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Response of a fractional nonlinear system to
harmonic excitation by the averaging method
Abstract: In this work, we consider a fractional nonlinear
vibration system of Duffing type with harmonic excitation
by using the fractional derivative operator −∞Dαt and the
averaging method. We derive the steady-state periodic re-
sponse and the amplitude-frequency andphase-frequency
relations. Jumping phenomena caused by the nonlinear
term and resonance peaks are displayed, which is simi-
lar to the integer-order case. It is possible that a minimum
of the amplitude exists before the resonance appears for
some values of the modelling parameters, which is a fea-
ture for the fractional case. The effects of the parameters in
the fractional derivative term on the amplitude-frequency
curve are discussed.
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1 Introduction
Fractional calculus has been used in the mathematical
description of real problems arising in different fields
of science including viscoelasticity, anomalous diffusion,
acoustics, mechanics, electromagnetism, heat transfer,
electrical circuits, signal processing, system identifica-
tion, control and robotics, chemistry, biology, physics,
economy and finance, and so on [1–5]. Scientists and en-
gineers have found the description of some phenomena is
more accurate and convenient when the fractional deriva-
tive is used.
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Viscoelasticity is one of the fields with themost exten-
sive applications of fractional calculus [6–16]. The main
reason for theoretical development has been the wide use
of polymers in various fields of engineering. In essence,
fractional calculus has the ability tomodel hereditary phe-
nomena with long memory.

Scott-Blair [6–8] proposed a fractional constitutive
equation σ(t) = b · 0Dνt ϵ(t) to characterize a viscoelas-
ticmaterial whosemechanical properties are intermediate
between those of a pure elastic solid (Hooke model) and a
pure viscous fluid (Newton model). In the monographs [3,
17], this relation was called the Scott-Blair model [6–8].
In [9], a fractional calculus elementwhose constitutive law
holds stress proportional to a fractional derivative of strain
is said to be a spring-pot.

Fractional oscillators, fractional vibrations and dy-
namical systems were discussed and investigated by Ca-
puto [18], Bagley and Torvik [14], Beyer and Kempfle [15],
Mainardi [19], Gorenflo andMainardi [16], and others [20–
32].

Achar et al. [20] studied the response characteristics
of the fractional oscillator. Li et al. [21] considered the im-
pulse response and the stability behavior of a class of frac-
tional oscillators. Lim et al. [22] established the relation-
ship between fractional oscillator processes and the corre-
sponding fractional Brownian motion processes. Lim and
Teo [23] introduced a fractional oscillator process as a so-
lution of a stochastic differential equation with two frac-
tional orders. Wang and Hu [24] investigated stability of a
linear oscillator with fractional damping force. Wang and
Du [25] considered asymptotic behavior of the linear frac-
tional damped vibration system using the inverse Laplace
transform. Shen et al. [26, 27] analyzed dynamical behav-
ior and resonance for a fractional oscillator using the aver-
agingmethod. Li et al. [28] and Zhang et al. [29] considered
fractional dynamical systems and stability. Li and Ma [30]
contributed the linearization and stability theorems for
the nonlinear fractional system. Tavazoei et al. [31] and
Pinto and Machado [32] studied the fractional-order van
der Pol oscillator and found multiple limit cycles exist-
ing in the system. Meanwhile, the development of theo-
retical research of linear and nonlinear fractional differen-
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tial equations has proceeded apace in recent decades, in-
cluding the existence and uniqueness of solution [1, 2, 4],
different methods for resolution [4, 5, 33–36] and bound-
ary value problems with various type of boundary condi-
tions [37–39].

Let f (t) be piecewise continuous on (t0, +∞) and in-
tegrable on any subinterval (t0, t). Then the Riemann-
Liouville fractional integral of f (t) is defined as [1–4]

t0 Jαt f (t) :=
t∫︁

t0

(t − s)α−1
Γ(α) f (s)ds, α > 0, (1)

where Γ(·) is Euler’s gamma function.
Let f (n)(t) be piecewise continuous on (t0, +∞) and in-

tegrable on any subinterval (t0, t). Then the Caputo frac-
tional derivative of f (t) of order α, n − 1 < α < n, is defined
as [1–4]

t0Dαt f (t) := t0 Jn−αt f (n)(t), (2)
n − 1 < α < n, n ∈ N+,

In most studies such as those mentioned above, the
lower limit t0 of the integral was taken as 0. In this case,
the response includes a decaying component even for har-
monic excitation with zero initial conditions, so generally
speaking, the solution is not periodic [16, 19, 39, 40]. For
harmonic excitation, we are more interested in the steady-
state response, or the periodic solution of the fractional
vibration system, which is often a desired property in dy-
namical systems, constituting one of the most important
research directions in the theory of dynamical systems.

In this work, we consider the nonlinear fractional vi-
bration system of Duffing type with harmonic excitation
using the fractional derivative operator −∞Dαt and the aver-
agingmethod. A steady-state periodic response is derived.
We show that this operator is convenient and efficient
for analysis of the steady-state solution. The amplitude-
frequency relation and phase-frequency relations are ob-
tained, where the jump phenomena due to the nonlin-
ear term are displayed. The effects of the parameters in
the fractional derivative term on the amplitude-frequency
curve are discussed.

2 Response of fractional nonlinear
system to harmonic excitation
We consider a fractional nonlinear vibration system of

Duffing type with harmonic excitation

mẍ + kx + cẋ + bx3 + K · −∞Dαt x = F cos(ωt), (3)

where m, k, c, b, F and ω are the system mass, linear
stiffness coefficient, linear damping coefficient, nonlinear
stiffness coefficient, excitation amplitude and excitation
frequency, respectively, and the term K · −∞Dαt x denotes
a force related to the whole deformational history, where
K > 0 and 0 < α < 1. For the results and discussion, we
also consider the two limiting cases α = 0 and α = 1.

Following the notation in the averaging method, we
introduce √︀

k/m = ω0, c/m = 2εµ, b/m = ε𝛾,

K/m = εη, F/m = εf , ω2 − ω2
0 = εσ,

where ω0 is the natural frequency for the corresponding
linear conservative system, and rewrite Eq. (3) as

ẍ + ω2x = ε[f cos(ωt) + σx − 𝛾x3 − 2µẋ
−η · −∞Dαt x]. (4)

Letting ε = 0, we have the derived system’s solution

x = a cos(ωt − θ). (5)

The first-order derivative and the fractional derivative are
calculated to be

ẋ = −aω sin(ωt − θ), (6)

and

−∞Dαt x = −∞J1−αt [−aω sin(ωt − θ)]

= −aω
Γ(1 − α)

t∫︁
−∞

(t − τ)−α sin(ωτ − θ)dτ

= −aω
Γ(1 − α)

+∞∫︁
0

u−α sin(ωt − θ − ωu)du

= −aω
Γ(1 − α)

+∞∫︁
0

u−α[sin(ωt − θ) cos(ωu)

− cos(ωt − θ) sin(ωu)]du
= −aωα(sin(ωt − θ) sin(πα2 )

− cos(ωt − θ) cos(πα2 ))

= aωα cos(ωt − θ + πα2 ), (7)

where the Mellin transform formulas for the trigonometric
functions sin(ωu) and cos(ωu)

+∞∫︁
0

sin(ωu)up−1du =
Γ(p) sin( πp2 )

ωp ,

+∞∫︁
0

cos(ωu)up−1du =
Γ(p) cos( πp2 )

ωp , 0 < p < 1,
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are used [41, 42]. According to the averaging method, we
regard a and θ as slowly varying functions of t and denote
ωt − θ = ψ. From (5) and (6) we calculate

ẋ = ȧ cos(ψ) − a sin(ψ) (ω − θ̇), (8)

ẍ = −ȧω sin(ψ) − aω cos(ψ)(ω − θ̇). (9)

It follows from Eqs. (6) and (8) that

cos(ψ)ȧ + a sin(ψ)θ̇ = 0. (10)

Substituting Eqs. (5), (6), (7) and (9) into Eq. (4) leads to

−ω sin(ψ)ȧ + aω cos(ψ)θ̇ = εf1, (11)

where

f1 = f cos(ψ + θ) + σa cos(ψ) − 𝛾a3 cos3(ψ)
+2µaω sin(ψ) − ηaωα cos(ψ + πα2 ), (12)

is a periodic function in ψ with period 2π.
Solving the systemof equations (10) and (11)we obtain

ȧ = − εω f1 sin(ψ), (13)

θ̇ = ε
ωa f1 cos(ψ). (14)

The averagingmethod replaces the right hand sides by the
averages in a period as

ȧ = − εω
1
2π

2π∫︁
0

f1 sin(ψ)dψ, (15)

θ̇ = ε
ωa

1
2π

2π∫︁
0

f1 cos(ψ)dψ. (16)

Calculating the integrals we have

ȧ = fε
2ω sin(θ) − aεµ − ε2aηω

α−1 sin(πα2 ), (17)

θ̇ = fε
2ωa cos(θ) +

εσ
2ω −

ε
2ηω

α−1 cos(πα2 )

−3εa
2𝛾

8ω . (18)

Substituting the original coefficients leads to

ȧ = F
2mω sin(θ) −

a
2m

(︀
c + Kωα−1 sin( πα2 )

)︀
, (19)

θ̇ = F
2mωa cos(θ) +

ω
2 −

3a2b
8mω

− 1
2mω

(︀
k + Kωα cos( πα2 )

)︀
. (20)

Denote

c̃ = c + Kωα−1 sin(πα2 ), k̃ = k + Kωα cos(πα2 ), (21)

as the equivalent damping coefficient and the equivalent
stiffness coefficient.Wenote that the two coefficients c̃ and
k̃ are related not only to the parameters K and α in the frac-
tional term, but also to the excitation frequency ω. As ω
increases, k̃ increases while c̃ decreases.

For the steady-state solution, we set ȧ = 0 and θ̇ = 0,
i.e.

F
2mω sin(θ) − a

2m

(︁
c + Kωα−1 sin(πα2 )

)︁
= 0, (22)

F
2mωa cos(θ) +

ω
2 −

3a2b
8mω

− 1
2mω

(︁
k + Kωα cos(πα2 )

)︁
= 0. (23)

FromEqs. (22) and (23), the amplitude is determinedby the
implicit equation

a2
[︁(︀
c ω + Kωα sin( πα2 )

)︀2 +(︀
k + Kωα cos( πα2 ) − mω

2 + 3
4a

2b
)︀2]︁ = F2, (24)

and the tangent of the phase is solved to be

tan(θ) =
c ω + Kωα sin( πα2 )

k + Kωα cos( πα2 ) − mω2 + 3
4a2b

. (25)

Let ω → 0 in Eq. (24), we obtain

a(k + 3
4a

2b) = F, for 0 < α ≤ 1,
a(k + K + 3

4a
2b) = F, for α = 0.

(26)

We notice that the limit of the amplitude a as ω → 0 has a
jump at α = 0 if K > 0.

�

�

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

Ω

Figure 1: a versus ω for α = 0.5 and different K: K = 0.5 (solid line),
K = 1 (dot line) and K = 2 (dash line).

We take m = k = F = 1, c = 0.2 and b = 20,
and plot the curves of the amplitude a versus ω for spec-
ified values of K and α in Figs. 1 and 2. Jumping phenom-
ena caused by the nonlinear term and resonance peaks
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Figure 2: a versus ω for K = 1 and different α: 0 (dot-dash line), 0.2
(solid line), 0.5 (dot line), 0.8 (dash line) and 1 (dot-dot-dash line).

are clearly displayed in these figures, which is similar to
the integer-order case. Also it is possible that a minimum
for the amplitude a exists before the resonance appears
for some values of the modelling parameters, which is a
feature for the fractional case. From Figs. 1 and 2, we ob-
serve that as the parameter K or α in the fractional deriva-
tive term increases, the peak value and the degree of incli-
nation of the resonance peak on the amplitude-frequency
curve decrease. That is, the two extreme points of the am-
plitude a gradually approach and the two singular points
eventually disappear.

In order to determine the frequency and the amplitude
at resonance we calculate the derivative da

dω from Eq. (24).
Then by setting da

dω = 0 we obtain

ω
(︁
c + Kωα−1 sin(πα2 )

)︁2
+

ωαK(α − 1)
(︁
c + Kωα−1 sin(πα2 )

)︁
sin(πα2 ) +(︂

k + Kωα cos(πα2 ) − mω2 + 3
4a

2b
)︂
×(︁

Kαωα−1 cos(πα2 ) − 2mω
)︁
= 0. (27)

The frequency and amplitude at resonance, and the mini-
mum of the amplitude a, when they exist, are determined
by Eqs. (24) and (27).

With increasing values of the two parameters K and α,
the two extreme points on the amplitude-frequency curve
gradually approach and eventually disappear.We checked
that if we take K = 5, α = 0.5 or K = 3, α = 0.8 in Fig. 1
or Fig. 2, the two extreme points of the amplitude a disap-
pear and the amplitude-frequency curve becomes mono-
tonically decreasing.

For the singular points on the amplitude-frequency
curve, we obtain them by setting da

dω = ∞. This leads to

the equation

2
(︀
c ω + Kωα sin( πα2 )

)︀2 +
2
(︀
k + Kωα cos( πα2 ) − mω

2 + 3
4a

2b
)︀2 +

3a2b
(︀
k + Kωα cos( πα2 ) − mω

2 + 3
4a

2b
)︀
= 0. (28)

Eqs. (24) and (28) determine the the singular points (ω, a)
on the amplitude-frequency curves.

We take m = k = F = 1, c = 0.2, b = 20, α = 0.5 and
K = 1. Solving Eqs. (24) and (27) we obtain the minimum
and the maximum on the amplitude-frequency curve,
corresponding to the points (0.36057788, 0.33319415)
and (2.6844531, 0.58790828), respectively, which
are denoted by the two heavy dots on the dot line
in Fig. 1. Solving Eqs. (24) and (28), we obtain the
two singular points (2.5114361, 0.34223542) and
(2.7257321, 0.57486028) on the amplitude-frequency
curve, which are denoted by the two crosses on the dot
line in Fig. 1.

The amplitude-frequency and the phase-frequency re-
lations (24) and (25) include the following three special
cases.
(i) Fractional linear case

The linear case is given as a special case of b = 0. The
amplitude and the tangent of the phase are

a = F/
(︂(︁

c ω + Kωα sin(πα2 )
)︁2

+

(︁
k + Kωα cos(πα2 ) − mω2

)︁2
)︂1/2

, (29)

tan(θ) =
c ω + Kωα sin( πα2 )

k + Kωα cos( πα2 ) − mω2 . (30)

Also the limit of the amplitude a as ω → 0 is discontinu-
ous at α = 0, i.e.

lim
ω→0

a =
{︃

F/k, 0 < α ≤ 1,
F/(k + K), α = 0.

(31)

The resonance frequency and the resonance amplitude are
determined by Eq. (29) and the equation

ω
(︁
c + Kωα−1 sin(πα2 )

)︁2
+

ωαK(α − 1)
(︁
c + Kωα−1 sin(πα2 )

)︁
sin(πα2 ) +(︁

k + Kωα cos(πα2 ) − mω2
)︁
×(︁

Kαωα−1 cos(πα2 ) − 2mω
)︁
= 0, (32)

which also determine the minimum on the amplitude-
frequency curve if it exists.

In Figs. 3 and 4, we plot the curves of the amplitude
a versus ω for the linear case, where the parameters are
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Figure 3: a versus ω in the linear case for α = 0.5 and different K:
K = 0.5 (solid line), K = 1 (dot line) and K = 2 (dash line).
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Figure 4: a versus ω in the linear case for K = 1 and different α:
α = 0 (dot-dash line), 0.2 (solid line), 0.5 (dot line), 0.8 (dash line)
and 1 (dot-dot-dash line).

taken asm = k = F = 1 and c = 0.2. The jumping phenom-
ena disappear for the linear case.
(ii) Integer-order nonlinear case

Letting K = 0 leads to the integer-order case. The am-
plitude is determined by the implicit equation

a2
[︃
(c ω)2 +

(︂
k − mω2 + 3

4a
2b

)︂2
]︃
= F2, (33)

and the tangent of the phase is

tan(θ) = c ω
k − mω2 + 3

4a2b
. (34)

(iii) Integer-order linear case

The integer-order linear case corresponds to b = K =
0. The amplitude and the tangent of the phase are

a = F√
(c ω)2+(k−mω2)2

, (35)

tan(θ) = c ω
k−mω2 . (36)

3 Conclusions
We considered a fractional nonlinear vibration system
of Duffing type with harmonic excitation using the
fractional derivative operator −∞Dαt and the averaging
method.Wederived the steady-state periodic response and
the amplitude-frequency and phase-frequency relations,
where the jump phenomena due to the nonlinear term
were displayed. The effects of the parameters in the frac-
tional derivative term on the amplitude-frequency curve
were discussed. It is possible that a minimum of the am-
plitude a exists before the resonance appears for some val-
ues of the modelling parameters, which is a feature for the
fractional case.
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