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Abstract: In this paper, the magnetohydrodynamic
(MHD) Maxwell fluid past a stretching plate with suc-
tion/injection in the presence of nanoparticles is investi-
gated. The Lie symmetry group transformations are used
to convert the boundary layer equations into non-linear
ordinary differential equations. The dimensionless gov-
erning equations are solved numerically using Bvp4c with
MATLAB, which is a collocation method equivalent to
the fourth order mono-implicit Runge-Kutta method. The
effects of some physical parameters, such as the elas-
tic parameter K, the Hartmann number M, the Prandtl
number Pr, the Brownian motion Nb, the thermophoresis
parameter Nt and the Lewis number Le, on the velocity,
temperature and nanoparticle fraction are studied numer-
ically especially when suction and injection at the sheet
are considered.

Keywords: Lie group; Maxwell fluid; MHD; stretching sur-
face; suction/injection

PACS: 02.20.Sv, 02.60.Lj, 47.15.Cb

DOI 10.1515/phys-2015-0017
Received September 5, 2014; accepted November 7, 2014

1 Introduction
During last few years the boundary layer flow behaviours
of different types of fluids attracted the interest of many
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researchers. Especially the interest of non-Newtonian flu-
ids is increasing substantially due to the large number
of practical applications in industrial and manufactur-
ing processes. Because of the complexity of these flu-
ids, many types of constitutive equations have been con-
structed to exhibit the properties of the non-Newtonian
fluids [1–9]. For example, Maxwell model, a subclass of
non-Newtonian fluids, can predict the stress relaxation
and therefore has become more popular [10, 11]. Noor [12]
presented analysis of the MHD flow of a Maxwell fluid
past a vertical stretching sheet in the presence of ther-
mophoresis and chemical reactions. Liu et al. [13] studied
the time periodic electroosmotic flow (EOF) of generalized
Maxwell fluids between two microparallel plates and an
analytical solution of EOF velocitywas presented. Hayat et
al. [14] constructed an analytic solution for unsteady MHD
flow in a rotatingMaxwell fluid through a porousmedium.
Nadeem et al. [15] studied numerically two dimensional
boundary-layer flows and the heat transfer of a Maxwell
fluid past a stretching sheet.

The investigation of flow due to a stretching sheet
also has received great attention due to the various indus-
trial applications, such as in the manufacturing of poly-
mer sheets, filaments and wires. During the manufactur-
ing process, the moving sheet is assumed to stretch on its
own plane, and the stretched surface interacts with the
ambient fluid both mechanically and thermally. Initially,
Sakiadis [16] introduced the concept of a boundary layer
flow over a stretching surface. Crane [17] modified the idea
introduced by Sakiadis and extended this idea for both lin-
ear and exponentially stretching sheets. In addition, a few
recent investigations have beenmade for the low flow over
a stretching surface including the various effects described
in Refs. [18–21]. For example, Nadeem et al. [18] investi-
gated the stagnation point flowof a viscous fluid towards a
stretching sheet andobtained the analytical solutionof the
boundary layer equation by homotopy analysis method.
Chen [20] analyzedmagneto-hydrodynamicmixed convec-
tive flow and heat transfer of an electrically conducting,
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power-law fluid past a stretching surface in the presence
of heat generation/absorption and thermal radiation.

Lie group analysis can be used to obtain similarity
transformations that can reduce a systemof governingpar-
tial differential equations and associated boundary condi-
tions to a systemof ordinary differential equations [22–24].
This technique has been applied by many researchers to
solve some partial differential problems [25–29].

Motivated by above works, in this paper, we present a
general procedure for applying the one-parameter group
of transformations to the MHD Maxwell fluid past a
stretching plate in the presence of nanoparticles. The
present study is to extend the work done by Nadeem et
al. [15] to the case of the flow past a porous plate with suc-
tion/injection. As a result, we obtain the similarity trans-
formation by Lie group analysis. Finally, the results for
some physical parameters of the velocity, temperature dis-
tribution and nanoparticle fraction are investigated nu-
merically when the suction or injection at thewall are con-
sidered.

2 Preliminaries
Consider a two-dimensional steady incompressible fluid
flowingpast a stretchingplatewith suction/injection.Here
we assume that x̄-axis is measured along the horizontal
stretching surface and the flow is assumed to be confined
to ȳ > 0. The sheet is stretched with the linear velocity
ū(x̄) = ax̄, where a > 0 is constant. A uniform constant
magnetic surface field is applied normal to the stretching
surface. The effects of the induced magnetic field are neg-
ligible. The boundary layer equations of the Maxwell fluid
with nanoparticles are [15]:

∂ū
∂x̄ + ∂v̄∂ȳ = 0, (2.1)

ū ∂ū∂x̄ + v̄ ∂ū∂ȳ =ν
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(2.4)

where ū and v̄ denote the velocities in the x̄ and ȳ direc-
tions, respectively, ν is the kinematic viscosity of the fluid,
κ0 is the relaxation time of the Upper-Convected Maxwell
fluid, σ is the electrical conductivity, B0 is themagnetic in-
duction, ρ is the density of the fluid, α is the thermal diffu-
sivity, T is the fluid temperature, C is the nanoparticle fac-
tion, Tw and Cw are the temperature of fluid and nanopar-
ticle faction at the wall, respectively, DB is the Brownian
diffusion, DT is the thermophoretic diffusion coefficient,
and τ is the ratio between the effective heat capacity of the
nanoparticlematerial and heat capacity of the fluid.When
ȳ tends toward infinity, the ambient values of T and C are
denoted by T∞ and C∞, respectively.

The corresponding boundary conditions are:

ū = ax̄, v̄ = vw , T = Tw , C = Cw at ȳ = 0,
ū = 0, T = T∞, C = C∞ as ȳ →∞,

(2.5)

where vw is the injection or suction velocity at the wall.
The followingnon-dimensional variables canbe intro-

duced,

x = x̄√︀
ν/a

, y = ȳ√︀
ν/a

, u = ū√
aν

, v = v̄√
aν

,

Θ = T − T∞
Tw − T∞

,Φ = C − C∞
Cw − C∞

,
(2.6)

and the stream function Ψ defined by u = ∂Ψ
∂y and

v = − ∂Ψ∂x leads to Eqs.(2.1)-(2.4) taking the following non-
dimensional form

ΨyΨxy − ΨxΨyy − Ψyyy − K
(︀
(Ψy)2Ψxxy + (Ψx)2Ψyyy

− 2ΨxΨyΨxyy
)︀
+M2(Ψy − KΨxΨyy) = 0, (2.7)

ΨyΘx − ΨxΘy −
1
Pr (Θxx + Θyy) − Nb(ΦxΘx + ΦyΘy)

− Nt((Θx)2 + (Θy)2) = 0, (2.8)

LePr(ΨyΦx−ΨxΦy)−(Φxx+Φyy)−
Nt
Nb (Θxx+Θyy) = 0, (2.9)

where K = aκ0(≥ 0) is the elastic parameter, M2 = σB20/ρa
is the Hartmann number, Pr = ν/α is the Prandtl number,
Nb = τDB(Cw −C∞)/ν is Brownianmotion parameter, Nt =
τDT(Tw−T∞)/(νT∞) is the thermophoresis parameter, and
Le = α/DB is the Lewis number.

The boundary conditions can be written as

Ψy = x, Ψx = S, Θ = 1,Φ = 1 at y = 0,
Ψy = 0, Θ = 0,Φ = 0 at y →∞,

(2.10)

where S = −vw/
√
av (S > 0 corresponds to suction and

S < 0 corresponds to injection).



The analysis of the suction/injection on the MHD Maxwell fluid | 137

3 Lie point symmetries of the
problem

Let us consider a one-parameter Lie group of infinitesimal
transformations

x* = x + εξ (x, y, Ψ , Θ,Φ) + O(ε2),
y* = y + εζ (x, y, Ψ , Θ,Φ) + O(ε2),
Ψ* = Ψ + εψ(x, y, Ψ , Θ,Φ) + O(ε2),
Θ* = Θ + εθ(x, y, Ψ , Θ,Φ) + O(ε2),
Φ* = Φ + εϕ(x, y, Ψ , Θ,Φ) + O(ε2),

(3.1)

where ε is a small parameter.
A system of partial differential equations (2.7)-(2.9) is

said to admit a symmetry generated by the vector field

Γ ≡ ξ ∂∂x + ζ
∂
∂y + ψ

∂
∂Ψ + θ ∂

∂Θ + ϕ ∂
∂Φ , (3.2)

if it is left invariant by the transformation
(x, y, Ψ , Θ,Φ) → (x*, y*, Ψ*, Θ*,Φ*) given by (3.1).

The vector Γ given by (3.2) is said to be a Lie point sym-
metry vector field for (2.7)-(2.9) if
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− 2ΨxΨyΨxyy) +M2(Ψy − KΨxΨyy)) = 0, (3.3)
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1
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Γ [3](LePr(ΨyΦx−ΨxΦy)−(Φxx+Φyy)−
Nt
Nb (Θxx+Θyy)) = 0,

(3.5)
where
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(3.6)
is the third prolongation of the vector Γ.

From Eqs. (3.3)-(3.5), the following system of linear
partial differential equations is given

ψyΨxy + ψxyΨy − ψxΨyy − ψyyΨx − ψyyy

− K(2ψyΨyΨxxy + ψxxy(Ψy)2 + 2ψxΨxΨyyy
+ ψyyy(Ψx)2 − 2ψxΨyΨxyy − 2ψyΨxΨxyy − 2ψxyyΨxΨy)
+M2(ψy − KψxΨyy − KψyyΨx) = 0,

(3.7)

ψyΘx + θxΨy − ψxΘy − θyΨx −
1
Pr (θ

xx + θyy)

− Nb(ϕxΘx + θxΦx + ϕyΘy + θyΦy)
− Nt(2θxΘx + 2θyΘy) = 0,

(3.8)

LePr(ψyΦx + ϕxΨy − ψxΦy − ϕyΨx) − (ϕxx + ϕyy)

− NtNb (θ
xx + θyy) = 0. (3.9)

The components ψx , ψy , ψxy , ψyy , ψxxy , ψxyy , ψyyy,
θx , θy, θxx, θyy , ϕx , ϕy , ϕxx , ϕyy can be determined from
the following expressions

ψS = DSψ − ΨxDSξ − ΨyDSζ ,
θS = DSθ − ΘxDSξ − ΘyDSζ ,
ϕS = DSϕ − ΦxDSξ − ΦyDSζ ,
ψJS = DSψJ − ΨJxDSξ − ΨJyDSζ ,
θJS = DSθJ − ΘJxDSξ − ΘJyDSζ ,
ϕJS = DSϕJ − ΦJxDSξ − ΦJyDSζ ,

(3.10)

where S,J stand for x, y and the total derivatives Dx , Dy are

Dx ≡∂x + Ψx∂Ψ + Θx∂Θ + Φx∂Φ + Ψxx∂Ψx + Θxx∂Θx
+ Φxx∂Φx + Ψxy∂Ψy + . . . ,

Dy ≡∂y + Ψy∂Ψ + Θy∂Θ + Φy∂Φ + Ψyy∂Ψy + Θyy∂Θy
+ Φyy∂Φy + Ψxy∂Ψx + . . . .

(3.11)
Substituting (3.10) into (3.7) and then assuming the

coefficients of ΨxΨxy, ΨyΨyy, Ψx(Ψy)2Ψxxy, (Ψy)3Ψxxy,
ΨxΨyy to be zero, one obtains

ξy = 0, ζx = 0, ξΨ = 0, ζΨ = 0, ψΨ − ξx = 0. (3.12)

Then substituting (3.12) and (3.10) into (3.7) and letting
the coefficients of (Ψy)2, Ψy, Ψxy, Ψyy be zero, one can ob-
tains the following results again.

ψxΨ = 0, ψxy − ψyyΨ +M2ζx = 0,
(M2 + K)ψyy + ξyyy +M2ξy = 0,
ψy + 3ξyy +M2ψxΨ = 0,
(M2 + K)ψx + ψyΨ = 0.

(3.13)
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Similarly, substituting (3.10) into the energy and
nanoparticle fraction equations (3.8) and (3.9), and then
assuming the coefficients of Ψx and Ψy to be zero yields

θx = 0, θy = 0, ϕx = 0, ϕy = 0. (3.14)

From (3.12),(3.13) and (3.14) we have

ξ = a1x, ζ = a2, ψ = a1Ψ + a3, θ = a4, ϕ = a5.
(3.15)

If one assumes a1 = 1, a2 = a3 = a4 = a5 = 0, the
characteristic equations for the similarity transformations
will be

dx
x = dy

0 = dΨ
Ψ = dΘ

0 = dΦ
0 , (3.16)

then the similarity variable and functions can be obtained
from (3.16)

Ψ = xG(y), Θ = Θ(y), Φ = Φ(y). (3.17)

Substituting (3.17) into (2.7)-(2.9) obtains the following
ordinary equations

d3G
dy3 + KG2 d3G

dy3 + (1 +M2K)Gd
2G
dy2 − 2KG

dG
dy

d2G
dy2

−
(︂
dG
dy

)︂2
−M2 dG

dy = 0, (3.18)

d2Θ
dy2 + Pr[GdΘdy + NbdΘdy

dΦ
dy + Nt

(︂
dΘ
dy

)︂2
] = 0, (3.19)

d2Φ
dy2 + LePrGdΦdy + Nt

Nb
d2Θ
dy2 = 0. (3.20)

The boundary conditions (2.13) become

dG(0)
dy = 1, G(0) = S, Θ(0) = 1, Φ(0) = 1,

dG(∞)
dy = 0, Θ(∞) = 0, Φ(∞) = 0.

(3.21)

4 Numerical solutions and
discussion

Since equations (3.18)-(3.20) together with the boundary
conditions (3.21) are coupled nonlinear boundary value
problem, a numerical treatment would be more appro-
priate. Thus, these equations are solved numerically by
Bvp4c with MATLAB. Since the velocity changes sharply
in the boundary layer near the plate, this region with
sharp change makes this boundary value problem a rel-
atively difficult one. In order to resolve better the bound-
ary layer and obtain a more accurate solution, the relative

error tolerance on the residuals is defined to be 10−6(i.e.
RelTol=10−6) during the process of numerical computa-
tion. The results are presented graphically and in tables.

For the verification of accuracy of the applied numer-
ical scheme, a comparison of the present results corre-
sponding to −Θ′(0) and −Φ′(0) with the ones obtained
by Nadeem et al. [15] and Khan et al. [30] are presented
in Table 1, which shows a favorable agreement. Table 2
presents thenumerical values of −Θ′(0) and−Φ′(0) for var-
ious values of the Brownianmotion parameter Nb and the
thermophoresis parameter Nt when other parameters are
fixed. It can be observed that Θ′(0) is an increasing func-
tion of the thermophoresis parameter Nt and the Brown-
ian motion parameter Nb, respectively. However, Φ′(0) is
the increasing function of the thermophoresis parameter
Nt. When we consider the influence of the Brownian mo-
tion parameter Nb on Φ′(0), the case is different. Φ′(0) is
the decreasing function of the Brownian motion parame-
ter Nb.

In the following section, we will investigate the in-
fluence of different physical parameters on the velocity,
temperature distribution and nanoparticle fraction. To be-
gin with, we discuss the effects of the elastic parameter K
and the Hartmann number M on the velocity G′(y). Fig-
ure 1 shows that the velocity boundary layer for injection is
thicker than the one for suction. For the case of injection,
the boundary layer thickness reduceswith the greater elas-
tic parameter K. However, the boundary layer thickness
has increasing behavior with increasing the elastic param-
eter K when there exists suction. Figure 1 also reveals that
the velocity G′(y) is sensitive to the tiny change of the elas-
tic parameter K as there is suction at the wall. Figure 2
illustrates the effects of the Hartmann number on the ve-
locity. The boundary layer thickness decreaseswith the in-
creasing Hartmann number M for both injection and suc-
tion. Physically, the magnetic field is normal to the fluid,
so for greater values of the Harmann number, it increases
the resistance of the fluid flow.

Figures 3, 4 illustrate the effects of the thermophore-
sis parameter Nt and the Brownian motion parameter Nb
on the temperature distribution and the nanoparticle frac-
tion. No matter there exists suction or injection at the
wall, the values of temperatureΘ(y) andnanoparticle frac-
tion Φ(y) tend to zero as both of them are far away from
the wall. Furthermore, temperature Θ(y) is the increas-
ing function of the thermophoresis parameter Nt and the
Brownian motion parameter Nb. In physical meaning, the
enhancement of the Brownian motion can improve the
heat transfer.

Figure 5 shows the influence of Prandtl number on
the temperature distribution. When there is injection at
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Table 1: The comparison of −Θ′(0) and −Φ′(0) for Pr = 10, Le = 1 and Nb = 0.1

Present results, K = M = S = 0 K = M = 0 Nadeem et al. [15] Khan et al. [30]
Nt −Θ′(0) −Φ′(0) −Θ′(0) −Φ′(0) −Θ′(0) −Φ′(0)
0.1 0.952368 2.129391 0.9524 2.1294 0.9524 2.1294
0.2 0.693152 2.274048 0.6932 2.2732 0.6932 2.2740
0.3 0.520053 2.528702 0.5201 2.5286 0.5201 2.5286
0.4 0.402556 2.795254 0.4026 2.7952 0.4026 2.7952
0.5 0.321031 3.035231 0.3211 3.0351 0.3211 3.0351

Table 2: The values of −Θ′(0) and −Φ′(0) for S = 1, M = 0.5, K = 0.5,Pr = 3, Le = 5

Nt=0.2 Nt=0.4 Nt=0.6 Nt=0.8
Nb −Θ′(0) −Φ′(0) −Θ′(0) −Φ′(0) −Θ′(0) −Φ′(0) −Θ′(0) −Φ′(0)
0.2 1.713793 14.649150 1.365813 14.072039 1.109905 13.856683 0.919093 13.840343
0.4 1.017482 15.594233 0.810089 15.506259 0.657893 15.515114 0.544569 15.573292
0.6 0.595470 15.818806 0.473826 15.839852 0.384663 15.891683 0.318325 15.956364
0.8 0.344464 15.888933 0.274003 15.939527 0.222391 15.998269 0.184011 16.057833
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Figure 1: Effects of K on the velocity G′(y).

the wall, the temperature boundary layer becomes thin-
ner and is a decreasing function of Prandtl number. How-
ever, when there is suction at the wall, the temperature
is increasing function of Prandtl number. Physically, the
increase of Prandtl number also means the enhancement
of the heat transfer, which leads to the thermal boundary
layer becomeing thinner.

The effects of Lewis number Le, Prandtl number Pr
and thermophoresis parameter Nt on the nanoparticle
fraction Φ(y) are illustrated in Figures 6 – 8. It is ob-
served that the effects of above parameters exhibit differ-
ent trends as there is suction or injection at the plate. The
nanoparticle fraction is the decreasing function of Lewis
number and the Prandtl number, but the increasing func-
tion of the thermophoresis parameter when there is suc-
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Figure 2: Effects of M on the velocity G′(y).

tion at the wall. However, when there is injection at the
wall, the nanoparticle fraction changes its trends as the
variable y changes from zero to the infinity.

5 Conclusion
Using group-theoretical methods, we have investigated
the similarity solutions of MHD Maxwell fluid past a
stretching plate with suction/injection in the presence of
nanoparticles. By determining the transformation group,
we can obtain the information about the invariants and
symmetries of these equations. In turn,with the assistance
of these invariants and symmetries, the governing equa-
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Figure 6: Effects of Le on the nanoparticle fraction Φ(y).
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Figure 7: Effects of Pr on the nanoparticle fraction Φ(y).
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Figure 8: Effects of Nt on the nanoparticle fraction Φ(y).
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tions are reduced to a system of coupled nonlinear differ-
ential equations. The physical effects of different parame-
ters, such as the Hartmann number M,the elastic param-
eter K, the Prandtl number Pr, the Lewis number Le, the
Brownian motion parameter Nb, and the thermophoresis
parameter Nt, on velocity, temperature and nanoparticle
fraction are analyzed by graphs and discussed in detail.
Furthermore, one important conclusion can be drawn that
the influence of these parameters on the velocity, temper-
ature distribution and nanoparticle fraction is obviously
different when there is suction or injection at the plate.
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