-
ters that appear in the governing equations on the temper-
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Figure 10: Temperature distribution against η for
various values of Nr.

Figure 11: Temperature distribution against η for
various values of Ec.

Figure 12: Temperature distribution against η for
various values of Pr.

Figure 13: Temperature distribution against η for
various values of λ.

Figure 14: Variations of f ′′(0) with M for various val-
ues of R.

Figure 15: Variations of −θ′(0) with M for various
values of R.

aturefield andvelocity field in themomentumand thermal
boundary layers are revealed.
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