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Abstract:Thehigh temperature andpressure e�ects on the

elastic properties of the AgRE (RE=Sc, Tm, Er, Dy, Tb) in-

termetallic compounds with B2 structure have been per-

formed from �rst principle calculations. For the temper-

ature range 0-1000 K, the second order elastic constants

for all the AgRE intermetallic compounds follow a normal

behavior: they decrease with increasing temperature. The

pressure dependence of the second order elastic constants

has been investigated on the basis of the third order elas-

tic constants. Temperature and pressure dependent elas-

tic anisotropic parameters A have been calculated based

on the temperature and pressure dependent elastic con-

stants.
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1 Introduction
Over the past few decades, the B2 structure (CsCl-type

structure) intermetallic compounds have attracted consid-

erable attention owing to their high strength and melt-

ing temperature combined with a low speci�c weight and

high oxidation resistance [1, 2]. However, few practical
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uses have materialized because of their brittle nature at

ambient temperature [3]. In 2003, a new class of highly

ordered, ductile intermetallic compounds with composi-

tion MRE (where RE indicates a rare-earth element, and

M denotes a late transition metal or an early p-element)

at room temperature was discovered by Gschneidner et al.
[4]. These MRE compounds are “line-compounds” with

exact 1:1 stoichiometry, and they are formed from high M

and RE without the addition of a third element. There-

after, a great deal of work (including theory and exper-

iment) has been performed to understand their various

properties [5–15]. Recently, some properties such as me-

chanical, electronic structure and thermal properties of

the AgRE intermetallics have been studied by using the

projector augmented-wave (PAW) method within the gen-

eralized gradient approximation (GGA) [16].

In general, the elastic constants of a solid are im-

portant since they relate to various fundamental solid-

state properties such as interatomic potentials, equation

of state, Young’s modulus, Poisson’s ratio, thermal expan-

sion,Debye temperature,meltingpoint, Grüneisenparam-

eter and so on. In linear elastic theory were in�nitesimal

deformations are assumed, the second-order elastic con-

stants (SOECs) are su�cient to describe the linear elas-

tic stress-strain response [17]. There have been many re-

ports of �rst principles calculations of the SOECs of mate-

rials by the total energy approach [18, 19], stress-strain ap-

proach [20–23] and density functional perturbation theory

(DFPT) [24–26]. However, all of these calculations are re-

stricted to a temperature of 0 K. Obtaining the correspond-

ing temperature dependent SOECs is still an arduous chal-

lenge [27]. The temperature dependent SOECs are very im-

portant for understanding themechanical strength, stabil-

ity and phase transition of a material. Fortunately, Wang

et al. [28, 29] proposed a quasistatic approach based on

the assumption that the temperature dependent elastic

constants mainly result from volume change with increas-

ing temperature to determine the temperature dependent

SOECs from �rst principles calculations. Excellent agree-

ment between their predicted values and existing experi-

mental measurements was found. In this work, we employ

this method [28, 29] to investigate the temperature depen-

dent SOECs of intermetallic compounds AgRE (RE=Sc, Tm,

Er, Dy, Tb) with B2 structure.
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The pressure dependence of the SOECs is also very

useful for AgRE intermetallics since there are no experi-

mental values available. The pressure dependent SOECs

can be obtained through the third order elastic constants

(TOECs). TOECs are useful not only in describing the

mechanical response of crystals under high stress and

strain, but they also serve as a basis for describing an-

harmonic properties such as thermal expansion, phonon-

phonon interaction and Grüneisen parameter, amongst

others [30, 31]. As is well known, it is rather di�cult to

obtain a complete set of TOECs for crystals with low-yield

stress from experimental methods. Several theoretical ap-

proaches have been introduced to calculate the TOECs of

solids. These methods include the empirical interatomic

force-constant model [32, 33], molecular-dynamics simu-

lations using �uctuation formulas [34, 35], and the �rst-

principles quantum mechanics calculations [36, 37]. The

use of �rst-principles mechanics calculations method to

determine TOECs was �rst introduced by Nielson andMar-

tin [38]. They employed the method of homogeneous de-

formation strain combined with the �rst-principles strain-

energy relations calculations to determine the elastic con-

stants. The homogeneous deformation strains used are

usually simple deformationmodes such as uniaxial tensor

or compression, simple or pure shear, and other combina-

tions of homogeneous strains. Recently, the same method

of the �st-principles quantummechanics calculations has

been employed to determine the TOECs in single crystals

[39–41]. Their results show good agreement with experi-

ments. In this work, we employ the method of homoge-

neous deformation combined with �rst-principles total-

energy calculations to calculate the TOECs of rare-earth in-

termetallic compounds AgRE (RE=Sc, Tm, Er, Dy, Tb) with

B2 structure. For more details of TOECs calculations, see

[39–42].

2 Computational methodology

The Helmholtz free energy per atom of intermetallics at a

constant volume V and T within the framework of quasi-

harmonic approach (QHA) can be expressed as

F(V , T) = U
static

(V)

+

∑
κ

[
1

2

~ωκ + kBT ln
(
1 − e−~ωκ /kBT

)]
, (1)

where U
static

(V) is the static total energy at 0 K, kB is

the Bolzmann’s constant, ~ represents the reduced Planck

constant, andωκ is the frequency of an individual phonon.

The isothermal elastic constants are obtained by ex-

panding the Helmholtz free energy as a Taylor series in La-

grangian strain tensor η at constant temperature [43, 44]

F(V , η, T) = U(V , 0, T) + V
2!

∑
ijkl

CTijklηijηkl

+

V
3!

∑
ijklmn

CTijklmnηijηklηmn + . . . . (2)

The elastic behavior of cubic crystals is speci�ed by three

independent elastic constants CT
11
, CT

12
and CT

44
(in Voigt

notation). The bulk modulus BT = (CT
11

+ 2CT
12
)/3 is the

resistance to deformation by a uniform hydrostatic pres-

sure and is also obtained from �tting the Vinet equation of

state [45]. The strain matrix for the calculation of CT
11
−CT

12

combination has the following form

η(δ) =

 δ 0 0

0 δ 0

0 0 (1 + δ)2 − 1

 , (3)

and the free energy expression is

F(V , δ) = F(V , 0) + 3(CT
11
− CT

12
)Vδ2 + O(δ3),

where F(V , 0) refers to the free energy of the equilib-

rium con�guration. We use a volume-conserving tetrago-

nal strain to determine CT
44
:

η(δ) =

 0 δ 0

δ 0 0

0 0 δ2/(1 − δ2)

 , (4)

and the Helmholtz free energy related to this strain is

F(V , δ) = F(V , 0) + 2CT
44
Vδ2 + O(δ4).

In the present work, we employ a quasistatic approx-

imation developed by Wang et al. [28, 29] to calculate

the temperature dependence of the elastic constant CTij.
The quasistatic method is based on the assumption that

the temperature dependence of elastic constantmainly re-

sults from a volume change due to thermal expansion, and

the contribution of vibrational free energy to these sec-

ond derivation can be neglected. The quasistatic method

has the following three-step procedure [28]. The �rst step

in this procedure is to the determine equilibrium vol-

ume V(T) at given T. This is calculated using the �rst-

principles quasiharmonic approach. In the second step,

we obtain the volume-dependent elastic constants CTij(V)
at T = 0 K. They are de�ned as the second derivatives of

the Helmholtz free energy F with respect to the elements

of the in�nitesimal strain tensor by employing the energy-

strain relation based on Equations (2)–(6). In the third

step, the elastic constants calculated from the second step,
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at the volume V(T), are approximated as those at �nite

temperature. To compare with experiment, the isother-

mal elastic constants must be converted to the isentropic

elastic constants. The isothermal elastic constants and the

isentropic elastic constants have the relations CS
44

= CT
44

and CS
11
− CT

11
= CS

12
− CT

12
=

TV
Cv α

2BT2, where CV and α
are the speci�c heat at constant volume and the thermal

expansion coe�cient, respectively.

In our third order elastic constants (TOECs) calcula-

tions, deformations are applied under isothermal condi-

tions T = 0K, F = U − TS = U, so CS = CT . We will

not distinguish those two types of elastic constants in the

following. There are six independent TOECs (C
111

, C
112

,

C
123

, C
144

, C
155

and C
456

) for AgRE. The number of ap-

plied strain tensors must be as large as the number of in-

dependent TOECs for solving the TOECs. Hence, we need

consider six sets of deformation [41]:

ηA =

 δ 0 0

0 0 0

0 0 0

 , ηB =

 δ 0 0

0 δ 0

0 0 0

 ,

ηC =

 δ 0 0

0 δ 0

0 0 δ

 ,

ηD =

 δ 0 0

0 0

δ
2

0

δ
2

0

 , ηE =

 δ 0

δ
2

0 0 0

δ
2

0 0

 ,

ηF =

 0

δ
2

δ
2

δ
2

0

δ
2

δ
2

δ
2

0

 .

(5)

The corresponding elastic energy on deformation parame-

ter δ for each stain tensor can be written as [41]

∆U(ηA) = 1

2

C
11
δ2 + 1

6

C
111
δ3,

∆U(ηB) = (C
11
+ C

12
)δ2 + ( 1

3

C
111

+ C
112

)δ3,

∆U(ηC) = (

3

2

C
11
+ 3C

12
)δ2 + ( 1

2

C
111

+ 3C
112

+ C
123

)δ3,

∆U(ηD) = (

1

2

C
11
+

1

2

C
44
)δ2 + ( 1

6

C
111

+

1

2

C
144

)δ3,

∆U(ηE) = (

1

2

C
11
+

1

2

C
44
)δ2 + ( 1

6

C
111

+

1

2

C
155

)δ3and

∆U(ηF) = 3

2

C
44
δ2 + C

456
δ3.

(6)

In the present work, the computational approach is based

on the density functional theory (DFT) as implemented

in the highly e�cient Vienna ab initio simulation pack-

age (VASP) developed at the Institute für Materialphysik

of Universität Wien [46–48]. The e�ects of the exchange-

correlation functional are treated with the generalized

gradient approximation (GGA) of Perdew-Burke-Ernzerhof

(PBE) [49]. A plane-wave basis set is employed within

the framework of the projector augmented wave (PAW)

method [50]. Since high accuracy is needed to evaluate the

TOECs, the k-point meshes (23 × 23 × 23) and the 600 eV

energy cuto� of thewavefunction based onour test are em-

ployed to calculate the temperature dependent SOECs and

TOECs for all our calculated AgRE (RE=Sc, Tm, Er, Dy, Tb)

intermetallics. The total energy is converged numerically

to less than 1×10

−6

eV/atomwith respect to electronic self-

consistency.

Phonon calculations are performed for intermetallic

compounds AgRE (RE=Sc, Tm, Er, Dy, Tb) by using the su-

percell method with the force constants predicted by the

VASP code ¹ in the framework of density-functional per-

turbation theory (DFPT) while the phonon properties are

calculated by the PHONOPY package² [51]. The chosen su-

percell size strongly in�uence the thermal properties. To

obtain a reasonable supercell size, we compared the vibra-

tional free energies of the 3 × 3 × 3 supercell with those

of a 5 × 5 × 5 supercell at 300 K and 1000 K. We discov-

ered that the energy �uctuations between the 3 ×3×3 and

5 × 5 × 5 supercells are less than 0.01%. Hence, the super-

cell size consisting of 3 ×3×3 unit cells with 54 atoms and

the k-point scheme with 7 ×7 ×7 grid meshes for Brillouin

zone are employed to calculate the phonon frequency. In

addition, a smearingwith 0.05 eV is employed to deal with

the possible convergence problems for all the intermetal-

lic compounds. Formore details of the temperature depen-

dent SOECs calculations, see Ref. [28, 29].

3 Results and discussion

3.1 High temperature e�ect on the SOECs

The calculated equilibrium lattice constants a, elastic con-
stants Cij, and the elastic anisotropy factors A at T = 0 K

for B2-AgRE (RE=Sc, Tm, Er, Dy, Tb) have been listed in Ta-

ble 1 along with the available experimental data [5, 52, 53]

and other theoretical values [16]. As can be seen from Ta-

ble 1, the present calculated lattice constants increasewith

decreasing rare-earth atom number. Comparison with ex-

perimental lattice constants [5], the present calculated lat-

tice constants are in fairly good agreement with the exper-

1 G. Kresse, M. Marsman, J. Furthmüller, VASP the Guide,

http://cms.mpi.univie.ac.at/vasp/

2 A. Togo, Phonopy, http://phonopy.sourceforge.net/
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imental data within 1.0%. The lattice constants of AgSc,

AgTm, AgEr, AgDy and AgTb obtained by Tao et al. [16] are
3.436 Å, 3.586 Å, 3.601 Å, 3.633 Å and 3.649 Å, respectively.

Obviously, the present lattice constants of AgRE are almost

exactly the same as the results obtained by Tao et al. [16].
The present calculated elastic constants for B2-AgRE

(RE=Sc, Tm, Er, Dy, Tb) are also in good agreement with

the theoretical values [16]. However, for AgTm and AgDy,

the present calculated elastic constants C
11

and C
12

are

smaller than the experimental values [52, 53], but the elas-

tic constants C
44

are very close to the experimental data

[52, 53]. All the di�erences between the calculations and

experiments are within 13%. It should be mentioned that

most of the experimental data of elastic constants are usu-

ally reported as isentropic elastic constants, therefore, the

isothermal elastic constants obtained here must be con-

verted to the isentropic elastic constants [15]. The calcu-

lated isentropic elastic constants CS
11
, CS

12
and CS

44
as a

function of temperature in the range of 0-1000 K for B2-

AgRE (RE=Sc, Tm, Er, Dy, Tb) are shown in Figure 1. To

judge that our calculations are reasonable, the temper-

ature dependent CSij for benchmark metal Ag have also

been calculated, and our calculated results are shown

in Figure 1(a) along with the available experimental val-

ues taken from ultrasonic measurements [54]. Comparing

our calculated results with the experimental values for

the benchmark metal Ag, we can test the accuracy of the

method and the precision of our calculations for the un-

known values of temperature dependent CSij for B2-AgRE

(RE=Sc, Tm, Er, Dy, Tb). As shown in Figure 1, it is apparent

that the elastic constants CSij for all calculated AgRE inter-

metallics decrease monotonically with increasing temper-

ature, since thermal expansionmay soften the elasticmod-

uli at high temperature. There is abundant experimental

evidence that lends support to the approximation, e.g. ob-

servations of the temperature dependent isothermal bulk

modulus [55], Elinvar e�ect [56] and the isentropic bulk

modulus and shear modulus [57]. We also �nd that the

trend of CSij is close to linearity at higher temperature and

zero slope at zero temperature. Besides, it is found that the

values of CS
11

decrease to slightly larger than CS
12

and CS
44
.

The elastic constant CS
11

represents elasticity in length. A

longitudinal strain causes a change in CS
11
. However, the

elastic constants CS
12

and CS
44

are related to the elasticity in

shape, which is a shear constant. The requirement of me-

chanical stability in a cubic crystal leads to the following

relations on the elastic constants, C
11
− C

12
> 0, C

11
> 0

and C
44

> 0 [58]. Our values of the elastic constants for

all researchedAgRE intermetallics as shown in Figure 1 are

satis�edwith these stability conditions in the temperature

range of 0-1000 K.

As is well known, cubic crystals have elastic

anisotropy as a result of the fourth rank tensor property

of elasticity. The elastic anisotropic parameter is related

to the elastic constants as A = 2CS
44
/(CS

11
− CS

12
). It is

convenient to obtain the elastic anisotropic parameters

A as a function of temperature for B2-AgRE (RE=Sc, Tm,

Er, Dy, Tb) from the calculated temperature dependent

elastic constants. In Figure 2, we show the temperature

dependence of the elastic anisotropic parameters A in the

temperature range of 0-1000K, fromwhichwe can see that

the elastic anisotropic parameters A of B2-AgRE (RE=Sc,

Tm, Er, Dy, Tb) decrease with increasing temperature. We

also �nd AgRE (RE=Sc, Tm, Er, Dy, Tb) exhibit high elas-

tic anisotropy at zero temperature and the degree of the

anisotropy decreases with increasing temperature.

3.2 High pressure e�ect on the SOECs via
the TOECs

As far as calculations of TOECs are concerned, extremely

good convergence of parameters included cuto� energy

and k-points gird size governing the accuracy of compu-

tations is required. Taking AgEr as an example, Figure 3(a)

and (b) show that two sample elastic constants C
111

and

C
112

converge with the k-point grid size and the cuto� en-

ergy, respectively. For the selected parameters (EAgEr
cuto�

=

600eV and 23 × 23 × 23 k-point mesh size) in our calcu-

lations, the relative di�erence between successive values

of examined constants is lower than 1 GPa. The conver-

gence tests of k-point grid size and cuto� energy (see in

Figure 3) show that we obtain very reliable information of

the TOECs for our researched rare-earth intermetallic com-

pounds AgRE (RE=Sc, Tm, Er, Dy, Tb) with B2 structure.

The usage of PAW formalism chosen to solve the Kohn-

Sham (KS) equations seems not to in�uence the results sig-

ni�cantly [39]. In addition, we use the GGA-PBE exchange-

correlation functional which is commonly considered to

be one of the best in the market [39]. In essence, we pro-

vide very reliable information of the TOECs for intermetal-

lic compounds AgRE (RE=Sc, Tm, Er, Dy, Tb) in Table 2.

Unfortunately, there are no experimental data and theo-

retical values of the TOECs for comparison until now. Our

results need to be veri�ed accurately in future work.

We employ the method of homogeneous deformation

strain combined with the �rst-principles strain-energy re-

lations calculations to determine the TOECs. The homo-

geneous deformation strains used are usually simple de-

formation modes such as uniaxial tensor or compression,

simple or pure shear, and other combinations of homoge-

neous strains. Interested reader should refer to [39–41] for
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Table 1: The present calculated lattice constants a (Å), elastic constants Cij (GPa) and elastic anisotropy parameters A for B2-AgRE (RE=Sc,
Tm, Er, Dy, Tb) at T = 0 K compared to previous computed results and experimental data. Note that CSij = C

T
ij = Cij at T=0K.

AgSc AgTm AgEr AgDy AgTb
a 3.440a, 3.436b,

3.412c
3.580a, 3.586b,
3.550c

3.608a, 3.601b,
3.584c

3.617a, 3.633b,
3.612c

3.653a, 3.649b,
3.627c

C
11

108.9a, 106.6b 103.2a, 100.1b,
110.4d

101.0a, 102.7b 95.9a, 98.1b, 106.9e 93.03a, 94.8b

C
12

64.7a, 70.2b 54.9a, 58.3b, 60.4d 53.9a, 57.1b 52.2a, 55.3b, 59.8e 51.5a, 54.6b

C
44

43.6a, 42.4b 38.5a, 37.1b, 39.0d 37.2a, 36.5b 35.6a, 35.3b, 36.1e 34.5a, 34.5b

A 1.97a, 2.33b 1.59a, 1.78b, 1.56d 1.58a, 1.60b 1.63a, 1.65b, 1.53e 1.66a, 1.71b

a

This work.

b

Ref. [16] from �rst-principles calculations.

c

Ref. [5] from experiment.

d

Ref. [52] from experiment.

e

Ref. [53] from experiment.
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Figure 1: The isentropic elastic constants as a function of temperature for Ag, AgSc, AgTm, AgEr, AgDy, AgTb. The solid, dashed-dotted, and
dashed curves denote the present values of CS

11

, CS
12

and CS
44

, respectively. For Ag, the open symbols represent the corresponding values of
ultrasonic measurements by Neighbours and Alers [54].

Table 2: The predicted results of the third-order elastic constants (TOECs) for B2-AgRE (RE=Sc, Tm, Er, Dy, Tb) intermetallic compounds. All
data are in GPa.

AgSc AgTm AgEr AgDy AgTb
C
111

-956.6 -920.0 -857.8 -773.3 -690.1
C
112

-304.6 -260.1 -242.7 -252.9 -240.2
C
144

-341.7 -339.5 -174.0 -332.1 -305.7
C
155

-222.4 -193.8 -217.5 -176.6 -161.9
C
123

-210.1 -206.3 -326.8 -189.3 -176.2
C
456

-161.7 -159.5 -149.6 -151.1 -141.0
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Figure 3: Sample convergence tests for the TOECs in AgEr. (a)
The dependence of the TOECs C

111
and C

112
on the density of k-

points mesh (energy cuto� of 600 eV is applied for all points). (b)
The dependence of the TOECs C

111
and C

112
on the cuto� energy

(Monkhorst-Pack sampling 23 × 23 × 23 is used for all points).

further details on the calculations. Another interesting is-

sue is to examine the range of deformations that the third-

order e�ects dominant the properties of solids. In Figure 4,

we compare energy values obtainedwithin linear andnon-

linear elasticity and DFT results for six sets of deformation

in AgEr crystal. The six sets of deformation employed here

are similar to those in Ref. [42]. It is apparent to see that lin-

ear elasticity is not su�cient for strains larger than approx-

imately 2.5% and the third-order e�ects must be consid-

ered. It is alsoworth noting that for AgEr and examined La-

grangian strains up to 8.0%, our �tted curves are in good

agreement with the DFT data from �rst-principles calcula-

tions. The other intermetallic compounds AgRE have the

properties similar to those in AgEr.

The pressure dependence of the SOECs is also very

useful for AgRE intermetallics since there are no experi-

mental values available. Usually, it is su�cient to consider

only linear terms in the external hydrostatic pressure and

the pressure dependent Cij can be expressed as Cij(P) ≈
Cij + C′ijP [39]. Naturally, the information about pressure

derivative C′ij can be recovered from TOECs and they can

be expressed as C′
11

= −(C
111

+2C
112

+2C
11
+2C

12
)/(C

11
+

2C
12
), C′

12
= −(2C

112
+ C

123
− C

11
− C

12
)/(C

11
+ 2C

12
) and

C′
44

= −(2C
155

+ C
144

+ C
11

+ 2C
12

+ C
44
)/(C

11
+ 2C

12
).

The calculated pressure derivatives C′ij based on our esti-

mates for SOECs and TOECs are presented in Table 3. In

Ref. [59], the followingmethod for the determination of the

pressure-dependent SOECs has been used. First, applying

the hydrostatic strain to a crystal, and then additionally

deforming to the same crystal obtain the pressure depen-

dent elastic constants. The �rst principles calculations for

the total elastic energy combined with the strain-energy

relations will enable us to determine Cij(P). Łopuszyński
et al. [39] have employed the ab initio calculations to de-

termine the pressure derivatives for selected semiconduc-

tors. Therefore, we believe that themethod used in our pa-

per is accurate. The static elastic constants as a function of

pressure are presented in Figure 5. Obviously, all the elas-

tic constants increasemonotonically with increasing pres-

sure and the requirement of mechanical stability in the

pressure range of 0-10 GPa is satis�ed for AgRE. Further,

the elastic anisotropy parameters A = 2C
44
/(C

11
− C

12)

as a function of pressure can be calculated on the basis

of the pressure dependent SOECs. In Figure 6, we show

the pressure dependence of the elastic anisotropic param-

eters A in the range of 0-10 GPa, from which we can in-

fer that all the AgRE intermetallic compounds exhibit low

elastic anisotropy at zero pressure and that the degree of

anisotropy increases with pressure.
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Figure 4: The strain energy relations as a function of linear strain parameter δ for AgEr cubic crystal. Circle points denote results of DFT
computations; solid and dashed lines represent the curves obtained from nonlinear and linear elasticity theory, respectively. (a), (b), (c),
(d), (e), and (f) describe Lagrangian strains ηA, ηB, ηC, ηD, ηE, and ηF , respectively.
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Figure 5: The static elastic constants of AgSc, AgTm, AgEr, AgDy and AgTb as a function of pressure. The solid, dashed-dotted, and dashed
curves denote the present values of C

11
, C

12
and C

44
, respectively.
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Figure 6: The elastic anisotropy parameters A as a function of pres-
sure for AgSc, AgTm, AgEr, AgDy and AgTb.

Table 3: Theoretical predictions for the pressure derivatives of
second-order elastic constants (SOECs) for B2-AgRE (RE=Sc, Tm,
Er, Dy, Tb) intermetallic compounds.

AgSc AgTm AgEr AgDy AgTb
C′
11

5.11 5.28 4.95 4.91 4.49
C′
12

4.17 4.15 4.63 4.21 4.09
C′
44

2.12 2.23 1.74 2.24 2.04

4 Conclusions

In summary, the �rst principles calculations have been

performed to investigate high temperature and pressure

e�ects on the elastic properties of the AgRE (RE=Sc, Tm,

Er, Dy, Tb) intermetallic compounds with B2 structure. In

the temperature range of 0-1000K, the SOECs follow a nor-

mal behavior that those decrease with increasing temper-

ature and approach linearity at higher temperature and

zero slope at 0 K. The temperature dependence of the elas-

tic anisotropic parameters A in the range of 0-1000 K has

been calculated from the temperature dependent SOECs.

The elastic anisotropic parameters A of B2-AgRE (RE=Sc,

Tm, Er, Dy, Tb) decrease with increasing temperature and

the degree of the anisotropy decreases with temperature.

Pressure dependent SOECs have also been investigated on

the basis of the TOECs. Convergence tests of k-point grid
size and cuto� energy show that we obtain very reliable

information of the TOECs for our researched rare-earth in-

termetallic compounds AgRE (RE=Sc, Tm, Er, Dy, Tb) with

B2 structure. We also calculate the pressure dependence

of the elastic anisotropic parameters A in the range of 0-10

GPa, and �nd that all the AgRE intermetallic compounds

exhibit low elastic anisotropy at zero pressure and that the

degree of anisotropy increase with pressure.
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