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Abstract:We investigate the e�ects of phase shift on entan-
glement, quantum discord, geometric discord, and spin-
squeezing of a Heisenberg chain under dephasing. An an-
alytical solution of the present model is obtained. Our re-
sults show that the initial correlations of the spin chain
could be partially stored for a long time in the presence
of dephasing and the amount of steady state correlations
can be adjusted via phase shift. Particularly, we �nd the
e�ects of phase shift on quantum discord and geomet-
ric discord are not always the same, i.e., the increase of
geometric discord does not always imply the increase of
quantum discord. Then, we calculate the spin-squeezing
of the spin chain and �nd that spin-squeezing �rst in-
creases with time and then reaches a plateau. The amount
of spin-squeezing can be controlled via phase shift.
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1 Introduction
Entanglement plays a fundamental role in quantum infor-
mation processing and quantum computation [1–4]. How-
ever, it is not the only kind of quantum correlation use-
ful for quantum information processing [5–9]. It has been
pointed out that some tasks can be sped up over their
classical counterparts using fully separable and highly
mixed states, i.e., states with no entanglement but have
nonzero quantum discord [10–16]. Quantum discord is an-
other kind of quantum correlation di�erent from entan-
glement. Up to now, there are two kinds of quantum dis-
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cord:measurement-based discord and distance-based dis-
cord [8]. The original de�nition of quantumdiscord [17, 18]
is a typical measurement-based discord. This kind of dis-
cord is based on the observation that a local measure-
ment performed upon a subsystem of a multipartite sys-
tem with quantum correlations will inevitably disturb the
whole system. Thus, it is impossible to obtain all infor-
mation contained in a subsystem by performing only lo-
cal measurements. The second kind of discord (distance-
based discord) is usually de�ned as the minimal distance
between a given quantum state and all stateswith zero dis-
cord. Similar to the geometric measures of entanglement,
the square norm in the Hilbert-Schmidt space is adopted
as a measure of distance between two states [19]. In this
context, this kind of measure is also called the geometric
discord. For arbitrary two-qubit systems, an analytical ex-
pression is obtained [19].

On the other hand, a quantum system is inevitably
in�uenced by its surrounding environment [20]. In order
to implement quantum information processing, one has
to generate and transmit quantum correlations from one
place to another in the presence of decoherence [2]. It is the
building block of many quantum communication proto-
cols such as quantum teleportation [21] and quantum key
distribution [22]. Quantum correlations transfer can be ac-
complished using several quantum systems such as spin
chains [23], optical systems [24, 25], and trapped atoms
[26, 27]. Recently, the bipartite and multipartite correla-
tions of spin chain have been studied by several authors
[28–32]. The scaling of quantum discord in spin models
was studied analytically and it was pointed out that at
�nite temperature the block scaling of quantum discord
satis�es an area law for any two-local Hamiltonian [29].
The multipartite correlations such as multipartite entan-
glement and nonlocality in the quantum phase transition
of an in�nite XY chain was calculated by employing Bell-
type inequalities [30]. Also, the steady state correlations of
dissipative spin chain were investigated [31, 32].

In the present paper, we investigate the e�ects of
phase shift [33–35] on the dynamics of bipartite correla-
tions (measured by concurrence, discord, and geometric
discord) and multipartite correlations (measured by spin-
squeezing) of a spin chain under dephasing. We �rst de-
rive an analytical solution of themodel. Then,we calculate



E�ects of phase shift on bipartite and multipartite correlations of a spin chain under dephasing | 199

bipartite correlations of two spins. If there is no dephas-
ing, bipartite correlations oscillate with time. When the
dephasing is taken into accounted, the maximal amount
of bipartite correlations decreases with the increase of
dephasing rate. In particular, there are steady state bi-
partite correlations in the presence of dephasing. Our re-
sults show that the steady state bipartite correlations can
be adjusted via phase shift [33–35]. Finally, we study the
multipartite correlations measured by spin-squeezing of
the whole spin chain. The spin-squeezing �rst increases
with time and then reaches a plateau. The amount of
spin-squeezing can be controlled by phase shift. We also
discuss the in�uence of the number of spins on spin-
squeezing and �nd that the spin-squeezing increases with
the spin numbers.

The structure of thepaper is as follows. In section 2,we
brie�y review the N-site Heisenberg chain with phase shift
in the presence of dephasing and derive a analytical solu-
tion of themodel. In section 3, we review several measures
of bipartite and multipartite correlations including con-
currence, quantum discord, geometric discord, and spin-
squeezing. In section 4, we discuss the e�ects of phase
shift on the dynamics of bipartite and multipartite corre-
lations in the presence of dephasing. In section 5, some
conclusive remarks are given.

2 The model

2.1 Heisenberg chain with phase shift

The Hamiltonian of the N-site quantum Heisenberg chain
with nearest-neighbor coupling and phase shift is [33–35]:

H = J
2

N∑
i=1

(eiϕσ+i σ−i+1+e−iϕσ−i σ+i+1)+
J
4

N∑
i=1

(σzi σzi+1−1), (1)

where ϕ is the phase shift induced by the Aharonov-
Casher e�ect [34], J is the exchange interaction constant,
σxi , σ

y
i and σ

z
i are the Pauli matrices of the ith qubit, and

σ±i = 1
2 (σ

x
i ± iσ

y
i ) are the raising and lowering operators,

respectively. The chain is said to be antiferromagnetic for
J > 0 and ferromagnetic for J < 0. Here, we adopt the peri-
odic boundary condition, i.e., σN+1 = σ1.

We assume that the system is cooled to state |0̃〉 =
|00 · · · 0〉 with |0〉 denoting the spin down state and intro-
duce the class of states (one spin up):

|̃i〉 = |00 · · · 010 · · · 0〉 = σ+i |0̃〉. (2)

It is easy to see that any state |̃i〉 of this class obeys the fol-
lowing identity:

H |̃i〉 = J
2(e

iϕ|ĩ − 1〉 + e−iϕ|ĩ + 1〉) − J |̃i〉. (3)

Thus the eigenvectors of the class are given by:

|k〉′ = 1√
N

N∑
n=1

exp (inφk)|ñ〉, (4)

φk = 2πk/N, k = 1, 2, · · · , N,

with eigenvalues:

H|k〉′ = Ek|k〉′, Ek = J[cos (φk + ϕ) − 1]. (5)

2.2 Dephasing and solution

Now,we consider the dephasingmechanism. Based on the
assumption that on su�ciently short time steps, a quan-
tum system evolves in a stochastic sequence of identical
unitary transformations,Milburn proposed amaster equa-
tion to describe the e�ects of dephasing (intrinsic decoher-
ence) on the time evolution of the system (we set ~ = 1)
[36–39]:

dρ
dt = −i[H, ρ] −

γ

2[H, [H, ρ]], (6)

where γ is the dephasing rate. The quantum coherence
of the system is automatically destroyed as the quantum
system evolves and there is no dissipation of energy. The
above equation was used to study the time evolution of a
single trapped ion under phase �uctuations in the exciting
laser pulses [37]. When γ = 0 there is no phase decoher-
ence and the above equation reduces to the ordinary von
Neuman equation. The formal solution of themaster equa-
tion can be expressed as [38]:

ρ(t) =
∞∑
k=0

(γt)k 1k!M
k(t)ρ(0)M†k(t), (7)

where ρ(0) is the initial density operator and Mk(t) is de-
�ned by:

Mk(t) = Hk exp (−iHt) exp (−γt2 H2). (8)

We assume the qubit j is in the spin up state and the others
are in the spins down state |0〉⊗(N−1), so the initial state is:

|̃j〉 = σ+j |0̃〉 =
1√
N

N∑
k=1

e−ijφk |k〉′. (9)

Combing Equations (4)–(5) with Equations (7)–(9), we ob-
tain the following transformations:

|̃j〉〈̃j| −→
N∑
n=1

N∑
m=1

αnm(j, t)|ñ〉〈m̃|, (10)



200 | A.-X. Chen and J.-S. Zhang

|̃j〉〈0̃| −→
N∑
n=1

βn(j, t)|ñ〉〈0̃|, (11)

where:

αnm(j, t) = 1
N2

N∑
k,k′=1

exp
{
−γt2 (Ek − Ek′ )2

− i(Ek − Ek′ )t + i[(n − j)φk − (m − j)φk′ ]
}
,

βl(j, t) = 1
N

N∑
k=1

exp
[
−γt2 E

2
k − iEk t + i(l − j)φk

]
.

(12)

These transformations will be used in the next section.

3 Measures of bipartite and
multipartite correlations

Now, we brie�y review some measures of bipartite and
multipartite correlations for quantum systems includ-
ing concurrence, discord, geometric discord, and spin-
squeezing.

3.1 Measure of bipartite correlations:
concurrence

For a 2 × 2 system described by the density matrix ρ, con-
currence is a good measure of entanglement which is de-
�ned as [40]:

C = max{0, λ1 − λ2 − λ3 − λ4}, (13)

where λi(i = 1, 2, 3, 4) are the square roots of the eigenval-
ues in decreasing order of magnitude of the “spin-�ipped"
density matrix operator R = ρ(σy ⊗ σy)ρ*(σy ⊗ σy) and σy
is the Pauli Y matrix.

3.2 Measure of bipartite correlations:
quantum discord

Suppose the density matrix of a bipartite system is ρAB;
ρA = TrB(ρAB) and ρB = TrA(ρAB) are the reduced density
matrix of subsystem A and subsystem B. Then,we perform
a set of local projectivemeasurements (vonNeumannmea-
surements) {Π(j)

B } = {|jB〉〈jB|} on subsystem B. The state
related to the measurement Π(j)

B is [17, 18]:

ρAB|j =
1
pj

(
IA ⊗ Π(j)

B

)
ρAB

(
IA ⊗ Π(j)

B

)
, (14)

with IA being the identity matrix of subsystem A. Note
that we perform measurements on subsystem B only and
pj = Tr[(IA ⊗ Π(j)

B )ρAB(IA ⊗ Π(j)
B )] is the probability

of obtaining the outcome j. The conditional entropy is
S(ρAB|{Π(j)

B }) =
∑

j pjS(ρA|j), where ρA|j = TrB(ρAB|j) is
the reduced density matrix of subsystem A after measure-
ments and S(ρ) = −Tr(ρ log ρ) is the vonNeumann entropy
of density matrix ρ. Thus, the two expressions of quantum
mutual information are de�ned by [17, 18]:

I(ρAB) = S(ρA) + S(ρB) − S(ρA,B), (15)
J(ρAB) = S(ρA) − S(ρAB|{Π(j)

B }). (16)

The quantum discord is de�ned as [17, 18]:

D(ρAB) = I(ρAB) − max
ΠB
{J(ρAB)}, (17)

where the maximization is taken over all possible mea-
surements {Π(j)

B }. It is introduced to eliminate the depen-
dence of discord upon measurements. The �rst term is the
total correlations (quantum and classical correlations) of
the whole system. The second term of the above equation
states that all information can be obtained by performing
local measurements on subsystem B only. It is often re-
ferred to as the classical correlations [18]. From the above
discussion, we see that quantum discord is the di�erence
between the total correlations and classical correlations.

3.3 Measure of bipartite correlations:
geometric discord

Geometric discord or square norm-based discord is similar
to the geometric measure of entanglement and is de�ned
as [19]:

DG(ρ) = min
χ
||ρ − χ||2, (18)

where the minimum is taken over all possible classi-
cal states χ whose density matrix can be written as
p1|ψ1〉〈ψ1| ⊗ ρ1 + p2|ψ2〉〈ψ2| ⊗ ρ2 with p1 + p2 = 1.
|ψ1〉 and |ψ2〉 are two orthonormal basis of subsystem
A; ρ1 and ρ2 are two density matrices of subsystem
B; ||ρ − χ||2 = Tr(ρ − χ)2 is the square norm of Hilbert-
Schimidt space. For arbitrary two-qubit systems, an ana-
lytical expression of geometric discord is found [19]:

DG = 1
4(||
−→x||2 + ||T||2 − λmax), (19)
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where λmax is the maximal eigenvalues of matrix
Ω = −→x−→x t + TT t. Here, the superscript t stands for trans-
pose of a vector or matrix, −→x is a column vector with
||−→x||2 = x21 + x22 + x23, and T = (tij) is a 3×3matrix. Note that
xi = Tr[ρ(σi ⊗ IB)], yi = Tr[ρ(IB ⊗ σi)], tij = Tr[ρ(σi ⊗ σj)],
σi are three Pauli matrices.

3.4 Measure of multipartite correlations:
spin-squeezing

Here, we study multipartite quantum correlations using
spin squeezing introduced by Kitagawa andUeda [41]. The
main advantage of spin squeezing as a measure of multi-
partite correlations is that it is relatively easy to generate
andmeasure spin squeezing experimentally due to the fact
that spin-squeezing parameters only involve the �rst and
second moments of the collective angular momentum op-
erators. The spin squeezing is de�ned by [41, 42]:

ξ2s =
4(∆J⊥)2min

N , (20)

where N is the number of particles and the minimization
in the above equation is taken over all directions denoted
by ⊥, which are perpendicular to the mean spin direction
〈
−→
J 〉/|〈

−→
J 〉|. After some algebra, the spin squeezing can be

derived as [42]:

ξ2s = 2
N

[
〈(
−→
J 2−−−→n1 +

−→
J 2−−−→n2 )

−
√
〈(
−→
J 2−−−→n1
−
−→
J 2−−−→n2

)〉 + 4cov(
−→
J −−−→n1 ,

−→
J −−−→n2 )
]
,

−−→n1 = (− sinϕ, cosϕ, 0), −−→n2
= (cos θ cosϕ, cos θ sinϕ, − sin θ),

θ = arccos 〈Jz〉

|
−→
J |
,

cov(x, y) = 1
2(〈xy〉 + 〈yx〉) − 〈x〉〈y〉, (21)

with:

ϕ =


arccos 〈Jx〉

|−→J| sin θ
, 〈Jy〉 > 0,

2π − arccos 〈Jx〉

|−→J| sin θ
, 〈Jy〉 ≤ 0.

(22)

If ξ2s < 1, then we can conclude that there is multipartite
quantum correlations.

4 Dynamics of quantum
correlations

In this section, we consider the transmission of an entan-
gled state through dephasing channel. Let us investigate
the e�ect of the dephasing rate γ on this processing. The
entangled state to be transferred is stored in spin 0 and
spin 1 and the initial state of these two spins is of the form:

|ψ〉01 = (cos θ2 |0〉0|0〉1 + sin
θ
2 |1〉0|1〉1). (23)

Here, we assume that the spin 0 has no direct interaction
with the spin chain. If all other spins (from spin 2 to spin
N) are in spin down states (|0 · · · 0〉23...N〈0 · · · 0|), then the
initial state of the total system is:

ρ(0) = (|ψ〉01〈ψ|)⊗ (|0 · · · 0〉23...N〈0 · · · 0|)

= cos2 θ2 |0〉0〈0| ⊗ |0̃〉〈0̃| + sin
2 θ
2 |1〉0〈1| ⊗ |1̃〉〈1̃|

+ sin θ
2 (|1〉0〈0| ⊗ |1̃〉〈0̃| + h.c), (24)

where h.c stands for Hermitian conjugate, |1̃〉 = σ+1|0̃〉, and
|0̃〉 = |0...0〉 are the state of the spin chain (note that spin
0 doesn’t belong to the spin chain since it has no direct
interaction with other spins as we have assumed). Using
the above equation and Equation (12), we can obtain the
time evolution density matrix as follows:

ρ(t) = cos2 θ2 |0〉0〈0| ⊗ |0̃〉〈0̃| + sin
2 θ
2 |1〉0〈1|

⊗
N∑

n,m=1
αnm(1, t)|ñ〉〈m̃| +

sin θ
2

{
|1〉0〈0|

⊗
N∑
n=1

βn(1, t)|ñ〉〈0̃| + h.c
}
. (25)

The reduceddensitymatrix of spin0and spin j (denotedby
ρ0j(t)) can be obtained by tracing out the degrees of free-
dom of all other spins. Then, we can calculate the concur-
rence, quantum discord, and geometric discord of ρ0j(t)
using the results of the previous section. Here, we plot the
results of bipartite correlations as functions of time t.

Figure 1 is the schematic picture of the present model
with N = 6. Note that spin 0 has no direct interaction
with the spin chain formed by spins 1, 2, ..., 6. In Fig-
ure 2, we plot the concurrence, discord, and geometric
discord of spin 0 and spin 3 as functions of time t with
N = 6, J = 1, θ = π/2, ϕ = 0 for di�erent values of γ. In the
case of γ = 0, the bipartite correlations are periodic func-
tions of time. Now, we discuss the correlations propaga-
tion in the spin chain. The quantum correlations which
were initially stored in spin 0 and spin 1 will move around
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Figure 1: The schematic picture of the present model for the case of
N = 6. Note that spin 0 doesn’t interact with other spins directly.
Spin 0 and spin 1 are entangled initially.

0 20 40 60 80 100
0

0.5

1

C

0 20 40 60 80 100
0

0.5

1

D

0 20 40 60 80 100
0

0.1

0.2

t

D
G

 

 

Figure 2: The concurrence, quantum discord, and geometric dis-
cord of spin 0 and spin 3 are plotted as functions of time t with
N = 6, J = 1, θ = π/2, ϕ = 0 for γ = 0 (red lines), γ = 0.3 (green
lines), and γ = 1 (blue lines). We set ~ = 1 in this paper.
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Figure 3: The concurrence, quantum discord, and geometric discord
of spin 0 and spin 3 are plotted as functions of time t with N = 6, J =
1, θ = π/2, γ = 0.3 for ϕ = 0 (red lines), ϕ = π/5 (green lines), and
ϕ = 2π/5 (blue lines).

the spin chain as the system evolves. There are two paths
for spreading correlations as we have shown in Figure 1.
The �rst path is 1 → 2 → 3 → 4 → 5 → 6 → 1. The
second path is 1 → 6 → 5 → 4 → 3 → 2 → 1. The dy-
namics of quantum correlations of spin 0 and spin 3 are
determined by the correlations propagation along these
two paths. The numbers of spins between spin 0 and spin
3 are di�erent for the two paths. For instance, there are
two spins between spin 0 and spin 3 along path 1. How-
ever, there are four spins between spins 0 and 3 through
path 2. It takesmore time to spread correlations along path
1 → 6 → 5 → 4 → 3. The maximal values of correla-
tions in Figure 2 could be di�erent due to the geometric
forms of the spin chain and the propagation of quantum
correlations along the spin chain. If the dephasing is taken
into account, there are steady state correlations. The big-
ger the dephasing rate γ is, the quicker the bipartite cor-
relations reach their stationary values. However, the num-
ber of steady state correlations does not depend upon the
dephasing rate γ as one can see from Equation (12) in the
limit t → ∞.

In Figure 3, the concurrence, discord, and geometric
discord of spin 0 and spin 3 are plotted as functions of time
with N = 6, J = 1, θ = π/2, γ = 0.3 for di�erent values of
phase shift ϕ. From this �gure, we see the number of bi-
partite correlations can be controlled by the phase shift.
In particular, we �nd that the response of di�erent mea-
sures of bipartite correlations to phase shift could be dif-
ferent. For instance, if we increase ϕ from π/5 to 2π/5 at
t ≈ 2, the geometric discord DG decreases while the quan-
tum discord D increases. This result shows that the geo-
metric discord and quantum discord are qualitatively dif-
ferent as has been pointed out in [43]. The authors of [43]
have shown that the behaviors of the quantumdiscord and
geometric discord under decoherence could be di�erent,
i.e., a sudden change in the decay rate of the quantum dis-
cord does not always imply that of the geometric discord
and vice versa. Our results are consistent with that of [43].

The bipartite correlations as functions of time are plot-
ted in Figure 4. From this �gure, we see there are steady
state correlations in the presence of dephasing. The dy-
namics of quantum correlations depends on the energy
spectrum Ek = J[cos(φk+ϕ)−1] as one can see from Equa-
tions (12) and (25). If the eigenvalues are changed by ad-
justing the phase shift ϕ, then the number of steady state
correlations are changed as one can see from Figure 4.

Now,we turn to investigate the in�uence of phase shift
on the dynamics of the spin-squeezing of the whole spin
chain whose density matrix is given by Equation (25). In
Figure 5, we plot the spin-squeezing as functions of time
with J = 1, θ = π/2, γ = 1 for ϕ = π/6 (red lines),
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Figure 4: The concurrence, quantum discord, and geometric discord
of spin 0 and spin 3 are plotted as functions of time t with N = 6, J =
1, θ = π/2, γ = 0.3 for ϕ = 0 (red lines), ϕ = π/5 (green lines), and
ϕ = 2π/5 (blue lines).
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Figure 5: The spin-squeezing (denoted by ss) of the whole chain are
plotted as functions of time t with J = 1, θ = π/2, γ = 1 for ϕ = π/6
(red lines), ϕ = π/4 (green lines), and ϕ = π/3 (blue lines). Top to
bottom: (a) N = 3; (b) N = 4; (c) N = 5.

ϕ = π/4 (green lines), and ϕ = π/3 (blue lines). One
can �nd that for a given spin chain the spin-squeezing
can be decreased by increasing the phase shift by com-
paring the red, green, and blue lines of each panel. The
spin-squeezing �rst increases with the increase of time
and then reaches a plateau. The steady state value of spin-
squeezing is 1. If we increase the number of spins N, the
spin-squeezing is increased.

5 Conclusions
In the present paper, we have studied the in�uence of
phase shift upon the dynamics of bipartite and multipar-
tite correlations of a spin chain under dephasing. First, we
derived an analytical solution of the present model. Then,
we calculated bipartite correlations (measured by concur-
rence, discord, and geometric discord) of two spins. The
behaviors of these measures of bipartite correlations are

qualitatively similar in the present system. In the case of
no dephasing, bipartite correlations are periodic functions
of time. However, when the dephasing is considered, the
maximal number of bipartite correlations decreases with
the increase of dephasing rate. The response of di�erent
measures of bipartite correlations to phase shift could be
di�erent under decoherence, i.e., the geometric discordDG

will increase if we increase the phase shift ϕ from π/4 to
π/2 while the quantum discord will decrease. There are
steady state bipartite correlations in the presence of de-
phasing, i.e., the bipartite correlations including concur-
rence and discord can be stored partially for a long time
in the presence of dephasing. Our results show that the
steady state bipartite correlations can be adjusted by the
phase shift [33–35]. Finally, we investigated the dynamics
of the multipartite correlations of the whole spin chain.
We adopted the spin-squeezing as a measure of multipar-
tite correlations of the model. The spin-squeezing �rst in-
creases with time and then reaches a plateau. Our results
show that the number of spin-squeezing can be controlled
by phase shift.We also discussed the in�uence of the num-
ber of spins on spin-squeezing and found that the spin-
squeezing increases with the increase of spin numbers.
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