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Abstract: This paper focuses on the single state feedback
stabilization problem of uni�ed chaotic system and cir-
cuit implementation. Some stabilization conditions will
be derived via the single state feedback control scheme.
The robust performance of controlled uni�ed chaotic sys-
tems with uncertain parameter will be investigated based
onmaximumandminimumanalysis of uncertain parame-
ter, the robust controller which only requires information
of a state of the system is proposed and the controller is
linear. Both the uni�ed chaotic system and the designed
controller are synthesized and implemented by an analog
electronic circuit which is simpler because only three vari-
able resistors are required to be adjusted. The numerical
simulation and control in MATLAB/Simulink is then pro-
vided to show the e�ectiveness and feasibility of the pro-
posedmethod which is robust against some uncertainties.
The results presented in this paper improve and generalize
the corresponding results of recent works.
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1 Introduction
In 1963, Lorenz found the �rst canonical chaotic system
[1]. Chaos has been found to be useful in analysing many
problems, due to the potential applications in economics,
physics, control theory, secure communication, informa-
tion processing, collapse prevention of power systems,
high-performance circuits and device, and so on, which
has been intensively studied in science and engineering.
A chaotic system is a nonlinear deterministic system that
displays complex, noisy-like and unpredictable behavior.
These motions are trajectories in which in�nite unsta-
ble periodic orbits (UPOs) are embedded. Chaos is gener-
ally undesirable in many �elds. This irregular and com-
plex phenomenon can lead systems to harmful or even
catastrophic situations. In these troublesome cases chaos
should be suppressed as much as possible or totally elimi-
nated. In fact, this is particularly signi�cant because most
realistic chaotic systems need to be operated in regular
regimes. Therefore controlling chaos has become one of
themost considerable research area in the nonlinear prob-
lems ranging from biology, physics and chemistry to eco-
nomics. An important challenge in chaos theory is the con-
trol of chaotic system, that is, to make the chaotic systems
reach steady states or regular behavior [2–4].

In 1990, Ott, Grebogi, and Yorke proposed the �rst ap-
proach of chaos control, that is, OGY approach [5], there-
after enormous research activities have been carried out
in chaos control by many researchers from di�erent disci-
plines, and lots of successful experiments have been re-
ported in nonlinear dynamics [6]. Indeed, chaos control
theory has advanced far beyond theoretical perspectives
to experimental realizations (see [7, 8] and the references
therein). For this reason, designing simple and available
control input is extremely relevant for experimental chaos
control. Besides the OGY method, many other control al-
gorithms have been proposed in recent years to control
chaotic systems, such as PC method [9–11], feedback ap-
proach [12, 13], adaptive control [14–16], linear state space
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feedback [17], backstepping method [18], nonlinear feed-
back control [19], sliding mode control [20, 21], neural
network control [22], fuzzy logic control [23], robust con-
trol [24–30], passivity theory control [31], adaptive passive
control [32], time-delay feedback approach [33, 34], multi-
ple delay feedback control [35], double delayed feedback
control [36], hybrid control [37], etc. These control algo-
rithms can be used to stabilize a desired unstable periodic
orbit (UPO) embedded within a chaotic attractor.

An important aspect of the problem of chaos con-
trol is how to realize the control of chaotic system by de-
signing a simple and physically available controller [38],
which is particularly signi�cant both for theoretical re-
search and practical applications. In practice, the prob-
lem of controller complexity is a very crucial issue and two
fundamental issues in this direction have been identi�ed
[38, 39]: one is that the cost implication and the density
requirement for designing controllers, the other is that the
need tomake the complexity of the controller to be, at least
comparable to, or less than, the device being controlled,
if the controlling technique is desired to achieve a useful
end far beyondmere scienti�c curiosity. Indeed, the entire
control goal would be untenable if a simple chaotic sys-
tem requires a massively complex controller like the con-
troller proposed in [40]. In order to solve it, some e�orts
have beenmade to dealwith this problem [41]. However, in
the formulation of the control problem, the proposed con-
trollers in previous works are, in most cases too complex
both in design and implementation and too single. Out-
standing among the various methods of chaos control is
adaptive control [15, 42], where the authors did not give
a condition to reduce the number of the feedback gains
(εi , i = 1, 2, 3). Although, this method can contain sin-
gle feedback gain in numerical simulations, it is only a nu-
merical result. The method in [43] is a modi�cation for the
method in [42], but the controller obtained by using the
method in [43] is more complex than that controller ob-
tained by our method, we shall give a concrete example
to demonstrate in Section 4.

In circuit design and implementation of aspects of
chaotic systems, the circuit implementation of the individ-
ual Lorenz system, Chen’s system and Lü system can be
found in [44–46] and [47, 48], respectively. In this paper,
we also focus on the circuit design and implementation of
the uni�ed chaotic system [49] so that di�erent attractors
can be obtained with simple adjusting. This new circuit is
based on the design in [48, 50]. However, it is simpler be-
cause only three variable resistors are required to be ad-
justed. In our experiments, it is illustrated that di�erent
chaotic attractors can be duly obtained by adjusting three
variable resistors in the circuit.

Motivated by the above discussion, the problemof sta-
bilizationof uni�ed chaotic systemsand circuit implemen-
tation will be investigated by using the single state feed-
back control and analog electronic circuit analysis in this
paper. First, partly improving and extending the previ-
ous chaos control techniques (see [43, 51–59]), the single
state feedback control is designed, some stabilization con-
ditions will be derived, some simpler controllers are de-
veloped. Then, the robust performance of controlled uni-
�ed chaotic systems with uncertain parameters will be in-
vestigated based on maximum and minimum analysis of
the uncertain parameter, and the present controller only
contains a single state feedback. Finally, a more standard-
ized and more uni�ed circuit of uni�ed chaotic systems is
developed. Furthermore, experiment of improved circuit
and numerical simulations are applied to verify the e�ec-
tiveness and feasibility of the proposed method. In fact,
the proposedmethod in this paper at least has advantages
over the method in the following two aspects: (a) The con-
troller obtained in this paper is simpler than the controller
obtained by previous method in [43]; (b) The utility of the
proposed method is easier to physically realize than the
method obtained in [50], that is, which ismore suitable cir-
cuit implementation.

The rest of the paper is organized as follows. Section 2
gives a mathematical description and analysis of uni�ed
chaotic systems. Sections 3-4 propose the main results of
this paper, the single state feedback controller is proposed
to stabilize of uni�ed chaotic systems in section 3, the ro-
bust stabilization of uncertain uni�ed chaotic system is
presented and investigated in section 4. Then, experiment
of circuit and numerical simulations results are also given
in Section 5 and 6, respectively. The paper will be closed
by a conclusion in section 7.

2 System analysis
Based on the Lorenz system, Lü system and Chen system,
the uni�ed chaotic system was proposed by Lü [49]. The
uni�ed chaotic system is described by

ẋ = (25α + 10)(y − x),
ẏ = (28 − 35α)x + (29α − 1)y − xz,
ż = xy − 8+α

3 z.
(1)

where [x, y, z]T is the state variables of uni�ed chaotic sys-
tem and α ∈ [0, 1] is a system parameter.

Due to the system (1) being chaotic for arbitrarily
α ∈ [0, 1] and the system (1) belonging to the general-
ized Lorenz chaotic system for 0 ≤ α < 0.8, the system (1)
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belonging to Lü chaotic system at α = 0.8 and the sys-
tem (1) belonging to the generalized Chen chaotic system
for 0.8 < α ≤ 1, so the system (1) is regarded as uni�ed
chaotic system.

The equilibria of system (1) canbe easily foundby solv-
ing the three equations ẋ = ẏ = ż = 0, which lead to

(25α + 10)(y − x) = 0,
(28 − 35α)x + (29α − 1)y − xz = 0,
xy − 8+α

3 z = 0.

it can be easily veri�ed that there are three equilibria:

S0(0, 0, 0),
S−(−

√
(8 + α)(9 − 2α), −

√
(8 + α)(9 − 2α), 27 − 6α),

S+(
√
(8 + α)(9 − 2α),

√
(8 + α)(9 − 2α), 27 − 6α).

where two equilibria, S− and S+, are symmetrically placed
with respect to the z-axis.

The Jacobic matrix of system (1) at S0 is given by

A0 =

 −(25α + 10) 25α + 10 0
28 − 35α 29α − 1 0

0 0 − 8+α
3

 .
Eigenvalues of system (1) are

λ1 = − 8+α
3 ,

λ2 = −2α − 11
2 + 1

2
√
−584α2 + 2372α + 1201,

λ3 = −2α − 11
2 − 1

2
√
−584α2 + 2372α + 1201

and the following characteristic equation is

f (λ) =
(
λ + 8 + α

3

)
[λ2+(11−4α)λ+(25α+10)(6α−27)] = 0.

Since α ∈ [0, 1], it always satis�es both 11 − 4α > 0 and
(25α + 10)(6α − 27) < 0, and the two eigenvalues satisfy
λ2 > 0 > λ3. So, the equilibrium S0 is a saddle point in
the three dimensional phase space and the system (1) is
unstable.

Similarly, the system about the other equilibria yields
the following characteristic equation:

f (λ) = λ3 + 41 − 11α
3 λ2 + (38 − 10α)(α + 8)

3 λ

+ 2(25α + 10)(α + 8)(9 − 2α) = 0.

Obviously, the two equilibria S± have the same characteri-
zation.

Since, the inequalities

41−11α
3 > 0,

(38−10α)(α+8)
3 > 0,

2(25α + 10)(α + 8)(9 − 2α) > 0,
(41−11α)(38−10α)(α+8)

9 > 2(25α + 10)(α + 8)(9 − 2α),
0 ≤ α ≤ 1

haven’t solutions. So, according to Routh-Hurwitz crite-
rion, the system (1) at S± is unstable, too.

In this paper, the goal of designproblem for system (1),
one use the single state feedback control approach by Yu
[51], is to �nd the simplest control scheme for the con-
trolled system, which ensure that the system (1) will grad-
ually converge to the unsteady equilibrium position S0,
there is no loss of generality in doing so because any equi-
librium point can be shifted to the origin via a change of
variables.

3 Single state feedback control
Some theorems stated belowwill enforce the desired grad-
ually converge to theunstable equilibriumposition S0. The
control scheme for system (1) is presented in the following
theorems:

Theorem 1. For the controlled uni�ed chaotic system
ẋ = (25α + 10)(y − x) + kx,
ẏ = (28 − 35α)x + (29α − 1)y − xz,
ż = xy − 8+α

3 .
(2)

If the feedback coe�cient satis�es

k < (35α − 28)(25α + 10)
1 − 29α + 25α + 10, at α ∈

[
0, 1

29

)
.

(3)
Then the controlled system (2) is asymptotically stable at
the equilibrium S0.

Proof. The Jacobian matrix of controlled system (2) at
equilibrium S0 is

Ac1 =

 −(25α + 10) + k 25α + 10 0
28 − 35α 29α − 1 0

0 0 − 8+α
3

 .
The characteristic equation is

f (λ) =
(
λ + 8 + α

3

)
· g(λ) = 0, (4)

where g(λ) = λ2 + (11−4α − k)λ + (25α +10− k)(1 −29α) +
(35α − 28)(25α + 10).

According to the Routh-Hurwitz criterion, all roofs
of (4) have negative real parts if and only if{

11 − k − 4α > 0,
−(25α + 10 − k)(29α − 1) + (35α − 28)(25α + 10) > 0.

(5)
It is easy to know that the condition (5) is equivalent to con-
dition (3).
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Remark 1. Based on the Lyapunov stabilization theory and
matrix measure, the strategies of speed feed back control of
chaotic system to the unsteady equilibrium points S− and S+
were achieved [52]. However, the state of system (1) cannot
converge to the unsteady equilibrium point S0(0, 0, 0). But,
it can be achieved in this paper.

Theorem 2. For the controlled uni�ed chaotic system
ẋ = (25α + 10)(y − x) + ky,
ẏ = (28 − 35α)x + (29α − 1)y − xz,
ż = xy − 8+α

3 z.
(6)

If the feedback coe�cient satis�es

k < (25α + 10)(29α − 1)
35α − 28 − 25α − 10, at α ∈ [0, 0.8).

(7)
or

k > (25α + 10)(29α − 1)
35α − 28 − 25α − 10, at α ∈ (0.8, 1].

(8)
Then the controlled system (6) is asymptotically stable at
the equilibrium S0.

Proof. The Jacobian matrix of controlled system (6) at
equilibrium S0 is

Ac2 =

 −(25α + 10) 25α + 10 + k 0
28 − 35α 29α − 1 0

0 0 − 8+α
3

 .
The characteristic equation is

f (λ) =
(
λ + 8 + α

3

)
· g(λ) = 0, (9)

where g(λ) = λ2 + (11−4α)λ − (25α +10)(29α −1)+ (35α −
28)(25α + 10 + k).

According to the Routh-Hurwitz criterion, all roofs
of (9) have negative real parts if and only if{

11 − 4α > 0,
−(25α + 10)(29α − 1) + (35α − 28)(25α + 10 + k) > 0.

(10)
It is easy to �nd that the condition (10) is equivalent to con-
dition (7) or (8).

Remark 2. The sameproblem is investigated in [51]. In [51],
there aremultiple hypothesis and theremust be a nonsingu-
lar coordinate transformation y = Tx. The original system is
transformed to the cascade form by the y = Tx. The nonlin-
ear function of driving subsystem must be smooth and the
driving subsystem must be uniformly exponentially stable

about the origin. However, these restricted conditions are re-
moved in this paper. Therefore, the results presented in this
paper improve the corresponding results of recent works.

Theorem 3. For the controlled uni�ed chaotic system
ẋ = (25α + 10)(y − x),
ẏ = (28 − 35α)x + (29α − 1)y − xz + kx,
ż = xy − 8+α

3 z.
(11)

If the feedback coe�cient satis�es

k < 6α − 27. (12)

Then the controlled system (11) is asymptotically stable at
the equilibrium S0.

Proof. The Jacobian matrix of controlled system (11) at
equilibrium S0 is

Ac3 =

 −(25α + 10) 25α + 10 0
28 − 35α + k 29α − 1 0

0 0 − 8+α
3

 .
The characteristic equation is

f (λ) =
(
λ + 8 + α

3

)
· g(λ) = 0, (13)

where g(λ) = λ2 + (11−4α)λ − (25α +10)(29α −1)+ (35α −
28 − k)(25α + 10).

According to the Routh-Hurwitz criterion, all roofs
of (13) have negative real parts if and only if{

11 − 4α > 0,
−(25α + 10)(29α − 1) + (35α − 28 − k)(25α + 10) > 0.

(14)
It is easy to know that the condition (14) is equivalent to
condition (12).

Theorem 4. For the controlled uni�ed chaotic system
ẋ = (25α + 10)(y − x),
ẏ = (28 − 35α)x + (29α − 1)y − xz + ky,
ż = xy − 8+α

3 z.
(15)

If the feedback coe�cient satis�es

k < 6α − 27.

Then the controlled system (15) is asymptotically stable at
the equilibrium S0.

Proof. The Jacobian matrix of controlled system (15) at
equilibrium S0 is

Ac4 =

 −(25α + 10) 25α + 10 0
28 − 35α 29α − 1 + k 0

0 0 − 8+α
3

 .
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The characteristic equation is

f (λ) =
(
λ + 8 + α

3

)
· g(λ) = 0, (16)

where g(λ) = λ2 + (11−4α − k)λ + (25α +10)(1 −29α − k) +
(35α − 28)(25α + 10).

According to the Routh-Hurwitz criterion, all roofs
of (16) have negative real parts if and only if{

11 − 4α − k > 0,
(25α + 10)(1 − 29α − k) + (35α − 28)(25α + 10) > 0.

(17)
that is, k < 6α − 27.

Remark 3. The same problem is investigated in [54]. The
speci�c control scheme in [54] requires three controllers that
can be stabilizing the uni�ed chaotic system. However, one
only uses the single state feedback control approach that
can be stabilizing the uni�ed chaotic system, the physical
implementation of controller is also convenience and the
question has also been much simpli�ed in this paper.

4 Robust stabilization of uncertain
uni�ed chaotic system

In this section, the robust controller is proposed and de-
signed to achieve the global stabilization of the unstable
equilibria of uncertain uni�ed chaotic system.

Consider the controlled uni�ed chaotic system as fol-
lows: 

ẋ = (25α + 10)(y − x),
ẏ = (28 − 35α)x + (29α − 1)y − xz + u,
ż = xy − 8+α

3 z,
(18)

where α ∈ [0, 1] is a shifty parameter, u is designed con-
troller.

Theorem 5. The single-state feedback controller

u = −(27 + ε)x or u = −(27 + ε)y (19)

can be robust stabilization the controlled uni�ed chaotic
system (18), where ε > 0 is an arbitrarily constant.

Proof. Combined Theorem 3 with Theorem 4, the proved
is quite simple, so, it is omitted.

Remark 4. The same problem is investigated in [53], the
designed robust controller is nonlinear and associated with
all states, that is, to involve product cross terms, and it is

also required that the uncertainty matrix is a linear combi-
nation of some constant matrixes. However, the robust con-
troller in this paper is only associated with one state x or y,
and it is linear. It is only required that uncertain parameter
α is belong to a set [0, 1]. So, the results presented in this
paper improve and generalize the corresponding results of
recent works.

5 Circuit implementation and
experiment

In order to verify the application of the proposed control
law in this paper, we give an illustrative example of circuit
experiment and simulation results on uni�ed chaotic sys-
tem (6) with α ∈ [0, 1], currently in its chaotic state.

5.1 System diagram

In order to implement the above system (6) with above-
derived controller gain (7), the �rst step must be to recog-
nize the main functional block of system (6), as presented
in Figure 1, when the switch is on, the feedback control sig-
nal is applied.

5.2 Circuit design

Each block of this system can be realized by analog elec-
tronic components. However, it is required to scale the sys-
tem in its state variables to slow down, and in order to
avoid saturations of operational ampli�ers. Hence, all the
state variables are reduced by k = 10 times, that is, one
using a nonsingular coordinate transformation [x,y,z]T

10 =
[u1, u2, u3]T ,then the system (1) is equivalent to


u̇1 = (25α + 10)(u2 − u1),
u̇2 = 100

[( 28
100u1 −

1
100u2

)
− u1u3

10 −
( 35α
100u1 −

29α
100u2

)]
,

u̇3 = 100
[ u1u2

10 − 8+α
300 u3

]
.

(20)

First of all, one de�nes α = R
10kΩ .

5.2.1 Circuit design of state equation u1

Consider a rewrite u1 state equation as follows:

u̇1 = − 1
10−1

[
−(u2 − u1) − 25

10α(u2 − u1)
]
.
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Figure 1: Blocks diagram for the controlled uni�ed chaotic sys-
tem (6) with controller (7).

u2

u1

v1

R3

R2

R1

R4

3

2

1

4
1
1

LM324

Figure 2: Circuit implementation of equation (21-1).

Outline 1.
– The coe�cient of integral circuit is− 1

RC , so, the constant
− 1
10−1 can be realized by a integrator.

– The argument α ∈ [0, 1] can be realized by employing
a slide rheostat.

– As a matter of convenience, one can be de�ned

v1 , u2 − u1. (21-1)

v2 ,
25
10α(u2 − u1). (21-2)

u̇1 ,
−1
10−1 (−v2 − v1) . (21-3)

The equation (21-1) can be implemented by a circuit which
as shown in Figure 2. From the Figure 2, it is easy to know
that

v1
R5

R6

R7

R8
3

2

1

4
1
1

LM324

5

6

7

4
1
1

LM324

R9

R10

Figure 3: Circuit implementation of equation (21-2).

v1 =
(
1 + R4R1

)
· R3
R2 + R3

u2 −
R4
R1
u1

and if we choose resistors R1 = R2 = R3 = R4 = 10kΩ,
then one can obtain equation (21-1), that is,

v1 =
(
1 + 10kΩ

10kΩ

)
· 10kΩ
10kΩ + 10kΩ u2 −

10kΩ
10kΩ u1 = u2 − u1.

The equation (21-2) can be implemented by a circuit which
as shown in Figure 3. From Figure 3, it is easy to know that

v2 = −R10R8
·
(
−R7R5

v1
)
= R10R7R8R5

v1

and if we choose resistors R5 = R6 = R8 = R9 = 1kΩ,
R7 = 25kΩ, R10 = R, then one can obtain equation (21-2),
that is,

v2 =
R × 25kΩ

10kΩ × 10kΩ v1 =
25
10α(u2 − u1).

The equation (21-3) can be implemented by a circuit which
as shown in Figure 4, where u is the controller input termi-
nal in Theorem 2.
From the Figure 4. it is easy to know that

u̇1 = − 1
R15C1

(
−R14R12

v1 −
R14
R11

v2
)

and if we choose resistors R11 = R12 = R13 = R14 = R15 =
10kΩ, and C1 = 10µF, then one canobtain equation (21-3),
that is

u̇1 = − 1
104 × 10 × 10−6

(
−10kΩ10kΩ v1 −

10kΩ
10kΩ v2

)
= −10 (−v1 − v2) .

So much for that, the state equation u1 can be realized by
circuit in �gures 2-4.
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v1
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R14

R15
3

2

1

4
1
1

LM324
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Figure 4: Circuit implementation of equation (21-3).

u1

u3

v3
X1

1

X2
2

Y1
3

Y2
4

VS+
8

W
7

Z
6

VS-
5

AD633

V15+

V15-

Figure 5: Implementation of v3 circuit.

5.2.2 Circuit design of state equation u2

We can require the state equation u2 as follows:

u̇2 = − 1
100−1

[
α
(

35
100u1 −

29
100u2

)
+ u1u310

−
(

28
100u1 −

1
100u2

)]
.

Outline 2.
– The coe�cient of integral circuit is− 1

RC , so, the constant
− 1
100−1 can be realized by a integrator.

– The transmission gain of AD633 multiplier is 1
10 , so, the

u1u3
10 can be simply realized by a AD633 multiplier.

– If one de�nes

v3 ,
u1u3
10 . (22-1)

v4 ,
28
100u1 −

1
100u2. (22-2)

v5 , α
(

35
100u1 −

29
100u2

)
. (22-3)

u̇2 ,
−1

100−1 (v3 − v4 + v5). (22-4)

Implementation of v3 circuit is as shown in Figure 5. Im-
plementation of v4 circuit is as shown in Figure 6. From

u1

u2

v4

R18
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R16

R19

3

2

1

4
1
1

LM324

Figure 6: Implementation of v4 circuit.
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R24
3
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LM324
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Figure 7: Implementation of v5 circuit.

Figure 6, it is easy to know that

v4 =
(
1 + R19R16

)
· R18
R17 + R18

u1 −
R19
R16

u2

and if we choose resistors R16 = 100kΩ, R17 = 73kΩ,
R18 = 28kΩ, R19 = 1kΩ, then we have

v4 =
(
1 + 1kΩ

100kΩ

)
· 28kΩ
73kΩ + 28kΩ u1 −

1kΩ
100kΩ u2

= 28
100u1 −

1
100u2.

Implementation of v5 circuit is as shown in Figure 7. From
the Figure 7, it is easy to know that

v6 = −R26R24

[
−R23R20

u1 +
(
1 + R23R20

)(
R22

R21 + R22

)
u2
]

and if we choose resistors R20 = 100kΩ, R21 = 106kΩ,
R22 = 29kΩ, R23 = 35kΩ, R24 = 10kΩ, R25 = 10kΩ, R26 =
R, then we have

v5 = − R
10kΩ

[
− 35kΩ
100kΩ u1

+
(
1 + 35kΩ

100kΩ

)(
29kΩ

106kΩ + 29kΩ

)
u2

]

= α
(

35
100u1 −

29
100u2

)
.

Implementation of u2 circuit is as shown in Figure 8. From



118 | Ch.-G. Jing et al.

v4

u2

v5

v3

R28

R30

R31

R32
3

2

1

4
1
1

LM324

5

6

7

4
1
1

LM324

C2

R27

R29

Figure 8: Implementation of u2 backbone circuit.

the �gures 5-8, it is easy to know that

u̇2 = − 1
R32C2

[(
1 + R31R27

)
R30

R29 + R30
v3 −

R31
R27

v4

+
(
1 + R31R27

)
R30

R28 + R30
v5

]

and if we choose resistors R27 = R28 = R29 = R30 = R31 =
10kΩ, R32 = 1kΩ, capacitance C2 = 10µF, then we have

u̇2 = −
1

103 × 10 × 10−6

[(
1 + 10kΩ

10kΩ

)
10kΩ

10kΩ + 10kΩ v3

−10kΩ10kΩ v4 +
(
1 + 10kΩ

10kΩ

)
10kΩ

10kΩ + 10kΩ v5

]
= − 100(v3 − v4 + v5).

FromFigure 8, it is easy to design a circuit of state equation
u2.

5.2.3 Circuit design of state equation u3

Consider u3 of rewrite state equation as follows:

u̇3 = −100
(
−u1u210 + 8

300u3 +
α

300u3
)
.

Outline 3.
– The coe�cient of integral circuit is− 1

RC , so, the constant
−100 can be realized by a integrator.

– The argument α ∈ [0, 1], can be also realized by em-
ploying a slide rheostat.

– The transmission gain of AD633multiplier is also 1
10 , so

the u1u3
10 can be simply realized by a AD633 multiplier.

– As a matter of convenience, one can be de�ned

v6 ,
u1u2
10 , (23-1)

v7 ,
8

300u3, (23-2)

u1

u2

v6
X1

1

X2
2

Y1
3

Y2
4

VS+
8

W
7

Z
6

VS-
5

AD633

V15+

V15-

Figure 9: Implementation of equation (23-1).
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Figure 10: Implementation of equations (23-2) and (23-3).

v8 ,
α

300u3, (23-3)

u̇3 , −100(−v6 + v7 + v8). (23-4)

The equation (23-1) can be implemented by a circuit which
as shown in Figure 9. The equations (23-2) and (23-3) can
be implemented by a circuit which as shown in Figure 10.
From Figure 10, it is easy to know that

v7 = −R38R37

(
−R35R33

u3
)
= R38 · R35R37 · R33

u3,

v8 = −R41R39

(
−R35R33

u3
)
= R41 · R35R39 · R33

u3

and if we choose resistors R33 = 300kΩ, R34 = R36 = R39 =
R40 = 10kΩ, R35 = R37 = 1kΩ, R38 = 8kΩ, R41 = R, then
one can obtain equations (23-2) and (23-3), that is

v7 =
8kΩ × 1kΩ

1kΩ × 300kΩ u3 =
8

300u3,

v8 =
R × 1kΩ

10kΩ × 300kΩ u3 =
α

300u3.
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Figure 11: Circuit implementation of equation (23-4).

The equation (23-4) can be implemented by a circuit which
as shown in Figure 11. From Figure 11, it is easy to know
that

u̇3 = −
1

R47C3

[
−R46R42

v6 +
(
1 + R46R42

)
R45

R43 + R45
v7

+
(
1 + R46R42

)
R45

R44 + R45
v8

]

and if we choose resistors R42 = R43 = R44 = R45 = R46 =
10kΩ, R47 = 1kΩ, capacitance C3 = 10µF, then one can
obtain equation (23-4), that is

u̇3 = −
1

103 × 10 × 10−6

[
−10kΩ10kΩ v6

+
(
1 + 10kΩ

10kΩ

)
10kΩ

10kΩ + 10kΩ v7

+
(
1 + 10kΩ

10kΩ

)
10kΩ

10kΩ + 10kΩ v8

]
= − 100(−v6 + v7 + v8).

So much for that, the state equation u3 can be realized by
circuits 9-11.

Remark 5. Reviewing of the existing research results. The
circuit implementation of the individual Lorenz system,
Chen’s system and Lü system can be found in [44–46] and
[47, 48], respectively. An electronic circuit of the uni�ed
chaotic system has been considered by Li [50], it is only
illustrated that Lorenz (α = 0), Lü (α = 0.8), Chen (α = 1)
chaotic attractors can be duly obtained by controlling two
switches in the circuit, but this circuit can’t re�ect anddepict
that the parameter α ∈ [0, 1] and the continuous change
of chaotic attractors. However, a new circuit has been de-
signed in this paper, it is simpler so that only three variable
resistors are required to be adjusted. In our experiments, it
is illustrated that di�erent chaotic attractors can be duly ob-
tained by adjusting the three variable resistors in the circuit.

v1 u

u2

R49

R48

R50

3

2

1

4
1
1

LM324

R51

10k

K1

Figure 12: Controller implementation circuit.

In a nutshell, a more standardized and more uni�ed circuit
of the uni�ed chaotic system has been developed in this pa-
per.

5.3 Real-time uni�ed chaotic circuit
stabilization via single state feedback
control

In order to verify the e�ectiveness of the proposed con-
troller in this paper,without loss of generality, letR = 0kΩ,
currently in its Lorenz chaos, that is, α = 0.

Under the Theorem 2, one can be let u = −10y, that
is, the controller in circuit equation (20) is u = −10u2. The
controller can be realized in a circuit as follows Figure 12.
From Figure 12, it is easy to know that

u =
{

− R50R48 u2, Switch K1 is turned on,
0, Switch K1 is turned o�

and if we choose resistors R48 = R49 = 1kΩ, R50 = R51 =
10kΩ, then one can obtain the controller, that is

u =
{

− 10kΩ
1kΩ u2 = −10u2, Switch K1 is turned on,

0, Switch K1 is turned o�.
(24)

5.4 Uni�ed chaotic circuit experiments

In order to test and verify uni�ed chaotic systems, the cir-
cuit was implemented in a printed board as shown in the
Figure 13. The printed circuit board is a double-sided cir-
cuit, low cost and robust. The resistors which satis�ed the
EIA E96 standard with 1% error were chosen in the circuit
design. Four LM324N operational ampli�ers were used in
the circuit. Two AD633 multipliers have been used in cir-
cuit implementation. Three variable resistors can be easily
changed in order to scale the system in its time and state
variables.

We tested the uni�ed chaotic system. The 3A DC
power supply was used to supply the circuit board. The
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Figure 13: Implementation circuit of uni�ed chaotic systems.

DC voltages are +15V and -15V. A 20MHz analog oscillo-
scope was used to observe waveforms. Figures 14-16 show
the phase portraits of the uni�ed chaotic system with
α = 0, α = 0.8, α = 1, respectively. In the circuit experi-
ments, the resistors R10, R26 and R41 were set to 0Ω, we got
the Figure 14. The variable resistors R10, R26 and R41 were
adjusted to 8kΩ, the Figure 15 was observed. The resistors
R10, R26 and R41 were adjusted to 10kΩ, the oscilloscope
displays were shown as Figure 16. From the �gures 14-16,
it is easy to know that the circuit designed in this paper is
e�ective. Figure 17 is pictures of the chaotic circuit stabi-
lization process under the control (24). In the experiments,
the switch K1 was used to apply the control signal for sta-
bilizing the chaotic circuit. As expected, the chaotic orbits
of the system (20) is quickly driven to the unstable equi-
librium S0. The real-time series u1 state with controller
is shown in Figure 17(a). The real-time phase portrait of
u1−u2 with controller is shown in Figure 17(b). The control
signed u = −10u2 is shown as Figure 17(c). From the Fig-
ure 17(c), it is easy to visualize and verify the satisfactory
performance of the controller proposed in this paper.

Remark 6. Reviewing of the existing research results, Cho
only presents a simulation for the control of a Lorenz system
[59]. The chaos control of uncertain uni�ed chaotic systems
has been considered by adaptive control scheme [55]. A
simple adaptive-feedback for controlling the uni�ed chaotic
system has been proposed [43]. Output feedback control
of the uni�ed chaotic systems has been investigated based
on feedback passivity [56]. A feedback controller has been
proposed to realize the stability control of a uni�ed chaotic
system [57]. Ablay investigates the chaos control of the un-
certain uni�ed chaotic systems by means of sliding mode
control [58]. However, the proposed controllers in previous
works are too complex both in design and implementation,
and the circuit implementation of its controllers have not
also been reported.

6 System simulation in
MATLAB/Simulink

In this section, in order to demonstrate that the robust
result of this paper is e�ective and convenient for the
uni�ed chaotic system with uncertain parameter. With-
out loss of generality, let α is an uncertain parameter,
which is generated by the Uniform Random Number in
MATLAB/Simulink, let Minimum= 0, Maximum= 1, the
sample period is 0.01, the initial value of simulation is
[x, y, z]T = [20, −10, −20]T with the controller of Theorem
5, where ε = 1, that is, u = −28y.

The states responses of the controlled uni�ed chaotic
system (18) are shown in Figure 18. Demonstrating that the
control scheme in this paper is e�ective.

7 Conclusion

This paper proposes some single state feedback controllers
for the stabilization of uni�ed chaotic systems and the
circuit implementation problem of uni�ed chaotic system
has been considered. Some stabilization conditions have
been derived via the single state feedback control. The
robust performance of controlled uni�ed chaotic systems
with uncertain parameter has been investigated, the ro-
bust linear controller which only requires information of
a state of the system is proposed. Both uni�ed chaotic sys-
tems and the designed controller are synthesized and im-
plemented by an analog electronic circuit which is sim-
pler because only three variable resistors are required to
be adjusted. Thenumerical simulation and control inMAT-
LAB/Simulink is then provided to show the e�ectiveness
and feasibility of the proposed method which is robust to
some uncertainties. In fact, the proposed method in this
paper at least has two advantages: (a) The controller ob-
tained in this paper is simpler than the controller obtained
by previousmethods, the utility of the proposedmethod is
easy to realize; (b) A more standardized and more uni�ed
circuit of the uni�ed chaotic system has been developed
in this paper. The results presented in this paper improve
and generalize the corresponding results of recent works.
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(a) Phase portrait in plane X − O − Y (b) Phase portrait in plane Y − O − Z (c) Phase portrait in plane X − O − Z

Figure 14: Phase portrait of uni�ed chaotic system with α = 0.

(a) Phase portrait in plane X − O − Y (b) Phase portrait in plane Y − O − Z (c) Phase portrait in plane X − O − Z

Figure 15: Phase portrait of uni�ed chaotic system with α = 0.8.

(a) Phase portrait in plane X − O − Y (b) Phase portrait in plane Y − O − Z (c) Phase portrait in plane X − O − Z

Figure 16: Phase portrait of uni�ed chaotic system with α = 1.

(a) Stabilizing time evolution state x in time (b) Stabilizing phase portrait on Z − O − X plane (c) Control signal u

Figure 17: Real-time chaotic circuit stabilization with α = 0.
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