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Abstract: This work concentrates on stagnation point �ow
of a nano�uid over an impermeable stretching cylinder
with mass transfer and slip e�ects. Carbon nanotubes
(CNTs) andwater are used as a nano�uid in the present in-
vestigation. Two types of CNTs are used as nanoparticles
(i) Single-wall carbon nanotubes (SWCNTs) and (ii) multi-
wall carbon nanotubes (MWCNTs). Appropriate transfor-
mations are used to achieve a system of ordinary di�eren-
tial equations. Convergent series solutions are obtained.
Behavior of various parameters on the velocity, tempera-
ture and concentration pro�les are discussed graphically.
Numerical values of skin friction coe�cient, Nusselt num-
ber and Sherwood number are computed and analyzed.
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1 Introduction
In recent years development of human society greatly de-
pends on the energy resources. Researchers and scientists
are interested in exploring new energy resources and en-
ergy technologies in order to utilize solar energy (which
when it reaches the earth is about 4x1015MW). This solar
energy is 2000 times larger than the global energy con-
sumption. Nano material (nano particles) was used for
the �rst time by Choi [1]to enhance thermal conductiv-
ity of �uids and storage of energy. Solar thermal energy
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is very suitable, easily available and a friendly source for
various heating processes in industries and technologies.
Such processes cannot rely on energy of limited resources.
A solar collector is a device which is used to convert so-
lar radiation into heat energy. This heat energy is absorbed
by the existing material in the solar collector. Solar energy
can be used to heat water but the di�culty of such tech-
nology is that it has low e�ciency becausewater is used as
an energy carrier in solar collectors. Water has a low heat
transfer coe�cient due to poor thermophysical properties.
Therefore to enhance the e�ciency of such collectors, a
new class of �uids known as nano�uids has been inves-
tigated (see Said et al. [2]). A nano�uid is a mixture of a
base �uid and nanoparticles. It is used to enhance the rate
of heat transfer ofmicroelectronics,microchips in comput-
ers, fuel cells, transportation, biomedicine, food process-
ing, solid state lighteningandmanufacturing.Most liquids
such as water, ethylene, glycol oil etc. have low thermal
conductivity. To increase the thermal conductivity of such
materials suspended nano sized metallic particles (tita-
nium, copper, gold, iron or their oxides) are used in the �u-
ids. Nanoparticles have various shapes for example spher-
ical, rod-like or tubular. Rashidi et al. [3] examinedmagne-
tohydrodynamic �ow of a nano�uid induced by a rotating
porous diskwith entropy generation. Sheikholeslami et al.
[4] presented heat transfer analysis of nano�uid saturated
with porous medium past a permeable stretching wall.
Analysis of nano�uid past an exponentially permeable
sheet was investigated by Bhattacharyya and Layek [5].
Natural convection �ow of nano�uid with thermal man-
agement was studied by Sheikholeslami et al. [6]. Char-
acteristics of mixed convection and Newtonian heating on
�ow of nano�uidwere examined by Imtiaz et al. [7]. Turky-
ilmazoglu [8] examined unsteady boundary layer �ow of
nano�uid over a vertical �at plate.

Analysis of stagnation point �ow is still the main fo-
cus of researchers and scientists due to its many applica-
tions in engineering and industries. Such �ows may be in-
viscid or viscous, two-dimensional or three-dimensional,
symmetric or asymmetric, steady or unsteady, normal or
oblique, forward or reverse, homogeneous or two immis-
cible �uids (see Weidman and Putkaradze [9]). Further
such �ows become more important in the presence of
stretching/shrinking of the surface due to widespread ap-
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plications in engineering and industrial processes. Such
processes involve glass �bre production, hot rolling, wire
drawing, metal and polymer extrusion, continuous cast-
ing etc. [10, 11]. Linear stretching is important in the pro-
cess of extrusion from a die. Bhattacharyya and Vajravelu
[12] presented boundary layer stagnation point �ow over
an exponentially shrinking sheet. Turkyilmazoglu and
Pop [13] analyzed stagnation point �ow of a Je�rey �uid
induced by a stretching/shrinking sheet. Hayat et al. [14]
investigated boundary layer stagnation point �ow of an
Oldroyd-B �uid with thermal strati�cation due to a linear
stretching sheet. Mukhopadhyay [15] analyzed radiative
stagnation point �ow past a permeable stretching sheet
with variable viscosity.

Most researchers investigated boundary layer �ow of
a nano�uid over a stretching sheet using Cu, Ag, Al2O3

nanoparticles. Our main objective is to analyze the be-
havior of a base �uid (water) with single and multi-wall
carbon nanotubes (SWCNT and MWCNT) over a stretching
cylinder. The �ow analysis is carried out in the region of
a stagnation point. The partial slip condition holds in the
present analysis. The surface of the cylinder is subjected
to variable temperature and concentration. Series solu-
tions are developed using the homotopy analysis method
[16–23]. In�uence of various parameters on the skin fric-
tion coe�cient, Nusselt and Sherwood numbers are ex-
plored numerically. Comparison is also made for the skin
friction coe�cient in the limiting case (i.e., �ow of viscous
�uid past a stretching �at plate without nanoparticles and
slip e�ects). Excellent agreement is achieved.

2 Mathematical formulation
Consider steady stagnation point �ow of a nano�uid
by a stretching cylinder with slip conditions. Analysis
of mass transfer is also carried out. Single and multi-
wall carbon nanotubes are used as nanoparticles and
water is a base �uid. Cylindrical coordinates are cho-
sen in such a way that the x-axis is along the axial
direction of the cylinder while the r-axis is normal to
it. Temperature (Tw(x) = T0 + a

(
x/l
)
) and concentration

(Cw(x) = C0 + b
(
x/l
)
) are assumed to vary linearly at the

surface of the cylinder. This occurs in the processes of
wire drawing, metal and polymer extrusion etc. Here lin-
ear stretching occurs and also distributions of temperature
and concentration are linear [11]. Stretching velocity of the
cylinder is produced by applying two forces equal in mag-
nitude but opposite in direction. Using boundary layer ap-

proximations (o(x) = o(u) = o(1), o(r) = o(v) = o(δ)), the
conservation laws are reduced to the following forms

∂ (rv)
∂r + ∂ (ru)∂x = 0, (1)

v ∂u∂r + u
∂u
∂x = Ue

dUe
dx + νnf

(
∂2u
∂r2 + 1

r
∂u
∂r

)
, (2)

u ∂T∂x + v ∂T∂r = αnf
(
∂2T
∂r2 + 1

r
∂T
∂r

)
, (3)

u ∂C∂x + v ∂C∂r = D
(
∂2C
∂r2 + 1

r
∂C
∂r

)
. (4)

Boundary conditions are

u = Uw (x) + L
∂u
∂r , v = 0, T = Tw (x) + K1

∂T
∂r ,

C = Cw (x) + K2
∂C
∂r at r = R,

u → Ue (x) =
U∞x
l , T → T∞, C → C∞ as r → ∞. (5)

In the above expressions u and v denote velocity compo-
nents in the axial and radial directions respectively, R is
the radius of a cylinder, Uw and Ue are stretching and free
stream velocities respectively, νnf is kinematic viscosity of
the nano�uid, αnf is thermal di�usivity of the nano�uid,
D is mass di�usivity, L, K1 and K2 are the slip coe�cients
for velocity, thermal and concentration respectively, T and
C are temperature and concentration of the �uid respec-
tively, l is characteristic length, ρ is density, Tw and Cw
are temperature and concentration at the surface respec-
tively, T∞ and C∞ are temperature and concentration away
from the surface respectively, a and b are dimensional con-
stants, T0 and C0 are reference temperature and concen-
tration respectively.

We write

µnf =
µf

(1 − ϕ)2.5
, ρnf = (1 − ϕ) ρf + ϕρs (cp)CNT ,

αnf =
knf

ρnf (cp)nf
,

knf
kf

=
(1 − ϕ) + 2ϕ kCNT

kCNT−kf ln
kCNT+kf
2kf

(1 − ϕ) + 2ϕ kf
kCNT−kf ln

kCNT+kf
2kf

, (6)

where µnf is viscosity of nano�uid, ϕ is nanoparticle vol-
ume fraction, ρf and ρs are density of the �uid and solid
particles respectively, kf and knf are thermal conductivi-
ties of �uid and nanomaterial respectively.
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Table 1: Thermophysical properties of base fluid and nanoparticles
[24].

Physical Properties Base fluid Nanoparticles
Water SWCNT MWCNT

ρ
(
kg/m3) 997 2600 1600

cp
(
J/kgK

)
4179 425 796

k
(
W/mK

)
0.613 6600 3000

Transformations are de�ned as follows:

η =
√
U0
νf l

(
r2 − R2
2R

)
, ψ =

√
Uwνf xRf (η)

u = U0x
l f ′ (η) , v = −

√
νU0
l
R
r f (η) ,

θ (η) = T − T∞
Tw − T∞

, φ (η) = C − C∞
Cw − C∞

. (7)

The incompressibility condition is satis�ed automatically
and Equations (2) to (5) are reduced to 1

(1−ϕ)2.5
(
1−ϕ+ϕ ρCNT

ρf

)
((1 + 2γη) f ′′′ + 2γf ′′)

+� ′′ −
(
f ′
)2 + A2 = 0,

(8)

 knf /kf(
1 − ϕ + ϕ (ρcp)CNT(ρcp)f

)
((1 + 2γη) θ′′ + 2γθ′)

+Pr
(
fθ′ − f ′θ

)
= 0,

(9)

(1 + 2γη)φ′′ + 2γφ′ + Sc
(
fφ′ − f ′φ

)
= 0. (10)

The boundary conditions take the form

f (0) = 0, f ′(0) = 1 + S1f ′′(0),
θ (0) = 1 + S2θ′(0), φ (0) = 1 + S3φ′(0)
f ′(∞) = A, θ (∞) = 0, φ (∞) = 0, (11)

where γ is the curvature parameter, A is the ratio of veloc-
ities, Pr is the Prandtl number, S1, S2 and S3 are the ve-
locity, thermal and solutal slip parameters and Sc is the
Schmidt number. These quantities are de�ned as follows:

γ =
(

νl
U0R2

)1/2
, Pr = µcpk , A = U∞U0

, Sc = ν
D ,

S1 = L
√
U0
νl , S2 = K1

√
U0
νl , S3 = K2

√
U0
νl . (12)

The skin friction coe�cient, local Nusselt and Sherwood
numbers are

Cf =
τw
ρfU2

w
, Nux =

xqw
kf (Tw − T∞)

, Sh = xjw
D(Cw − C∞)

,

τw = µnf
(
∂u
∂r

)
r=R

, qw = −κnf
( ∂T
∂r
)
r=R ,

jw = −D
(
∂C
∂r

)
r=R

.
(13)

The skin friction, local Nusselt number and Sherwood
number in dimensionless form are

CfRe1/2x = 1
(1 − ϕ)2.5

f ′′(0), NuxRe−1/2x = −
knf
kf
θ′ (0) ,

ShRe−1/2x = −φ′ (0) ,
(14)

where Rex = Uw l/ν is the Reynolds number.

3 Homotopic solutions
Homotopy analysis method provides great freedom to
choose the initial guess and linear operators. Initial guess
is selected in such a way that boundary conditions are sat-
is�ed while linear operator is the linear part of the equa-
tion. Thus we have

f0 (η) = Aη + (1 − A)
(1 + S1)

(1 − exp (−η)) ,

θ0 (η) =
1

1 + S2
exp (−η) , φ0 (η) =

1
1 + S3

exp (−η) ,
(15)

Lf (f ) =
d3f
dη3 −

df
dη , Lθ (θ) =

d2θ
dη2 −θ, Lφ (φ) =

d2φ
dη2 −φ,

(16)
with

Lf
[
A1 + A2 exp(η) + A3 exp(−η)

]
= 0, (17)

Lθ
[
A4 exp(η) + A5 exp(−η)

]
= 0, (18)

Lφ
[
A6 exp(η) + A7 exp(−η)

]
= 0, (19)

whereAi (i = 1 − 5) are arbitrary constants. The zeroth and
mth order deformation problems are

3.1 Zeroth-order problem

(1 − p)Lf
[
f̂ (η; p) − f0 (η)

]
= p~fNf

[
f̂ (η; p)

]
, (20)

(1 − p)Lθ
[
θ̂ (η; p) − θ0 (η)

]
= p~θNθ

[
θ̂ (η; p) , f̂ (η; p)

]
,

(21)

(1 − p)Lφ
[
φ̂ (η; p) − φ0 (η)

]
= p~φNφ

[
φ̂ (η; p) , f̂ (η; p)

]
,

(22)
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f̂ (0; p) = 0, f̂ ′ (0; p) = 1 + S1 f̂ ′′ (0; p) , f̂ ′ (∞; p) = A,
(23)

θ̂ (0; p) = 1 + S2 θ̂′ (0; p) , θ̂ (∞; p) = 0,
φ̂ (0; p) = 1 + S3φ̂′ (0; p) , φ̂ (∞; p) = 0,

(24)

Nf

[
f̂ (η, p) , θ̂ (η; p) , φ̂ (η; p)

]
=

 1
(1−ϕ)2.5

(
1−ϕ+ϕ ρCNT

ρf

)
((1 + 2γη) ∂3 f̂ (η;p)∂η3 + 2γ ∂

2 f̂ (η;p)
∂η2

)

+f̂ (η; p)
∂2 f̂ (η; p)
∂η2 −

(
∂f̂ (η; p)
∂η

)2

+ A2,

(25)

Nθ

[
θ̂ (η; p) , f̂ (η; p)

]
=

 knf /kf(
1 − ϕ + ϕ (ρcp)CNT(ρcp)f

)


×
(
(1 + 2γη)

∂2 θ̂(η, p)
∂η2 + 2γ ∂θ̂(η, p)∂η

)

+Pr
(
f̂ (η; p)

∂θ̂ (η; p)
∂η − ∂f̂ (η; p)∂η θ̂(η, p)

)
,

(26)

Nϕ

[
φ̂ (η; p) , f̂ (η; p)

]
= (1 + 2γη)

∂2φ̂(η, p)
∂η2 + 2γ ∂φ̂(η, p)∂η

+Sc
(
f̂ (η; p)

∂φ̂ (η; p)
∂η − ∂f̂ (η; p)∂η φ̂(η, p)

)
,

(27)

where p ∈ [0, 1] is embedding parameter and ~f , ~θ and
~ϕ are non-zero auxiliary parameters.

3.2 mth-order deformation problems

Lf [fm (η) − χm fm−1 (η)] = ~fRf
m (η) , (28)

Lθ [θm (η) − χmθm−1 (η)] = ~θRθ
m (η) , (29)

Lφ [φm (η) − χmφm−1 (η)] = ~φRφ
m (η) , (30)

fm (0) = 0, f ′m (0) = S1f ′′m(0), f ′m (∞) = 0, (31)

θm (0) = S2θ′m (0) , θm (∞) = 0,
φm (0) = S3φ′m (0) , ϕm (∞) = 0.

(32)

Rf
m (η)

=

 1

(1−ϕ)2.5
(
1−ϕ+ϕ

ρCNT
ρf

)
((1 + 2γη) f ′′′m−1 + 2γf ′′m−1)

+
m−1∑
k=0

(
fm−1−k f ′′k − f

′

m−1−k f ′k
)
+ A2 (1 − χm) ,

(33)

Rθ
m (η)

=

 knf /kf(
1 − ϕ + ϕ (ρcp)CNT(ρcp)f

)
((1 + 2γη) θ′′m−1 + 2γθ′m−1)

+Pr
m−1∑
k=0

(
fm−1−kθ′k − f ′m−1−kθk

)
,

(34)

R
φ
m (η) = (1 + 2γη)φ′′m−1 + 2γφ′m−1

+Sc
m−1∑
k=0

(
fm−1−kφ′k − f ′m−1−kφk

)
, (35)

χm =
{

0, m ≤ 1
1, m > 1

. (36)

For p = 0 and p = 1, we can write

f̂ (η; 0) = f0 (η) , f̂ (η; 1) = f (η) , (37)

θ̂ (η; 0) = θ0 (η) , θ̂ (η; 1) = θ (η) ,
φ̂ (η; 0) = φ0 (η) , φ̂ (η; 1) = φ (η)

(38)

and with variation of p from 0 to 1, f̂ (η; p), θ̂ (η; p) and
φ̂ (η; p) vary from initial solutions f0 (η), θ0(η) andφ0(η) to
�nal solutions f (η), θ(η) andϕ(η) respectively. By Taylor’s
series we have

f̂ (η; p) = f0 (η) +
∞∑
m=1

fm (η) pm ,

fm (η) = 1
m!
∂m f̂ (η; p)
∂pm

∣∣∣∣∣
p=0

,
(39)

θ̂ (η; p) = θ0 (η) +
∞∑
m=1

θm (η) pm ,

θm (η) =
1
m!
∂m θ̂ (η; p)
∂pm

∣∣∣∣∣
p=0

,
(40)

φ̂ (η; p) = φ0 (η) +
∞∑
m=1

φm (η) pm ,

φm (η) =
1
m!
∂mφ̂ (η; p)
∂pm

∣∣∣∣
p=0

.
(41)
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The value of the auxiliary parameter is chosen in such a
way that the series (39) to (41) converge at p = 1 i.e.

f (η) = f0 (η) +
∞∑
m=1

fm (η) , (42)

θ (η) = θ0 (η) +
∞∑
m=1

θm (η) , (43)

φ (η) = φ0 (η) +
∞∑
m=1

φm (η) . (44)

The general solutions (fm , θm , φm) of Equations (28)–(30)
in terms of special solutions

(
f *m , θ*m , φ*m

)
are given by

fm (η) = f *m (η) + A1 + A2eη + A3e−η , (45)

θm (η) = θ*m (η) + A4eη + A5e−η , (46)

φm (η) = φ*
m (η) + A6eη + A7e−η , (47)

where constants Ai (i = 1 − 5) through the boundary con-
ditions (31) and (32) have values

A2 = A4 = A6 = 0,

A3 =
(

1
1 + S1

)(
f *
′

m (0) − S1f *
′′

m (0)
)

A1 = −A3 − f *m (0)

A5 =
(

1
1 + S2

)(
S2θ*′m (0) − θ*m (0)

)
,

A7 =
(

1
1 + S3

)(
S3φ*′m (0) − φ*m (0)

)
. (48)

3.3 Convergence analysis

Liao [16] in 1992 proposed homotopy analysis technique
for the series solutions of highly nonlinear problems. It
provides great freedom to adjust and control the conver-
gence region of series solutions. Therefore, we have plot-
ted the }-curves in Figures 1 and 2. The admissible ranges
of the auxiliary parameters }f , }θ and }φ for the SWCNT
case are −1.3 ≤ }f ≤ −0.1, −0.38 ≤ }θ ≤ −0.2 and
−1.3 ≤ }φ ≤ −0.3 while for the MWCNT case these are
−1.15 ≤ }f ≤ −0.25, −0.3 ≤ }θ ≤ −0.18 and −1.3 ≤ }φ ≤
−0.25 when γ = 0.2, A = 0.1, Sc = 1.3, S1 = 0.1, S2 = 0.2
and S3 = 0.2.

Figure 1: }-curves for f ′′(0) and φ′(0).

Figure 2: }-curves for θ′(0).

These are numerical values of the }-curves for any �xed
value of the auxiliary parameter } selected from the con-
vergence region (see Figures 1 and 2 and these values en-
sure the convergence of series solutions.

3.4 Discussion

In this section we examine the behavior of pertinent pa-
rameters on velocity, temperature and concentration pro-
�les for single-wall and multi-wall carbon nanotubes. The
in�uence of A on velocity pro�le for SWCNT and MWCNT
is presented in Figure 3. The velocity pro�le increases for
A > 1 and A < 1 while boundary layer thickness has op-
posite e�ects. For A = 1, there is no boundary layer be-
cause �uid and cylinder move with the same velocity. Ve-
locity pro�le overlaps for both SWCNTandMWCNT.Behav-
ior of curvature parameter γ on the velocity pro�le is dis-
played in Figure 4. The velocity pro�le decreases near the
surface of cylinder while increases far away from the sur-
face. However velocity pro�le is higher for multi-wall car-
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Table 2: Convergence of series solutions for di�erent order of approximations when γ = 0.2, A = 0.1, Sc = 1.3, S1 = 0.1, S2 = 0.2 and
S3 = 0.2.

SWCNT MWCNT
Order of approximations −f ′′(0) −θ′(0) −φ′(0) −f ′′(0) −θ′(0) −φ′(0)
1 0.86277 1.1902 0.94481 0.84069 1.1905 0.94481
5 0.86153 1.6780 0.98826 0.83048 1.6868 0.99526
10 0.86123 1.7518 0.98894 0.83022 1.7602 0.99593
13 0.86122 1.7631 0.98896 0.83022 1.7715 0.99593
20 0.86122 1.7687 0.98896 0.83022 1.7771 0.99593
25 0.86122 1.7687 0.98896 0.83022 1.7771 0.99593
30 0.86122 1.7687 0.98896 0.83022 1.7771 0.99593

Figure 3: E�ect of A on f ′.

Figure 4: E�ect of γ on f ′.

Figure 5: E�ect of ϕ on f ′.

Figure 6: E�ect of S1 on f ′.
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Figure 7: E�ect of A on θ.

Figure 8: E�ect of γ on θ.

Figure 9: E�ect of S1 on θ.

Figure 10: E�ect of S2 on θ.

Figure 11: E�ect of γ on φ.

Figure 12: E�ect of S3 on φ.
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Figure 13: E�ect of Sc on φ.

Table 3: Numerical values of skin friction coe�cient for di�erent
parameters.

γ A ϕ S1 − 1
(1−ϕ)2.5 f

′′(0)
SWCNTs MWCNTs

0 0.1 0.1 0.1 1.0463 1.0056
0.3 1.1578 1.1168
0.5 1.2269 1.1855

0 1.2833 1.2247
0.1 1.2269 1.1855
0.3 1.0638 1.0292
0.1 0.0 0.9817 0.9817

0.15 1.3793 1.3113
0.2 1.5588 1.4585
0.1 0.1 1.2269 1.1855

0.2 1.0858 1.0520
0.4 0.8874 0.8645

Table 4: Numerical values of Nusselt number for di�erent parame-
ters when S1 = 0.1.

γ A ϕ S2 − knfkf θ
′ (0)

SWCNTs MWCNTs
0.0 0.2 0.1 0.2 1.7495 1.7724
0.3 1.7939 1.8019
0.5 1.8229 1.8305

0.0 1.8044 1.8126
0.2 1.8229 1.8305
0.5 1.8700 1.8767
0.2 0.0 1.8607 1.8607

0.1 1.8229 1.8305
0.2 1.7847 1.7985
0.1 0.0 2.8693 2.8880

0.2 1.8229 1.8305
0.5 1.1785 1.3399

Table 5: Numerical values of Sherwood number for di�erent param-
eters when A = 0.1, ϕ = 0.1 and S1 = 0.2.

γ S3 Sc −φ′ (0)
SWCNTs MWCNTs

0.0 0.2 1.3 0.9156 0.9236
0.3 0.9841 0.9907
0.5 1.027 1.034

0.0 1.292 1.304
0.2 1.027 1.034
0.5 0.7852 0.7894
0.2 0.8 0.8458 0.8512

1.0 0.9247 0.9320
1.3 1.027 1.034

bonnanotubes than the single-wall carbonnanotubes. For
higher values of the curvature parameter, the radius of the
cylinder decreaseswhich reduces contact area of the cylin-
der with the �uid. Therefore the velocity pro�le increases.
Variation of nanoparticle volume fraction ϕ on velocity
pro�le is sketched in Figure 5. Velocity pro�le increases
with an increase in nanoparticle volume fraction. Veloc-
ity distribution is higher for MWCNT. Figure 6 shows the
in�uence of velocity slip parameter S1 on velocity pro�le.
The velocity pro�le andboundary layer thickness decrease
for higher values of velocity slip parameter. Moreover ve-
locity pro�le is higher in the case of MWCNT. This is due
to the fact that for higher velocity slip parameter adhesive
force between the wall and �uid particles decreases which
provides resistance for transfer of stretching velocity to the
�uid. Therefore velocity distribution decreases. The e�ect
of ratio parameter A on temperature pro�le is drawn in
Figure 7. Temperature and thermal boundary layer thick-
ness decrease for higher values of ratio parameter in both
(i) SWCNT (ii) MWCNT. The behavior of curvature param-
eter γ on temperature pro�le is shown in Figure 8. The
temperature pro�le decreases near the surface of cylinder
while increases away from the surface. For higher values of
the curvature parameter the radius of cylinder decreases
which o�ers less resistance. Therefore temperature near
the surface of cylinder decreases. Figure 9 shows the in-
�uence of velocity slip parameter S1 on temperature pro-
�le. Higher values of velocity slip parameter result in the
enhancement of temperature and thermal boundary layer
thickness. The temperature pro�le is higher in the case of
single-wall carbonnanotubes. Behavior of the thermal slip
parameter S2 on the temperature pro�le is sketched in Fig-
ure 10. Temperature distribution and thermal boundary
layer thickness decrease for higher values of thermal slip
parameter. Heat transfer from the cylinder to the �uid de-
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Table 6: Comparison of f ′′(0) with Mahapatra and Gupta [25], Pop et al. [26] and Sharma and Singh [27] for various values of A when γ = 0,
ϕ = 0 and S1 = 0.

A Mahapatra and Gupta [25] Pop et al. [26] Sharma and Singh [27] Present results
0.1 -0.9694 -0.9694 -0.969386 -0.96939
0.2 -0.9181 -0.9181 -0.9181069 -0.91811
0.5 -0.6673 -0.6673 -0.667263 -0.66726
0.7 -0.43346
0.8 -0.29929
0.9 -0.15458
1.0 0.00000

creases which results in the reduction of the temperature
pro�le. Higher temperature was noted for the single-wall
carbon nanotubes. Characteristics of the curvature param-
eter γ on the concentration pro�le is displayed in Figure 11.
Concentration pro�le decreases near the surface of cylin-
der while increases away from the surface. Behavior of the
solutal slip parameter S3 on the concentration pro�le is vi-
sualized in Figure 12. Concentration pro�le decreases for
higher values of the solutal slip parameter. The e�ect of
Schmidt number Sc on the concentration pro�le is shown
in Figure 13. Decreasing behavior of the concentration pro-
�le is noted for larger Schmidt number. The solutal bound-
ary layer thickness decreases. Mass di�usivity decreases
with an increase in Schmidt number. Therefore the con-
centration pro�le decreases.

Table 2 shows the convergence of series solutions
of momentum, energy and concentration equations. We
see that 13th order approximations are su�cient for the
convergence of momentum and concentration equations
while 20th order approximations are enough for energy
equation in the case of SWCNTs. For the MWCNTs 10th or-
der approximations are enough for the convergence ofmo-
mentum and concentration equations while 20th order ap-
proximations are su�cient for the energy equation. Ta-
ble 3 shows the in�uence of pertinent parameters on the
skin friction coe�cient. The skin friction coe�cient in-
creases as γ and ϕ increase, while it decreases for larger
values of A and S1 for both SWCNTs and MWCNTs. The
skin friction coe�cient is higher for SWCNTs when com-
pared with MWCNTs. Table 4 presents variation of vari-
ous parameters on the Nusselt number. Higher values of
γ, A and smaller values of ϕ and S2 result in enhance-
ment of the Nusselt number for both SWCNTs and MWC-
NTs. The Nusselt number is higher for MWCNTs for all pa-
rameters. Table 5 explores the e�ects of di�erent parame-
ters onSherwoodnumber. The Sherwoodnumber is higher
for larger values of γ, Sc and smaller values of S3 for both
SWCNTs andMWCNTs. The Sherwoodnumber is higher for

MWCNTs. Table 6 shows comparison of skin friction coe�-
cientwith previous published data. The results are in good
agreement.

4 Closing remarks

We have explored the characteristics of boundary layer
stagnationpoint �owof anano�uidpast a stretching cylin-
der using single- and multi-wall carbon nanotubes. Heat
andmass transfer are examinedwith slip e�ects. Themain
points of the present investigation are as follows:
– Velocity pro�le is higher for curvature parameter γ

and nanoparticle volume fraction ϕ in the case of
multi-wall carbon nanotubes compared to single-wall
carbon nanotubes.

– Higher values of velocity slip parameter S1 reduce the
velocity pro�le and associated boundary layer thick-
ness.

– Thermal and solutal slip parameters S2 and S3 re-
sult in the reduction of temperature and concentration
pro�les for both SWCNT and MWCNT cases.

– Temperature and concentration pro�les decrease near
the surface of cylinderwhile these decrease away from
the surface of cylinder.
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