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Abstract: This paper focuses on the single state feedback
stabilization problem of unified chaotic system and cir-
cuit implementation. Some stabilization conditions will
be derived via the single state feedback control scheme.
The robust performance of controlled unified chaotic sys-
tems with uncertain parameter will be investigated based
on maximum and minimum analysis of uncertain parame-
ter, the robust controller which only requires information
of a state of the system is proposed and the controller is
linear. Both the unified chaotic system and the designed
controller are synthesized and implemented by an analog
electronic circuit which is simpler because only three vari-
able resistors are required to be adjusted. The numerical
simulation and control in MATLAB/Simulink is then pro-
vided to show the effectiveness and feasibility of the pro-
posed method which is robust against some uncertainties.
The results presented in this paper improve and generalize
the corresponding results of recent works.
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1 Introduction

In 1963, Lorenz found the first canonical chaotic system
[1]. Chaos has been found to be useful in analysing many
problems, due to the potential applications in economics,
physics, control theory, secure communication, informa-
tion processing, collapse prevention of power systems,
high-performance circuits and device, and so on, which
has been intensively studied in science and engineering.
A chaotic system is a nonlinear deterministic system that
displays complex, noisy-like and unpredictable behavior.
These motions are trajectories in which infinite unsta-
ble periodic orbits (UPOs) are embedded. Chaos is gener-
ally undesirable in many fields. This irregular and com-
plex phenomenon can lead systems to harmful or even
catastrophic situations. In these troublesome cases chaos
should be suppressed as much as possible or totally elimi-
nated. In fact, this is particularly significant because most
realistic chaotic systems need to be operated in regular
regimes. Therefore controlling chaos has become one of
the most considerable research area in the nonlinear prob-
lems ranging from biology, physics and chemistry to eco-
nomics. An important challenge in chaos theory is the con-
trol of chaotic system, that is, to make the chaotic systems
reach steady states or regular behavior [2-4].

In 1990, Ott, Grebogi, and Yorke proposed the first ap-
proach of chaos control, that is, OGY approach [5], there-
after enormous research activities have been carried out
in chaos control by many researchers from different disci-
plines, and lots of successful experiments have been re-
ported in nonlinear dynamics [6]. Indeed, chaos control
theory has advanced far beyond theoretical perspectives
to experimental realizations (see [7, 8] and the references
therein). For this reason, designing simple and available
control input is extremely relevant for experimental chaos
control. Besides the OGY method, many other control al-
gorithms have been proposed in recent years to control
chaotic systems, such as PC method [9-11], feedback ap-
proach [12, 13], adaptive control [14-16], linear state space
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feedback [17], backstepping method [18], nonlinear feed-
back control [19], sliding mode control [20, 21], neural
network control [22], fuzzy logic control [23], robust con-
trol [24-30], passivity theory control [31], adaptive passive
control [32], time-delay feedback approach [33, 34], multi-
ple delay feedback control [35], double delayed feedback
control [36], hybrid control [37], etc. These control algo-
rithms can be used to stabilize a desired unstable periodic
orbit (UPO) embedded within a chaotic attractor.

An important aspect of the problem of chaos con-
trol is how to realize the control of chaotic system by de-
signing a simple and physically available controller [38],
which is particularly significant both for theoretical re-
search and practical applications. In practice, the prob-
lem of controller complexity is a very crucial issue and two
fundamental issues in this direction have been identified
[38, 39]: one is that the cost implication and the density
requirement for designing controllers, the other is that the
need to make the complexity of the controller to be, at least
comparable to, or less than, the device being controlled,
if the controlling technique is desired to achieve a useful
end far beyond mere scientific curiosity. Indeed, the entire
control goal would be untenable if a simple chaotic sys-
tem requires a massively complex controller like the con-
troller proposed in [40]. In order to solve it, some efforts
have been made to deal with this problem [41]. However, in
the formulation of the control problem, the proposed con-
trollers in previous works are, in most cases too complex
both in design and implementation and too single. Out-
standing among the various methods of chaos control is
adaptive control [15, 42], where the authors did not give
a condition to reduce the number of the feedback gains
(g;,1 = 1,2, 3). Although, this method can contain sin-
gle feedback gain in numerical simulations, it is only a nu-
merical result. The method in [43] is a modification for the
method in [42], but the controller obtained by using the
method in [43] is more complex than that controller ob-
tained by our method, we shall give a concrete example
to demonstrate in Section 4.

In circuit design and implementation of aspects of
chaotic systems, the circuit implementation of the individ-
ual Lorenz system, Chen’s system and Lii system can be
found in [44-46] and [47, 48], respectively. In this paper,
we also focus on the circuit design and implementation of
the unified chaotic system [49] so that different attractors
can be obtained with simple adjusting. This new circuit is
based on the design in [48, 50]. However, it is simpler be-
cause only three variable resistors are required to be ad-
justed. In our experiments, it is illustrated that different
chaotic attractors can be duly obtained by adjusting three
variable resistors in the circuit.
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Motivated by the above discussion, the problem of sta-
bilization of unified chaotic systems and circuit implemen-
tation will be investigated by using the single state feed-
back control and analog electronic circuit analysis in this
paper. First, partly improving and extending the previ-
ous chaos control techniques (see [43, 51-59]), the single
state feedback control is designed, some stabilization con-
ditions will be derived, some simpler controllers are de-
veloped. Then, the robust performance of controlled uni-
fied chaotic systems with uncertain parameters will be in-
vestigated based on maximum and minimum analysis of
the uncertain parameter, and the present controller only
contains a single state feedback. Finally, a more standard-
ized and more unified circuit of unified chaotic systems is
developed. Furthermore, experiment of improved circuit
and numerical simulations are applied to verify the effec-
tiveness and feasibility of the proposed method. In fact,
the proposed method in this paper at least has advantages
over the method in the following two aspects: (a) The con-
troller obtained in this paper is simpler than the controller
obtained by previous method in [43]; (b) The utility of the
proposed method is easier to physically realize than the
method obtained in [50], that is, which is more suitable cir-
cuit implementation.

The rest of the paper is organized as follows. Section 2
gives a mathematical description and analysis of unified
chaotic systems. Sections 3-4 propose the main results of
this paper, the single state feedback controller is proposed
to stabilize of unified chaotic systems in section 3, the ro-
bust stabilization of uncertain unified chaotic system is
presented and investigated in section 4. Then, experiment
of circuit and numerical simulations results are also given
in Section 5 and 6, respectively. The paper will be closed
by a conclusion in section 7.

2 System analysis

Based on the Lorenz system, Lii system and Chen system,
the unified chaotic system was proposed by Lii [49]. The
unified chaotic system is described by

x =(25a+10)(y — x),
y=(28-35a)x + (29a - 1)y - xz, 6y}
z=xy-82z
where [x, y, z]” is the state variables of unified chaotic sys-
tem and a € [0, 1] is a system parameter.
Due to the system (1) being chaotic for arbitrarily
a € [0, 1] and the system (1) belonging to the general-
ized Lorenz chaotic system for O < a < 0.8, the system (1)
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belonging to Lii chaotic system at @ = 0.8 and the sys-
tem (1) belonging to the generalized Chen chaotic system
for 0.8 < a < 1, so the system (1) is regarded as unified
chaotic system.

The equilibria of system (1) can be easily found by solv-
ing the three equations x = y = Z = 0, which lead to

(25a+10)(y -x) =0,
(28 -35a)x +(29a-1)y -xz =0,
xy - 82z =0.

it can be easily verified that there are three equilibria:

56(0,0,0),
S-(-v/(8+a)(9 - 2a), -/(8 + )(9 - 2a), 27 - 6a),
Si(+/(8 +a)(9 - 2a), /(8 + @)(9 - 2q), 27 - 6q).

where two equilibria, S- and S, are symmetrically placed
with respect to the z-axis.
The Jacobic matrix of system (1) at Sy is given by

-(25a+10) 25a+10 0

Ag = 28 - 35a 29a -1 0
8
0 0 ~8a
Eigenvalues of system (1) are
/\1 = _843-70(’
Ay = -2a -4 +1v/-584a2 + 2372a + 1201,
1

A3 =-2a- 4 - 1v/-584a2 +2372a + 1201
and the following characteristic equation is

8+a

fA) = ()l + T) [A2+(11-4a)A+(25a+10)(6a-27)] = O.

Since a € [0, 1], it always satisfies both 11 — 4a > 0 and
(25a + 10)(6a - 27) < 0, and the two eigenvalues satisfy
Az > 0 > As. So, the equilibrium Sy is a saddle point in
the three dimensional phase space and the system (1) is
unstable.

Similarly, the system about the other equilibria yields
the following characteristic equation:

)= X+ 41 —3110(/\2 N (38 - 1030()(0( + 8)/\

+ 2(25a + 10)(a + 8)(9 - 2a) = 0.

Obviously, the two equilibria S: have the same characteri-
zation.
Since, the inequalities

41-11a >0

38-10a)(a+8)

( 30( a+8) 0,

2(25a + 10)(a + 8)(9 - 2a) > 0,

(41-11a)(38-10a)(a+8)

Lo e > 2(25a + 10)(a + 8)(9 - 2a),

O<acs1
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haven’t solutions. So, according to Routh-Hurwitz crite-
rion, the system (1) at S. is unstable, too.

In this paper, the goal of design problem for system (1),
one use the single state feedback control approach by Yu
[51], is to find the simplest control scheme for the con-
trolled system, which ensure that the system (1) will grad-
ually converge to the unsteady equilibrium position S,
there is no loss of generality in doing so because any equi-
librium point can be shifted to the origin via a change of
variables.

3 Single state feedback control

Some theorems stated below will enforce the desired grad-
ually converge to the unstable equilibrium position So. The
control scheme for system (1) is presented in the following
theorems:

Theorem 1. For the controlled unified chaotic system

X =(5a+10)(y — x) + kx,
y=(28-35a)x + (29a - 1)y — xz, @)

z=xy- %2,

If the feedback coefficient satisfies

(35a —28)(25a + 10)

k< 1-29a

1
+25a+ 10, ata € [O, E)

3
Then the controlled system (2) is asymptotically stable at
the equilibrium So.

Proof. The Jacobian matrix of controlled system (2) at
equilibrium Sy is

-(25a¢+10)+k 25a+10 O

A, = 28 - 35a 29a-1 0
0 0 —
The characteristic equation is
8+a
1) - (A + ) g =0, @

where g(1) = A2+ (11 - 4a-k)A+(25a+10-k)(1 - 29a) +
(35a - 28)(25a + 10).

According to the Routh-Hurwitz criterion, all roofs
of (4) have negative real parts if and only if

11-k-4a>0,
-(25a+10-k)(29a-1) + 35a - 28)(25a + 10) > 0.
)
Itis easy to know that the condition (5) is equivalent to con-
dition (3). O
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Remark 1. Based on the Lyapunov stabilization theory and
matrix measure, the strategies of speed feed back control of
chaotic system to the unsteady equilibrium points S- and S+
were achieved [52]. However, the state of system (1) cannot
converge to the unsteady equilibrium point Sy(0, 0, 0). But,
it can be achieved in this paper.

Theorem 2. For the controlled unified chaotic system

X =(25a+10)(y - x) + ky,
y=(28-35a)x +(29a - 1)y — xz,

Z=xy- 82z

(6)

If the feedback coefficient satisfies

< (25a+10)(29a - 1)

« 35a-28 -25a-10,  atael0,0.8).
@)
or
(25a+10)(29a-1) B
k> 350 - 28 25a - 10, ata € (0.8, 1(],)
8

Then the controlled system (6) is asymptotically stable at
the equilibrium Sy.

Proof. The Jacobian matrix of controlled system (6) at
equilibrium Sy is

-(25a¢+10) 25a+10+k O

Ac, = 28 - 35a 29a-1 0
0 0 -4
The characteristic equation is
F) = <A+8+“)-g(/1)=o, )

where g(1) = A2 +(11 - 4a)A - (25a+ 10)(29a - 1) + 35a -
28)(25a + 10 + k).

According to the Routh-Hurwitz criterion, all roofs
of (9) have negative real parts if and only if

11-4a >0,
-(25a +10)(29a - 1) + 35a - 28)(25a + 10 + k) > 0.
(10)
Itis easy to find that the condition (10) is equivalent to con-
dition (7) or (8).
O

Remark 2. The same problemis investigatedin [51]. In [51],
there are multiple hypothesis and there must be a nonsingu-
lar coordinate transformation y = Tx. The original system is
transformed to the cascade form by the y = Tx. The nonlin-
ear function of driving subsystem must be smooth and the
driving subsystem must be uniformly exponentially stable
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about the origin. However, these restricted conditions are re-
moved in this paper. Therefore, the results presented in this
paper improve the corresponding results of recent works.

Theorem 3. For the controlled unified chaotic system

x=Q5a+10)(y - x),

y=(28-35a)x+(29a - 1)y — xz + kx, (11)
z=xy-82z
If the feedback coefficient satisfies
k<6a-27. (12)

Then the controlled system (11) is asymptotically stable at
the equilibrium So.

Proof. The Jacobian matrix of controlled system (11) at
equilibrium Sy is

-(25a+10) 25a+10 0
Ac,= | 28-35a+k 29a-1 O
0 0 _8ta

The characteristic equation is

8+a
3

) - (A + ) g =0, 13)
where g(A) = A2 + (11 - 4a)A- (25a+10)(29a - 1) + (35a —
28 - k)(25a + 10).

According to the Routh-Hurwitz criterion, all roofs

of (13) have negative real parts if and only if

11 -4a >0,
-(25a+10)(29a - 1) + 35a - 28 - k)(25a + 10) > 0.
(14)
It is easy to know that the condition (14) is equivalent to
condition (12). O

Theorem 4. For the controlled unified chaotic system

Xx=25a+10)(y - x),
y=(28-35a)x+ (29a - 1)y - xz + ky,

z=xy-82z

(15)

If the feedback coefficient satisfies

k<6a-27.
Then the controlled system (15) is asymptotically stable at
the equilibrium So.
Proof. The Jacobian matrix of controlled system (15) at
equilibrium Sy is

-(25a+10) 25a+10 0
28 - 35« 29a-1+k 0
8

0 0 -8t

A64 =
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The characteristic equation is

8+a
3

) = (A ; ) g =0, (16)
where g(1) = A2 + (11 - 4a - k)A+(25a+ 10)(1 - 29a - k) +
(35a -28)(25a + 10).

According to the Routh-Hurwitz criterion, all roofs

of (16) have negative real parts if and only if

(25a+10)(1 -29a - k) + (35a - 28)(25a + 10) > 0.
(17)
thatis, k < 6a - 27. O

{ 11-4a-k>0,

Remark 3. The same problem is investigated in [54]. The
specific control scheme in [54] requires three controllers that
can be stabilizing the unified chaotic system. However, one
only uses the single state feedback control approach that
can be stabilizing the unified chaotic system, the physical
implementation of controller is also convenience and the
question has also been much simplified in this paper.

4 Robust stabilization of uncertain
unified chaotic system

In this section, the robust controller is proposed and de-
signed to achieve the global stabilization of the unstable
equilibria of uncertain unified chaotic system.

Consider the controlled unified chaotic system as fol-
lows:

x = (25a + 10)(y - x),
y=028-35a)x+(29a - 1)y — xz + u,

z=xy- 82z,

(18)

where a € [0, 1] is a shifty parameter, u is designed con-
troller.

Theorem 5. The single-state feedback controller

u=-Q27+&x or u=-Q27+¢)y (19)

can be robust stabilization the controlled unified chaotic
system (18), where € > Q is an arbitrarily constant.

Proof. Combined Theorem 3 with Theorem 4, the proved
is quite simple, so, it is omitted. O

Remark 4. The same problem is investigated in [53], the
designed robust controller is nonlinear and associated with
all states, that is, to involve product cross terms, and it is
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also required that the uncertainty matrix is a linear combi-
nation of some constant matrixes. However, the robust con-
troller in this paper is only associated with one state x or y,
and it is linear. It is only required that uncertain parameter
a is belong to a set [0, 1]. So, the results presented in this
paper improve and generalize the corresponding results of
recent works.

5 Circuit implementation and
experiment

In order to verify the application of the proposed control
law in this paper, we give an illustrative example of circuit
experiment and simulation results on unified chaotic sys-
tem (6) with a € [0, 1], currently in its chaotic state.

5.1 System diagram

In order to implement the above system (6) with above-
derived controller gain (7), the first step must be to recog-
nize the main functional block of system (6), as presented
in Figure 1, when the switch is on, the feedback control sig-
nal is applied.

5.2 Circuit design

Each block of this system can be realized by analog elec-
tronic components. However, it is required to scale the sys-
tem in its state variables to slow down, and in order to
avoid saturations of operational amplifiers. Hence, all the
state variables are reduced by k = 10 times, that is, one
using a nonsingular coordinate transformation % =
[u1, uz, us]’,then the system (1) is equivalent to

U = (25a +10)(u> — uy),
35a 29«

i, = 100 [( {551 ~ 1opt2) ~ *46* ~ (36t ~ Tao42) ] »

oy = uu, _ 8+a
i3 = 100 [452 - Sggus] .

(20)

s _ R
First of all, one defines a = ;5.

5.2.1 Circuit design of state equation u;

Consider a rewrite u; state equation as follows:

. 1
= -757 [ —(uz —u1) - Baluy - uy) } .
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Figure 1: Blocks diagram for the controlled unified chaotic sys-
tem (6) with controller (7).

R3

R2

o R1
o——-i  1—9¢

Figure 2: Circuit implementation of equation (21-1).

Outline 1.

—  The coefficient of integral circuit is — %, so, the constant
— 1ot can be realized by a integrator.

—  The argument a € [0, 1] can be realized by employing
a slide rheostat.

— As a matter of convenience, one can be defined

Vi £ U —Uui. (21'1)
25
v, 2 Eoz(uz - uq). (212)
- (213)
ul—ﬁ(_vz_V1). =

The equation (21-1) can be implemented by a circuit which
as shown in Figure 2. From the Figure 2, it is easy to know
that
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Nam Rs R
v1_<1+E> R2+R3u2 Rlul

and if we choose resistors Ry = R, = R3 = R, = 10kQ,
then one can obtain equation (21-1), that is,

oo (1, 10KQ\  10kQ - 10kQ
e 10kQ ) 10kQ + 10kQ 2> 10kQ '~

u —Uuq.

The equation (21-2) can be implemented by a circuit which
as shown in Figure 3. From Figure 3, it is easy to know that

__Rio (_R7 '\ _ RioRy
2= Rg < R5V1> ~ RgRs .

and if we choose resistors R; = R, = Rg = Ry = 1kQ,
R; = 25kQ, R1o = R, then one can obtain equation (21-2),
that is,

_ Rx25kQ v _2£a(u —u)
T 10kQx10kQ ' 10 2T M

V2
The equation (21-3) can be implemented by a circuit which
as shown in Figure 4, where u is the controller input termi-
nal in Theorem 2.
From the Figure 4. it is easy to know that

, 1 R4 Ry4
U =- -—=—Vi——V
! Rlscl< R ' Rn 2)

and if we choose resistors R1; = R1 = R13 = R14 = Ry5 =
10kQ, and C; = 10uF, then one can obtain equation (21-3),
that is

0o 1 _10kQ  10kQ
17 7104x10x106 \ 10kQ ' 10kQ
= -10 (—Vl - Vz) .

So much for that, the state equation u; can be realized by
circuit in figures 2-4.
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V15+
ul I
! X1 VS+ 8

2 7 v3
-||7u3 1@ Wi |
— v z|—= ||-
Y2 Vs-
_ AD633
- V15

Figure 5: Implementation of v3 circuit.

5.2.2 Circuit design of state equation u,

We can require the state equation u;, as follows:
Uy = — 1 a 35 Us — 29 u n ujius
2 10071 100 ' 100 ° 10

100+ 100°%) |

Outline 2.

—  The coefficient of integral circuit is - %, so, the constant
- 155 can be realized by a integrator.

—  The transmission gain of AD633 multiplier is 55, so, the
Y can be simply realized by a AD633 multiplier.

— If one defines

a U3 :
V3 = 10 ° (221)
228, 1 !
V4 = 100111 100112. (222)
s (35 29 ]
V5 = (WLU ﬁlh) . (22 3)
2 2 ) (22:4)
u2 — W V3 - V4 +V5 . -

Implementation of v; circuit is as shown in Figure 5. Im-
plementation of v4 circuit is as shown in Figure 6. From
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Figure 6: Implementation of v, circuit.

2 = 2 \K
s I
:
Tvezs
ul R20 =

R23

Figure 7: Implementation of vs circuit.

Figure 6, it is easy to know that

R19 R18 R19
V= (1+—-— |+ 5———U1 - 5—U
N < Rlé) Ri7+Ris ' Rus °
and if we choose resistors Rig = 100kQ, R; = 73kQ,
Rig = 28kQ, Ry9 = 1kQ, then we have
v (14 1kQ '\ 28kQ "y - 1kQ u
4T 100kQ ) 73kQ+28kQ ' 100kQ ’
_28 1
T 100! 100

Implementation of vs circuit is as shown in Figure 7. From
the Figure 7, it is easy to know that

Rys | Ra3 ( R23> ( R» ) }
Ve=—==|[-=22u1 +[1+==2 —=|u
" "Ry [ Ry Ry Rn+Rn/)
and if we choose resistors R,g = 100kQ, R,; = 106kQ,

R22 = 29](.(), R23 = 35](.9, R24 = 10’(.0, R25 = 10kQ, R26 =
R, then we have

__R
10kQ

_35kQ
100kQ !

Vg =

(1, 35K 29kQ y
100kQ ) \ 106kQ + 29kQ ) 2

—al 32 -2y
100 ' 100°?%) "

Implementation of u; circuit is as shown in Figure 8. From
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Figure 8: Implementation of u, backbone circuit.

the figures 5-8, it is easy to know that

. 1 R3; R30 R3;
u = - 1+ = V3 — =—V
2 R3,C) [( ) Ry *

Ry7 ) Ry +R3o >
R3;
+{1+ 5=
( R27>

and if we choose resistors R»7 = Ryg = Ryg = R30 = R31 =
10kQ, R3; = 1kQ, capacitance C,; = 10uF, then we have

R30 vs
Ry + R3o

10kQ v
10kQ + 10kQ °

e 1 L, loko
27T 103x10x10°6 10kQ

_1okQ - (,, 10kQ
10kQ * 10kQ

0k
10kQ + 10kQ °

=-100(v3 — v4 + Vs5).

From Figure 8, it is easy to design a circuit of state equation
uj.

5.2.3 Circuit design of state equation u3

Consider us of rewrite state equation as follows:

. Uiy 8
=-1 — + —
Us 00 ( 10

Lu
300" 73003 )"
Outline 3.

—  The coefficient of integral circuit is — %, so, the constant
—-100 can be realized by a integrator.

— The argument a € [0, 1], can be also realized by em-
ploying a slide rheostat.

—  The transmission gain of AD633 multiplier is also 1—10, so
the “15> can be simply realized by a AD633 multiplier.

— As a matter of convenience, one can be defined

a Ul

10 (231

Ve

8

vy = us,
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c
5
R
tB
<
<
[&)]
+

@ X1 VS+
2 7 v6
||ﬁ X2 W 6—0 |
.—4 Y1 Z = II
Y2 VS-
AD633
s V15-

Figure 9: Implementation of equation (23-1).

Figure 10: Implementation of equations (23-2) and (23-3).

A a

ﬁ u3 ) (23'3)

Vs

U3 £ -100(-vg + v7 + vg). (23-4)
The equation (23-1) can be implemented by a circuit which
as shown in Figure 9. The equations (23-2) and (23-3) can
be implemented by a circuit which as shown in Figure 10.

From Figure 10, it is easy to know that
Rs3;s B
(Riw)-
_Ra ( R3s ) _ Ra1-Rss s
Rso \ Rs3 R39 - R33
and if we choose resistors R33 = 300kQ, R34 = R3¢ = R39 =

R40 = 10k.Q, R35 = R37 = 1k.Q, R38 = SkQ, R41 = R, then
one can obtain equations (23-2) and (23-3), that is

R3g - R3s

_Rss ,
R37 - R33

V7 = —_
R3;

Vg =

, 8kQ x 1kQ 8
7~ Tka x300k0 " T 300"
R x 1kQ a

Vg =

10kQ = 300k2 "2 ~ 300"
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R45
A——

% R44

—1 19
“ R43 N
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Figure 11: Circuit implementation of equation (23-4).

The equation (23-4) can be implemented by a circuit which
as shown in Figure 11. From Figure 11, it is easy to know
that

. 1 Rue Rys
us =- ———Ve+ |1+
3 R47C3{ Ry ° < Ry

Ry )
+(1+5—
< Ry
and if we choose resistors R4 = R43 = R4s4 = Rys = Ryg =

10kQ, R47 = 1kQ, capacitance C3 = 10uF, then one can
obtain equation (23-4), that is

Rys -
Ry3 + Rys

Rys Ve
Rys + Rys

oo 1 _10k2
377 103x10x106| 10kQ ' °©
o (1. 10kQ 10k
10kQ ) 10kQ + 10kQ ’
(14 10kQ 10kQ v
10kQ ) 10kQ + 10kQ ¢

=-100(~vg + v7 + Vvg).

So much for that, the state equation u3 can be realized by
circuits 9-11.

Remark 5. Reviewing of the existing research results. The
circuit implementation of the individual Lorenz system,
Chen’s system and Lii system can be found in [44-46] and
[47, 48], respectively. An electronic circuit of the unified
chaotic system has been considered by Li [50], it is only
illustrated that Lorenz (a« = 0), Lii (a = 0.8), Chen (a = 1)
chaotic attractors can be duly obtained by controlling two
switches in the circuit, but this circuit can’t reflect and depict
that the parameter a € [0, 1] and the continuous change
of chaotic attractors. However, a new circuit has been de-
signed in this paper, it is simpler so that only three variable
resistors are required to be adjusted. In our experiments, it
isillustrated that different chaotic attractors can be duly ob-
tained by adjusting the three variable resistors in the circuit.
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R49 K1
| e B . . RS 00
— D>

Figure 12: Controller implementation circuit.

In a nutshell, a more standardized and more unified circuit
of the unified chaotic system has been developed in this pa-
per.

5.3 Real-time unified chaotic circuit
stabilization via single state feedback
control

In order to verify the effectiveness of the proposed con-
troller in this paper, without loss of generality, let R = 0kQ,
currently in its Lorenz chaos, that is, a = 0.

Under the Theorem 2, one can be let u = —10y, that
is, the controller in circuit equation (20) is u = —10u,. The
controller can be realized in a circuit as follows Figure 12.
From Figure 12, it is easy to know that

_Rso
Rus up,

u=
{ O’

and if we choose resistors R4g = R49 = 1kQ, R5o = R51 =
10kQ, then one can obtain the controller, that is

Switch K1 is turned on,
Switch K1 is turned off

_10kQ,, _ _
U= TKQ U = 1Ou2,
0)

5.4 Unified chaotic circuit experiments

Switch K1 is turned on,
Switch K1 is turned off.
(24)

In order to test and verify unified chaotic systems, the cir-
cuit was implemented in a printed board as shown in the
Figure 13. The printed circuit board is a double-sided cir-
cuit, low cost and robust. The resistors which satisfied the
EIA E96 standard with 1% error were chosen in the circuit
design. Four LM324N operational amplifiers were used in
the circuit. Two AD633 multipliers have been used in cir-
cuit implementation. Three variable resistors can be easily
changed in order to scale the system in its time and state
variables.

We tested the unified chaotic system. The 3A DC
power supply was used to supply the circuit board. The
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Figure 13: Implementation circuit of unified chaotic systems.

DC voltages are +15V and -15V. A 20MHz analog oscillo-
scope was used to observe waveforms. Figures 14-16 show
the phase portraits of the unified chaotic system with
a=0,a=0.8,a=1, respectively. In the circuit experi-
ments, the resistors R19, R, and R,4; were set to 0Q, we got
the Figure 14. The variable resistors Ryo, R,¢ and R4, were
adjusted to 8kQ, the Figure 15 was observed. The resistors
R10, Ry¢ and R4y were adjusted to 10kQ, the oscilloscope
displays were shown as Figure 16. From the figures 14-16,
it is easy to know that the circuit designed in this paper is
effective. Figure 17 is pictures of the chaotic circuit stabi-
lization process under the control (24). In the experiments,
the switch K1 was used to apply the control signal for sta-
bilizing the chaotic circuit. As expected, the chaotic orbits
of the system (20) is quickly driven to the unstable equi-
librium So. The real-time series u; state with controller
is shown in Figure 17(a). The real-time phase portrait of
u, —u with controller is shown in Figure 17(b). The control
signed u = —10u; is shown as Figure 17(c). From the Fig-
ure 17(c), it is easy to visualize and verify the satisfactory
performance of the controller proposed in this paper.

Remark 6. Reviewing of the existing research results, Cho
only presents a simulation for the control of a Lorenz system
[59]. The chaos control of uncertain unified chaotic systems
has been considered by adaptive control scheme [55]. A
simple adaptive-feedback for controlling the unified chaotic
system has been proposed [43]. Output feedback control
of the unified chaotic systems has been investigated based
on feedback passivity [56]. A feedback controller has been
proposed to realize the stability control of a unified chaotic
system [57]. Ablay investigates the chaos control of the un-
certain unified chaotic systems by means of sliding mode
control [58]. However, the proposed controllers in previous
works are too complex both in design and implementation,
and the circuit implementation of its controllers have not
also been reported.
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6 System simulation in
MATLAB/Simulink

In this section, in order to demonstrate that the robust
result of this paper is effective and convenient for the
unified chaotic system with uncertain parameter. With-
out loss of generality, let @ is an uncertain parameter,
which is generated by the Uniform Random Number in
MATLAB/Simulink, let Minimum= 0, Maximum= 1, the
sample period is 0.01, the initial value of simulation is
[x,y,2]T = [20, -10, -20]” with the controller of Theorem
5, where € = 1, that is, u = -28y.

The states responses of the controlled unified chaotic
system (18) are shown in Figure 18. Demonstrating that the
control scheme in this paper is effective.

7 Conclusion

This paper proposes some single state feedback controllers
for the stabilization of unified chaotic systems and the
circuit implementation problem of unified chaotic system
has been considered. Some stabilization conditions have
been derived via the single state feedback control. The
robust performance of controlled unified chaotic systems
with uncertain parameter has been investigated, the ro-
bust linear controller which only requires information of
a state of the system is proposed. Both unified chaotic sys-
tems and the designed controller are synthesized and im-
plemented by an analog electronic circuit which is sim-
pler because only three variable resistors are required to
be adjusted. The numerical simulation and control in MAT-
LAB/Simulink is then provided to show the effectiveness
and feasibility of the proposed method which is robust to
some uncertainties. In fact, the proposed method in this
paper at least has two advantages: (a) The controller ob-
tained in this paper is simpler than the controller obtained
by previous methods, the utility of the proposed method is
easy to realize; (b) A more standardized and more unified
circuit of the unified chaotic system has been developed
in this paper. The results presented in this paper improve
and generalize the corresponding results of recent works.
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(a) Phase portrait in plane X - 0 - Y (b) Phase portrait in plane Y - 0 - Z (c) Phase portrait in plane X - 0 - Z

Figure 14: Phase portrait of unified chaotic system with a = 0.

(a) Phase portrait in plane X - 0 - Y (b) Phase portrait in plane Y - 0 - Z (c) Phase portrait in plane X - 0 - Z

Figure 15: Phase portrait of unified chaotic system with a = 0.8.

(a) Phase portrait in plane X - 0 - Y (b) Phase portrait in plane Y - 0 - Z (c) Phase portrait in plane X - 0 - Z

Figure 16: Phase portrait of unified chaotic system with a = 1.

4

N .

1
(a) Stabilizing time evolution state x in time (b) Stabilizing phase portrait on Z - O - X plane (c) Control signal u

Figure 17: Real-time chaotic circuit stabilization with a = 0.
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Figure 18: Dynamic response of the controlled unified chaotic sys-
tem (18).
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