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Abstract: This paper considers a novel approach to solv-
ing the general propagation equation of optical pulses in
an arbitrary non-linear medium. Using a suitable change
of variable and applying the Adomian decomposition
method to the non-linear Schrédinger equation, an ana-
Iytical solution can be obtained which takes into account-
parameters such as attenuation factor, the second order
dispersive parameter, the third order dispersive parameter
and the non-linear Kerr effect coefficient. By analysing the
solution, this paper establishes that this method is suit-
able for the study of light pulse propagation in a non-linear
optical medium.
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1 Introduction

The Non-Linear Schrédinger Equation (NLSE) remains an
important fundamental equation to decribe optical pulse
propagation in non-linear dispersion media. The NLSE is
obtained from Maxwell’s equations under the slowly vary-
ing envelope approximation. Owning to the complexity of
the partial differential equation, only a few exact solutions
to the NLSE are known.

In the absence of a general solution it is often con-
venient to experiment with models to obtain information
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on the envelope. In a series of remarkable papers [1-3]
solutions to NLSEs are considered using a variety of ap-
proaches. These methods can be classified into two broad
categories known as the finite-difference methods and the
pseudo spectral methods. The split-step Fourier method is
a finite-difference method which has recently been used
extensively due to its faster calculation speedcompared to
other methods. This paper considers the use of the Ado-
mian decomposition method for solving the NLSE for pulse
propagation in non-linear media. It has previously been
used to solve a wide range of physical problems [4-7] and
is a semi-exact method which does not require lineariza-
tion or discretization. The method has gone through a se-
ries of modification in the following references [8-16]. An
advantage of this method is that it can provide analyti-
cal approximation or an approximated solution to a wide
class of non-linear equations without linearization, per-
turbation, closure approximation or discretization meth-
ods. Its abilities attracted many authors to use this method
for solving physical problems.

In this paper analytical solutions to NLSEs are investi-
gated by using the Adomian decomposition method, tak-
ing into account the input pulse propagation and param-
eters such as attenuation factor, the second order disper-
sive parameter, the third order dispersive parameter and
the non-linear Kerr effect coefficient. The rest of this paper
is organized as follows: the next section presents details of
the model and the Adomian decomposition method, sec-
tion 3 compares the results using this method to classic an-
alytical solutions and the paper is finished with conclud-
ing remarks.

2 General theory and analytical
results
The optical pulse propagation in optical medium includ-

ing loss, chromatic dispersion and non-linear effects will
follow the NLSE [1]
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where A is A(z, T) which represents the slowly varying en-
velope of the optical pulse, A(0, T)is the original input op-
tical pulse and z is the spatial coordinate i.e. the distance
of transmission. T denotes the temporal coordinate in the
so-called retarded frame that moves at the speed of the
group velocity, T = t - z/vg, and v, is the group velocity.
The following parameters a, 5, B3, v represent the atten-
uation factor, the second order dispersive parameter, the
third order dispersive parameter and the non-linear Kerr
effect coefficient respectively.

For simplicity, the following normalization processing
is applied to A(z, T) zand T; A(z T) =/PoU(zo, 1), 2o =
£, T=1 Lp= | o Ly = b5 N? = 22 where L is the
dispersion length and Lyisthe non-hnear length. By using
these transformations, U is found to satisfy the following
equation, with the initial pulse profile given by:

ou | aLDU isgn(B2) 0°U _ sgn(B3) B3| 0°U _
aZ() 2 aTz 6T0 ‘,32| oT13
JURge
iN?|UPU;  U(zo, T)|5pm0 = e 1107 3)

where sgn() stands for signum function and U(0, 7) the
corresponding Gaussian input optical pulse, C a chirp pa-
rameter.

2.1 Analytical solution for g3 = 0

In this subsection, the NLSE is solved for the particular
case when 83 = 0. In this case, setting: n = €zo + 7, no =
Nze=0 = T, M —Mo =&z0, f(n) = Ul(zo, 7) for small positive
&, equation (3) reduces to the following non-linear func-
tional equation:

f-6()=p; (4)

where

n
G(f) = 2ie / f(©)dEsgn(B)
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In order to obtain the analytical solution of the equa-
tion (4) the Adomian method is used, where G is a non-
linear operator from a Hilbert space H into H, p is a given
function in H. In the solution f satisfies (4) and it is as-
sumed that (4) has a unique solution for every p belong-
ing to H. The Adomian method consists in representing f
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as follows [4-8]

f = Zf ne (6)
n=0
The nonlinear operator G is decomposed as follows
6() =" An, @)
n=0

where the A, are functions (Adomian’s polynomials) of
fo, ..., fn that are obtained by writing:

q= io/l"fn, (ZA"fn) = ZA"An. ®
n=0 n=0

A is a parameter introduced for convenience. From (8) the
values of A, are deduced by the formulae

nlAy = dd—;, {G(im)} ,
i=0

A=0

n=0,1,2,3,... (9

Thus, f, and A, can be computed recurrently using the fol-
lowing reletionships:

fo=p
fi=40
fn = An—l

For reasons of simplicity, if f'(o) = ief(no)sgn(B,) is cho-
sen as the integral then f(0) = U(0,T) = e 1HO% and
fo, f1and the 2-term approximation of f = " . fn can be
written in the form:

o2
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Since A(zp, T) = /PoU(zo, 1), it follows

1
—e"z3 -

NZ -72 (
+ e 3

(10)

6

2
6
_N2e T <€223 + 223)} +e [zo + Lén z3
2
21 gt
+N%e™ <3£zz(3) + mz())] }

_ L
|A(zo, T)|* = Poe TZ{ [1 +etz2 e LD i3

1D



DE GRUYTER OPEN

In order to evaluate the error of Adomian method, the sec-
ond order differential of the pulse amplitude is calculated,
giving:

f> =f1G'(fo) = G(fo)G' (fo), (12)

Without loss of generality, G is differentiable when f is
a real function. The amplitude of the pulse is given by:

|B(20, 7)%| = Ifo + f1 + f2|* whereas [A(zo, T)| = Ifo + f1|*.
The error is given by L B “4‘ x 100.
2 _ - 22 a 1 _0832(3)
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2.2 Analytical solution for 5 # 0

In this subsection, the analytical solution of the NLSE for
B3 # 0is calculated. In this case, setting a = 1aLp, b =
1sgn(B,), c= 6T‘ﬁfﬁ 1sgn(Bs), n=ezo+7, () = Ulzo, 7)
for small positive €. The equation (3) reduces to the follow-
ing non-linear functional equation f - G(f) = p, where

f=f)

ap=2 / fag+ / / f(o)dodg

Mo &

n g
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For reasons of simplicity f' (o) = ief(no)sgn(B2), f”’(no) =
-£2f(no) is chosen, taking in to account f(n0) = U(0, 1);
then fo, f1 and the 2-term approximation of f = > ., fn
in the form

2
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3 Results and Discussion

3.1 Case of the third order dispersion
coefficient 5 = 0

In Figure 1 a Gaussian pulse is evaluated using A(0, 7) =
Agexp (-12/2(1 + iC)) with a pulse width of Ty = 20 ps
and a chirp parameter, C, of 0. The other basic parameters
of the pulse are provided as follows: the pulse peak power
Py = 10 mW, the fiber loss a = 0 dB/km, the second order
dispersion coefficient is 8, = -4 ps?/km, 100 km, 200 km;
the non-linear Kerr coefficient v = 0 W=tkm™!, the third
order dispersion coefficient 83 = 0 ps®/km. The propaga-
tion distances are Okm, 100km and 200km and the control
parameter is € = 0.5. Figure 1 shows the following plots of
the calculated results using the Adomian decomposition
technique: the input pulse and the output pulse for 100
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input pulse
+ 100 km (analytical resuits)
200 km (analytical results)

O 100 km (our results)
O 200 km (our results)

Az T)PImw
(n

-10 ) =6 ) -2 0 2
Normalized time (T/T)

Figure 1: The input and output intensity profiles with respect to
normalized time for propagating distances z=100 km, 200 km re-
spectively obtained by the Adomian decomposition method and the
classical analytical solution.

and 200 km propagation distances. It is seen that the peak
power of the pulse is decreasing and the pulse is spread-
ing.

The shape of the pulses obtained by numerical results
calculated by the Adomian decomposition technique for
z=100 km by setting € = 0.5 have the same behavior as
the analytical results and those obtained by [1]; however
the FWHM of the pulse for our calculated results is less
than the analytical one. As the propagation distance in-
creases and becomes large for example when z=200 km),
the shape of the optical pulse changes considerably in-
side the non-linear optical medium. The Gaussian shape
is not conserved. In the analytical results, at this distance,
the shape is conserved. When the propagation distance is
larger, the chosen control parameter must be very small,
which is the real purpose of introducing this control pa-
rameter. Note, the intensity of the output can not exceed
that of the input pulse; there is no gain in wave propaga-
tion. In our calculations, Lp = Ly = 100 km. The disper-
sion effect will dominate if z ~ Lp and z < Ly, but when
the propagation distance is such that z ~ Ly and z < Lp
only non-linear effects dominate.

In Figure 2 the pulse has the following basic param-
eters: Top = 20 ps, Pp = 10 mW, a = 0 dB/km, 8, = -4
ps?/km, B3 = 0 ps?/km, the v = 1.0 W km™!. The trans-
mission distances are z=200 km, 300 km respectively and
the control parameter is € = 6.5 x 107>, Figure 2 shows the
results obtained by the Adomian decomposition technique
and via the rapid numerical difference recurrent formula
of NLSE and its application developed in [1]. For both val-
ues of propagation distances, the output pulses are con-
tained inside the input pulse.
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Figure 2: The input and output intensity profiles with respect to
normalized time for propagating distances z=200 km, 300 km re-
spectively obtained by the Adomian decomposition method and the
rapid numerical difference recurrent formula of NLSE.
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Figure 3: First order and second order approximations with respect
to normalized time for propagating distances z=100 km, 300 km
respectively obtained by the Adomian decomposition method.

Figure 3 shows the plot of the error in Adomian approx-
imation as a function of the normalized time. The maximal
error calculated numerically is 5%.

3.2 Case of the third order dispersion
coefficient B85 # 0

Figure 4 shows the plot of the calculated results using
the following parameters: Tp = 20 ps, Po = 10 mW,
« = 0.2 dB/km, B, = -4 ps?/km, v = 1 W'lkm,
B3 = 0.01 ps’/km. The propagation distances inside the
medium are 300km, 1000km and 2000km and the control
parameter £ = 1077, It can been seen that the pulse shape
is contained in the envelope of the initial Gaussian pulse.
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Figure 4: The input and output intensity profiles with respect to
normalized time for propagating distances z=300 km, 1000 km,
2000 km respectively obtained by the Adomian decomposition

method.

It is expected that the pulse would spread out as propaga-
tion distance increases.

In Figure 5 all parameters are the same as Figure 3
except the third order dispersion term which is 5 =
1 ps®/km. The propagation distances are 300 km, 500 km,
1000 km and 1500 km and the control parameter is € =
107°. As propagation distance increases, the intensity of
the pulse decreases.

Considering Figure 1, the criteria for choosing the con-
trol parametres are as follows:

0<2z<100 km, €<0.75
100<z<200 km, &£<0.56
200<2z<300 km, €<0.43
300 <2< 400 km, €<0.335
400 <z< 500 km, €<0.273
For Figure5, the criteria are:
0<z<100 km, €=10"
z>100 km, e=10"°

In Figure 1 and Figure 2, the attenuation is zero so it
is expected that the pulse energy is conserved through-
out propagation. Using the results given in Figure 1 and
Figure 2 the calculated energy of the input pulse is equal
to 12.53 units using the Simpson quadrature Matlab func-
tion. This energy is the same as the energy of the output
pulses with propagation distances of 10 km, 50 km, 75 km,
and 100 km. The control parameter is equal to 0.5 as in
Figure 1. In conclusion, the Adomian method used is well
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Figure 5: The input and output intensity profiles with respect to
normalized time for propagating distances z=300 km, 500 km, 1000
km, 1500 km respectively obtained by the Adomian decomposition
method.

suited for solving NLSEs. It is evident that the energy of
the pulse is conserved when the propagation distance is
less than 100 km. In Figure 2, which shows propagtion dis-
tances greater than 100 km, energy is not conserved. This
concern will form the basis of future study.

4 Concluding remarks

This work applies the Adomian decomposition technique
to solve the NLSE for propagation of a short optical pulse
inside a non-linear medium by taking into account atten-
uation factor, second order dispersive parameter, third or-
der dispersive parameter and non-linear Kerr effect. These
parameters influence the shape of the pulse during propa-
gation. The established Adomian decomposition formula
is a scientific, reasonable and effective analytical method
for the study of light pulse propagation in an optical
medium even though in our case the solution depends
strongly on the control parameter and the propagation
distance. These parameters have important effects on the
propagation of the pulse in the medium. When the width of
the pulse is small, these parameters become more impor-
tant. Further study will consider pulses containing a few
optical cycles by solving the generialized NLSE.
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