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Abstract: The eigenvalues Edn`(a, c) of the d-dimensional
Schrödinger equation with the Cornell potential
V(r) = −a/r + c r, a, c > 0 are analyzed by means of the
envelope method and the asymptotic iteration method
(AIM). Scaling arguments show that it is su�cient to
know E(1, λ), and the envelope method provides ana-
lytic bounds for the equivalent complete set of coupling
functions λ(E). Meanwhile the easily-implemented AIM
procedure yields highly accurate numerical eigenvalues
with little computational e�ort.
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1 Introduction
The Schrödinger equation with the Cornell potential is an
important non-relativistic model for the study of quark-
antiquark systems [1–9]. For example, it is used in describ-
ing the masses and decay widths of charmonium states.
This Coulomb-plus-linear pair potential was originally
proposed for describing quarkonia with heavy quarks
[3–5]. It takes into account general properties expected
from the interquark interaction, namely Coulombic be-
havior at short distances and a linear con�ning term at
long distances [9]. By varying the parameters one can
obtain good �ts to lattice measurements for the heavy-
quark-antiquark static potential [10]. Although such mod-
els have been studied for many years, exact solutions of
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Schrödinger’s equation with this potential are unknown.
Most of the earlier work either relies on direct numer-
ical integration of the Schrödinger equation or various
techniques for approximating the eigenenergies [2, 11, 12].
Without speci�c reference to a particular physical system,
we present a simple and very e�ective general method for
solving Schrödinger’s equation to any degree of precision
in arbitrary dimensional d > 1. We write the Cornell po-
tential in the form

V(r) = −ar + c r, (1)

where a > 0 is a parameter representing the Coulomb
strength, and c > 0 measures the strength of the linear
con�ning term. Themethodwe use do not require any par-
ticular constraint on the potential parameters and thus
they are appropriate for any physical problem that may be
modelled by this class of potential. Themethod of solution
is based on a special application of the asymptotic itera-
tion method (AIM, [13]). AIM is an iterative algorithm orig-
inally introduced to investigate the analytic and approxi-
mate solutions of a second-order linear di�erential equa-
tion of the form

y′′ = λ0(r)y′ + s0(r)y,
(
′ = d

dr

)
, (2)

where λ0(r) and s0(r) are C∞−di�erentiable functions. It
states [13] that:Given λ0 and s0 in C∞(a, b), the di�erential
equation (2) has the general solution

y(r) = exp

− r∫
sn−1(t)
λn−1(t)

dt


×

C2 + C1 r∫
exp

 t∫ [
λ0(τ) +

2sn−1
λn−1

(τ)
]
dτ

 dt


if for some n > 0

δn = λnsn−1 − λn−1sn = 0. (3)

where λn and sn are given by

λn = λ′n−1 + sn−1 + λ0λn−1 and sn = s′n−1 + s0λn−1. (4)

Applications of AIM to a variety of problems have been re-
ported in numerous publications over the past few years.
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Inmost applications the functions λ0(r) and s0(r) are taken
to be polynomials or rational functions. However,we show
in this paper that the applicability of the method is not re-
stricted to a particular class of di�erentiable functions.We
consider the casewhere λ0(r) and s0(r) involvehigher tran-
scendental functions, speci�callyAiry functions. Provided
the computer-algebra system employed has su�cient in-
formation about the functions and their derivatives, they
present no di�culty. The paper is organized as follows. In
section 2, we set up the d-dimensional Schrödinger equa-
tion for the Cornell potential and present some analytical
spectral bounds based on envelope methods [14–18]. In
particular we generalize to d > 1 dimensions an analyti-
cal formula, �rst derived [12] for d = 3, which exhibits en-
ergy upper and lower bounds for all the discrete eigenval-
ues of the problem. In section 3, we present an asymptotic
solution that allows us to express Schrödinger’s equation
in a form suitable for the application of AIM. In section 4,
we apply AIM to the Cornell potential and discuss some of
its numerical results, in particular comparisons with the
earlier results of Eichten et al. [4] and the recent work of
Chung and Lee [2].

2 Formulation of the problem and
analytical estimates in d
dimensions

The d-dimensional Schrödinger equation, in atomic units
~ = 2µ = 1, with a spherically symmetric potential V(r)
can be written as[

−∆d + V(r)
]
ψ(r) = Eψ(r), (5)

where ∆d is the d-dimensional Laplacian operator, d > 1,
and r2 =

∑d
i=1 x

2
i . In order to express (5) in terms of

d-dimensional spherical coordinates (r, θ1, θ2, . . . , θd−1),
we separate variables using

ψ(r) = r−(d−1)/2 u(r) Y`1 ,...,`d−1 (θ1 . . . θd−1), (6)

where Y`1 ,...,`d−1 (θ1 . . . θd−1) is a normalized spherical har-
monic [19] with characteristic value `(` + d − 2), and
` = `1 = 0, 1, 2, . . . (values of the principal angular quan-
tumnumber). Oneobtains the radial Schrödinger equation
as [

− d
2

dr2 + (k − 1)(k − 3)
4r2 + V(r) − E

]
ψ(d)
n` (r) = 0, (7)

∞∫
0

{
ψ(d)
n` (r)

}2
dr = 1, ψ(d)

n` (0) = 0,

where k = d + 2`. We assume that the potential V(r)
is less singular than the centrifugal term so that for
(k − 1)(k − 3) 6= 0 we have

u(r) ∼ A r(k−1)/2, r → 0, where A is a constant. (8)

Since d > 1 it follows that k > 1, andmeanwhile k = 3 only
when ` = 0 and d = 3. Thus in the very special case k = 3,
u(r) ∼ Ar (as we have for the Hydrogen atom), and we see
that Equation (8) is also validwhen k = 3. We note that the
Hamiltonian and the boundary conditions of Equation (7)
are invariant under the transformation

(d, `) → (d ∓ 2, ` ± 1),

thus, given any solution for �xed d and `, we can imme-
diately generate others for di�erent values of d and `. Fur-
ther, the energy is unchanged if k = d + 2` and the num-
ber of nodes n is constant: this point has been discussed,
for example, by Doren [20]. Repeated application of this
transformation produces a large collection of states. In
the present work, we study the d-dimension Schrödinger
eigenproblem[

− d
2

dr2 + (k − 1)(k − 3)
4r2 − ar + c r

]
udnl(r) = Ednludnl(r), (9)

k = d + 2`, a > 0, 0 < r < ∞, udnl(0) = 0.

Because of the presence of the linear con�ning term in the
potential, for c > 0 the spectrum of this problem is entirely
discrete: a formal proof for d > 2 is given in Reed-Simon IV
[21].

If the parametric dependence of the eigenvalues on
the potential coe�cients a and c is written E = E(a, c),
then elementary scaling arguments reduce the dimension
of the parameter space to one by means of the equation

E(a, c) = a2 E(1, λ), where λ = c
a3 . (10)

Since V(r) is at once a convex function of −1/r and a con-
cave function of r2, the envelope method [14–18] can be
used to derive lower and upper energy bounds based on
the comparison theorem and the known exact solutions
for the pure Hydrogenic and oscillator problems in d di-
mensions. It turns out [12] that the bounds can be ex-
pressed by a formula for λ as a function of E(1, λ). We have
generalized the d = 3 result of Ref. [12] to d > 1 dimensions
and we obtain:

λ =
2ν2E3 − E2

[
(1 + 3ν2E) 12 − 1

]
[
(1 + 3ν2E) 12 − 1

]3 ≡ g(E), E ≥ − 1
4ν2 ,

(11)
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which formula yields anupper boundwhen ν = 2n+`+d/2
and a lower boundwhen ν = n+`+(d−1)/2. It is interesting
that this entire set of lower and upper (energy) curves are
all scaled versions, for example, of the single ground-state
curve. Again, n = 0, 1, 2, . . . counts thenodes in the radial
eigenfunction. Thus by using a computer solve routine to
invert the function g(E) in Equation (11) for each of the two
values of ν, the energy bounds we can be written in the
form

E(a, c) = a2g−1ν (c/a3). (12)

For the s-states, sharper upper bounds may be obtained
(via envelopes of the linear potential) in terms of the ze-
ros of the Airy function. This is about as far as we can go
generally and analytically with this spectral problem.

3 Asymptotic solution
We note �rst that the di�erential equation (9) has one reg-
ular singular point at r = 0 with exponents given by the
roots of the indicial equation

s(s − 1) − 1
4(k − 1)(k − 3) = 0, (13)

and an irregular singular point at r = ∞. For large r, the
di�erential equation Equation (9) assumes the asymptotic
form [

− d
2

dr2 + c r
]
udnl(r) ≈ 0 (14)

with a solution

udnl(r) ≈ Ai
(
c1/3 r

)
, udnl(∞) ≈ 0, (15)

where Ai(z) is the well-known Airy function [22]. Since the
roots s of Equation (13), namely,

s1 =
1
2(3 − k), s2 =

1
2(k − 1),

determine the behavior of udnl(r) as r approaches 0, only
s > 1/2 is acceptable, since only in this case is the mean
value of the kinetic energy �nite [23]. Thus, the exact solu-
tion of (9) assumes the form

udnl(r) = r(k−1)/2Ai
(
c1/3 r

)
fn(r), c 6= 0, k = d + 2l,

(16)
where we note that udnl(r) ∼ r(k−1)/2 as r → 0. On insertion
of this ansatz wave function into (9), we obtain the di�er-
ential equation for the functions fn(r) as

−r f ′′n (r) +
(
1 − k − 2 r ddr ln

[
Ai(c1/3 r)

])
f ′n(r)

+
(
−a − E r − (k − 1) ddr ln

[
Ai(c1/3 r)

])
fn(r) = 0. (17)

4 Application of the asymptotic
iteration method

For arbitrary values of the potential parameters a and c,
AIM is an e�ective method to compute the eigenvalues ac-
curately as roots of the termination condition Equation (3),
which plays a crucial role. The AIM sequences λn(r) and
sn(r), n = 0, 1, . . . , depend on the (unknown) eigenvalue
E and the variable r: thus δn is an implicit function of E
and r. If the eigenvalue problem is analytically solvable,
the roots of the termination condition Equation (3) are in-
dependent of the variable r in the sense that the roots of
δn = 0 are independent of any particular value of r. In
this case, the eigenvalues are simple zeros of this func-
tion. For instance, in the case of a pure Coulomb poten-
tial V(r) = −a/r, a > 0, the exact solutions of Schödinger
equation[

− d
2

dr2 + (k − 1)(k − 3)
4r2 − ar

]
udnl(r) = Ednludnl(r), (18)

k = d + 2`, a > 0, 0 < r < ∞, udnl(0) = 0.

Bymeansof the asymptotic solutionsnear r = 0and r = ∞,
Equation (18) assumes the form

udnl(r) = r(k−1)/2e−κ r fn(r), k = d + 2l, κ =
√
−En , (19)

where the functions fn satisfy the di�erential equation

f ′′n (r) =
(
2κ + (1 − k)

r

)
f ′n(r) +

(−a + (k − 1)κ)
r fn(r),

for n = 0, 1, 2, . . . Thus, continuing the pure Coulomb
case, with

λ0(r) = 2κ + (1 − k)
r , s0(r) =

−a + (k − 1)κ
r (20)

we use AIM to compute the sequences λn and
sn , n = 0, 1, 2, . . . initiated with λ−1(r) = 1 and s−1(r) = 0.
The termination condition is δn = 0, n = 0, 1, 2, . . . We
observe that if δn = 0, then δn+1 = 0 for all n. Direct
computation implies

δ0 = 0, E0 = − a2
(k−1)2

δ1 = 0, E0 = − a2
(k−1)2 , E1 = − a2

(k+1)2

δ2 = 0, E0 = − a2
(k−1)2 , E1 = − a2

(k+1)2 , E2 = − a2
(k+3)2

δ3 = 0, E0 = − a2
(k−1)2 , E1 = −

a2
(k+1)2 ,

E2 = − a2
(k+3)2 , E3 = −

a2
(k+5)2

and in general

δn = 0 =⇒ Ej = − a2
(k+2j−1)2 , j = 0, 1, 2, . . . , n.
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as the well-know eigenvalue formula for the Coulomb po-
tential in d-dimensions. The situation is quite di�erent in
the case of c 6= 0. Here we use AIM with (see equation
Equation (17))

λ0(r) = (1 − k)
r − 2 ddr ln

[
Ai(c1/3 r)

]
, (21)

s0(r) = −E − ar −
(k − 1)
r

d
dr ln

[
Ai(c1/3 r)

]
, (22)

where the termination condition δn = 0 is a function of
both r and E, namely

δn ≡ δn(E; r) = 0. (23)

The problem is then �nding an initial value r = r0 that
would stabilize the recursive computation of the roots by
the termination condition Equation (23) for all n. This is
still an open problem with no general strategy to locate
this initial value. A good choice for r0 depends on the
shape of the potential under consideration and sometimes
on the asymptotic solutionprocess itself. Thus twopolicies
for the choice of r0 are: (1) the point where theminimumof
the potential occurs if it is not in�nity; (2) the point where
the maximum of the ground-state asymptotic solution oc-
curs. For the Cornell potential, because of the attractive
Coulomb term, the potential function is not bounded be-
low and we therefore choose r0 to be the location of the
maximum of the ground-state wave function as follows.
The asymptotic solution is given by:

uas(r) ≈ r(k−1)/2Ai
(
c1/3 r

)
, (24)

and we suppose that r̂ is the position of the maximum of
uas(r). We start with r0 = r̂, then we gradually increase
the value of r0 until we reach stability in the computa-
tional process, in the sense that it converges in few iter-
ations. Thus, once a suitable value is found for r0 for a
parameter patch, the actual eigenvalue calculations are
extremely fast. We only found one di�culty with this ap-
proach for the present problem, namely when c is small
so that the wave function is very spread out (like the pure
Coulomb case). In order to deal wih this, we adopted the
following strategy: we took r0 as a point at which the tail
of the asymptotic solution Equation (24) starts to dimin-
ish rapidly. In Figure 1, we show plots of uas for di�erent
values of c. These graphs suggest that the starting value of
r0 = 20 for the potential V(r) = −1/r + 0.01 r, the start-
ing value of r0 = 5 for the potential V(r) = −1/r + r, and
r0 = 1 for V(r) = −1/r + 100 r. For the purpose of consis-
tency we have calculated each eigenvalue to 12 signi�cant
�gures and recorded in a subscript the minimum num-
ber of iterations required to reach this precision. The com-
putation of the Airy function is straightforward, thanks

c = 0.01
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Figure 1: The spatial spread of the asymptotic solution uas as c in-
creases.
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Figure 2: The wave function u(r) obtained by integrating Equa-
tion (9) with k = 4 and the energy eigenvalue E = Edn` =
8.997414071 taken from Table 1. This corresponds, for example,
to the case d = 4, ` = 0, and n = 6.

to Maple, where the ‘AiryAi’ and its derivative are built-in
functions. The eigenvalues reported in Table 1 were com-
puted using Maple version 16 running on an Apple iMAC
computer in a high-precision environment. In order to ac-
celerate our computationwehavewritten our own code for
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Table 1: Eigenvalues Ed=3,4nl for V(r) = −1/r + r. The initial value used by AIM is r0 = 5. The subscript N refers to the number of iteration used
by AIM.

` n Ed=3n0 ` n Ed=30l
0 0 1.397 875 641 660N=58 0 0 1.397 875 641 660N=70

1 3.475 086 545 396N=73 1 2.825 646 640 704N=56
2 5.032 914 359 536N=73 2 3.850 580 006 803N=51
3 6.370 149 125 486N=72 3 4.726 752 007 096N=43
4 7.574 932 640 591N=66 4 5.516 979 644 329N=37
5 8.687 914 590 401N=82 5 6.248 395 598 411N=33

` n Ed=4n0 ` n Ed=40`
0 0 2.202 884 354 411N=56 0 0 2.202 884 354 411N=56

1 3.998 899 718 709N=67 1 3.363 722 259 378N=54
2 5.457 656 703 862N=68 2 4.301 971 630 406N=48
3 6.740 670 678 009N=67 3 5.130 492 519 711N=41
4 7.909 993 263 956N=63 4 7.085 515 480 564N=37
5 8.997 414 071 258N=58 5 8.799 435 022 938N=41

Table 2: Eigenvalues Ed=3,4nl for V(r) = −1/r + 0.01 r. The initial value used by AIM is r0 = 20 or as indicated. The subscript N refers to the
number of iteration used by AIM.

` n Ed=3n0 ` n Ed=30l
0 0 −0.221 030 563 404N=79 0 0 −0.221 030 563 404N=79

1 0.034 722 241 998N=70 1 0.017 400 552 510N=61
2 0.141 913 022 811N=66 2 0.102 472 150 415N=47
3 0.220 287 171 811N=60 3 0.159 830 894 613N=39
4 0.344 602 792 592N=75 4 0.206 238 109 687N=41
5 0.448 055 673 514N=85 5 0.246 682 072 100N=34

` n Ed=4n0 ` n Ed=40`
0 0 −0.057 503 250 143N=69 0 0 −0.057 503 250 143N=69

1 0.087 181 857 064N=63 1 0.065 687 904 463N=54
2 0.176 559 165 345N=72 2 0.133 067 612 356N=43
3 0.247 865 703 619N=67 3 0.183 984 697 123N=36
4 0.309777243695N=69,r0=25 4 0.227037524190N=37,r0=25
5 0.365723900484N=71,r0=25 5 0.287224084341N=39,r0=25

Table 3: Eigenvalues Ed=3nl for V(r) = −1/r + 100 r. The initial value used by AIM is r0 = 1 or as indicated. The subscript N refers to the
number of iteration used by AIM.

` n Ed=3n0 ` n Ed=30l
0 0 46.402 258 652 779N=104 0 0 46.402 258 652 779N=75

1 85.339 271 687 574N=106 1 70.016 058 921 076N=62
2 116.728 692 980 119N=103 2 89.715 370 910 984N=51
3 144.315 456 241 781N=99 3 107.334 329 106 273N=46
4 169.460 543 870 657N=102 4 123.561 985 764 157N=56,r0=1.5
5 192.850 291 861 086N=103 5 138.761 138 633 388N=50,r0=1.5
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Table 4: A comparison between the eigenvalues the S-wave heavy quarkonium results of Eichten et al.[4], Chung and Lee [2] and those of
the present work, Ed=300 for ground state with the Coulombic parameter a in the potential V(r) = −a/r + r. The initial value used by AIM was
�xed at r0 = 6. The subscript N refers to the number of iteration used by AIM.

a E300 (Eichten
et al.[4])

E30,0(AIM) a E300 (Chung and Lee [2]) E30,0 (AIM)

0.2 2.167 316 2.167 316 208 772 717N=104 0.1 2.253 678 2.253 678 098 810 761104
0.4 1.988 504 1.988 503 899 750 869N=105 0.3 2.078 949 2.078 949 440 194 840105
0.6 1.801 074 1.801 073 805 646 947N=104 0.5 1.895 904 1.895 904 238 476 994106
0.8 1.604 410 1.604 408 543 236 585N=103 0.7 1.703 935 1.703 934 818 031 980104
1.0 1.397 877 1.397 875 641 659 907N=102 0.9 1.502 415 1.502 415 495 453 73999
1.2 1.180 836 1.180 833 939 744 787N=109 1.1 1.290 709 1.290 708 615 983 606105
1.4 0.952 644 0.952 640 495 218 560N=110 1.3 1.068 171 1.068 171 244 486 971109
1.6 0.712 662 0.712 657 680 461 034N=115 1.5 0.834 162 0.834 162 211 049 953111
1.8 0.460 266 0.460 260 113 873 608N=117 1.7 0.588 049 0.588 049 168 557 953115

a root-�nding algorithm instead of using the default pro-
cedure Solve of Maple 16. The results of AIM may be ob-
tained to any desired degree of precision:wehave reported
most of our results to twelve decimal places, and those of
Table 3 to �fteen places, as an illustration. Of course, once
the energy eigenvalue has been determined accurately, it
is straightforward to integrate Equation (9) to �nd the cor-
responding wave function u(r) : we exhibit the result in
Figure 2.

In Table 2 we report the eigenvalues for
the Schrödinger equation with the potential
V(r) = −1/r + 0.01 r. The AIM iterations used r0 = 20.
In Table 3, we report the eigenvalues for the Schrödinger
equation with the potential V(r) = −1/r + 100 r where
with r0 = 1. In Table 4 we compare our AIM ground-state
eigenenergies for the potential V(r) = −a/r + r and di�er-
ent values of the parameter a, with those computed ear-
lier by Eichten et al. [4] using an interpolation technique
and that of Chung and Lee [2] using the Crank-Nicholson
method. Since the asymptotic solution Equation (24) is
independent of the Coulombic parameter a we use AIM
with r0 = 1, as shown in Figure 1.

5 Conclusion
The solution procedure presented in this paper is based
on the asymptotic iteration method and is very simple.
It yields highly accurate eigenvalues with little computa-
tional e�ort. To our knowledge, this work is the �rst at-
tempt to employ the asymptotic iteration method where
the AIM sequences λn and sn , n = 0, 1, 2, . . . , are com-
puted in terms of higher transcendental functions, rather

than polynomials or rational functions. This simple and
practical method can easily be implemented with any
available symbolic mathematical software to elucidate the
dependence of the energy spectrum on potential parame-
ters. Once accurate eigenvalues are at hand, it is straight-
forward to obtain the corresponding wave functions.
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