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Schrédinger spectrum generated by the Cornell potential

Abstract: The eigenvalues E¢,(a, c) of the d-dimensional
Schrédinger equation with the Cornell potential
V(r)=-a/r+cr, a,c > O are analyzed by means of the
envelope method and the asymptotic iteration method
(AIM). Scaling arguments show that it is sufficient to
know E(1,A), and the envelope method provides ana-
lytic bounds for the equivalent complete set of coupling
functions A(E). Meanwhile the easily-implemented AIM
procedure yields highly accurate numerical eigenvalues
with little computational effort.
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1 Introduction

The Schrédinger equation with the Cornell potential is an
important non-relativistic model for the study of quark-
antiquark systems [1-9]. For example, it is used in describ-
ing the masses and decay widths of charmonium states.
This Coulomb-plus-linear pair potential was originally
proposed for describing quarkonia with heavy quarks
[3-5]. It takes into account general properties expected
from the interquark interaction, namely Coulombic be-
havior at short distances and a linear confining term at
long distances [9]. By varying the parameters one can
obtain good fits to lattice measurements for the heavy-
quark-antiquark static potential [10]. Although such mod-
els have been studied for many years, exact solutions of
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Schrodinger’s equation with this potential are unknown.
Most of the earlier work either relies on direct numer-
ical integration of the Schrédinger equation or various
techniques for approximating the eigenenergies [2, 11, 12].
Without specific reference to a particular physical system,
we present a simple and very effective general method for
solving Schrddinger’s equation to any degree of precision
in arbitrary dimensional d > 1. We write the Cornell po-
tential in the form

V(r) = -% ter, )

where a > 0 is a parameter representing the Coulomb
strength, and ¢ > O measures the strength of the linear
confining term. The method we use do not require any par-
ticular constraint on the potential parameters and thus
they are appropriate for any physical problem that may be
modelled by this class of potential. The method of solution
is based on a special application of the asymptotic itera-
tion method (AIM, [13]). AIM is an iterative algorithm orig-
inally introduced to investigate the analytic and approxi-
mate solutions of a second-order linear differential equa-

tion of the form
» o d
(-4) o

where Ao(r) and so(r) are C=-differentiable functions. It
states [13] that: Given Ay and so in C*=(a, b), the differential
equation (2) has the general solution

Y = Aoy +so(y,

)
r) = exp| - dt
y(r) p pND)
r t

X

C2+C1/exp /[}lo(r)+ 2/\5”’1(1)} dr | dt
n-1

if forsomen > 0
On = AnSn-1 — Ap-15n = 0. (3)
where A, and sy are given by

An = Ay +Sno1 + AoAno1 and Sp = Sp_q + Sodn-1. (&)

Applications of AIM to a variety of problems have been re-
ported in numerous publications over the past few years.
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In most applications the functions Ao(r) and so(r) are taken
to be polynomials or rational functions. However, we show
in this paper that the applicability of the method is not re-
stricted to a particular class of differentiable functions. We
consider the case where A (r) and so(r) involve higher tran-
scendental functions, specifically Airy functions. Provided
the computer-algebra system employed has sufficient in-
formation about the functions and their derivatives, they
present no difficulty. The paper is organized as follows. In
section 2, we set up the d-dimensional Schrédinger equa-
tion for the Cornell potential and present some analytical
spectral bounds based on envelope methods [14-18]. In
particular we generalize to d > 1 dimensions an analyti-
cal formula, first derived [12] for d = 3, which exhibits en-
ergy upper and lower bounds for all the discrete eigenval-
ues of the problem. In section 3, we present an asymptotic
solution that allows us to express Schrodinger’s equation
in a form suitable for the application of AIM. In section 4,
we apply AIM to the Cornell potential and discuss some of
its numerical results, in particular comparisons with the
earlier results of Eichten et al. [4] and the recent work of
Chung and Lee [2].

2 Formulation of the problem and
analytical estimates in d
dimensions

The d-dimensional Schrédinger equation, in atomic units
h = 2u = 1, with a spherically symmetric potential V(r)
can be written as

[-Aq + V()] ¥(r) = EP(r), (5)

where A, is the d-dimensional Laplacian operator, d > 1,
and > = "¢ x2. In order to express (5) in terms of
d-dimensional spherical coordinates (r, 61, 0>, ..., 64_1),

we separate variables using
@) =r P um Yy, 0,010 000),  (6)

where Yy, . 4, ,(01...0,.1)is a normalized spherical har-
monic [19] with characteristic value ¢(¢ + d - 2), and
£=141=0,1,2,... (values of the principal angular quan-
tum number). One obtains the radial Schrédinger equation

as
dZ
[_W "

/{'Pff?(r)}z dr=1, l,bg?(O) =0,

0

(k-1)(k-3)

i V- E] P9 =0, @
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where k = d + 2¢. We assume that the potential V(r)
is less singular than the centrifugal term so that for
(k- 1)(k - 3) # 0 we have

u(r) ~ A2+ 50, where Aisaconstant. (8)

Since d > 1it follows that k > 1, and meanwhile k = 3 only
when ¢ = 0 and d = 3. Thus in the very special case k = 3,
u(r) ~ Ar (as we have for the Hydrogen atom), and we see
that Equation (8) is also valid when k = 3. We note that the
Hamiltonian and the boundary conditions of Equation (7)
are invariant under the transformation

d,0)>(dF2,0+1),

thus, given any solution for fixed d and ¢, we can imme-
diately generate others for different values of d and ¢. Fur-
ther, the energy is unchanged if k = d + 2¢ and the num-
ber of nodes n is constant: this point has been discussed,
for example, by Doren [20]. Repeated application of this
transformation produces a large collection of states. In
the present work, we study the d-dimension Schrédinger
eigenproblem

d k-1Dk-3) a
Tar T a7

k=d+2¢,a>0,0<r<oo,

uy(r) = Equy(n, (9)
ud (0) = 0.

Because of the presence of the linear confining term in the
potential, for ¢ > 0 the spectrum of this problem is entirely
discrete: a formal proof for d > 2 is given in Reed-Simon IV
[21].

If the parametric dependence of the eigenvalues on
the potential coefficients a and c is written E = E(a, c),
then elementary scaling arguments reduce the dimension
of the parameter space to one by means of the equation

E(a,c)=a’E(1,A), where A= %. (10)

Since V(r) is at once a convex function of -1/r and a con-
cave function of r?, the envelope method [14-18] can be
used to derive lower and upper energy bounds based on
the comparison theorem and the known exact solutions
for the pure Hydrogenic and oscillator problems in d di-
mensions. It turns out [12] that the bounds can be ex-
pressed by a formula for A as a function of E(1, A). We have
generalized the d = 3 result of Ref. [12] to d > 1 dimensions
and we obtain:

2W2E — E2 [(1 +3V2E)} - 1}

A= Ez—l

4v2°

1

= g(E),

[(1 +3V2E)f - 1} ’
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which formula yields an upper bound when v = 2n+/¢+d/2
and alower bound when v = n+¢+(d-1)/2. Itis interesting
that this entire set of lower and upper (energy) curves are
all scaled versions, for example, of the single ground-state
curve. Again,n = 0, 1, 2, ... counts the nodes in the radial
eigenfunction. Thus by using a computer solve routine to
invert the function g(E) in Equation (11) for each of the two
values of v, the energy bounds we can be written in the
form

E(a,c) = a’g,'(c/a). (12)

For the s-states, sharper upper bounds may be obtained
(via envelopes of the linear potential) in terms of the ze-
ros of the Airy function. This is about as far as we can go
generally and analytically with this spectral problem.

3 Asymptotic solution

We note first that the differential equation (9) has one reg-
ular singular point at r = 0 with exponents given by the
roots of the indicial equation

s(s—1)- %(k ~1)(k-3) =0, (13)

and an irregular singular point at r = oc. For large r, the
differential equation Equation (9) assumes the asymptotic
form

d? d
[_drz + cr] upy(r) =0 (14)

with a solution

ud () ~ Ai (c1/3 r) , u (o) ~ 0, (15)

where Ai(z) is the well-known Airy function [22]. Since the
roots s of Equation (13), namely,

1 1
S1= 5(3 -k, Sy = E(k_ 1),

determine the behavior of ugl(r) as r approaches 0, only
s > 1/2 is acceptable, since only in this case is the mean
value of the kinetic energy finite [23]. Thus, the exact solu-
tion of (9) assumes the form

u‘,fl(r) = FD2 44 (c”3 r) fa(n), c¢#0, k=d+2l,
(16)
where we note that ué,(r) ~ r*9/2 as r > 0. On insertion
of this ansatz wave function into (9), we obtain the differ-
ential equation for the functions f,(r) as

—rfa(r) + (1—k—2riln

g [aie 0] ) Fin

+ (—a —-Er-(k- 1)% In [Ai(cl/3 r)} ) fa(r) = 0. (17)
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4 Application of the asymptotic
iteration method

For arbitrary values of the potential parameters a and c,
AIM is an effective method to compute the eigenvalues ac-
curately as roots of the termination condition Equation (3),
which plays a crucial role. The AIM sequences An(r) and
sa(r),n =0,1,..., depend on the (unknown) eigenvalue
E and the variable r: thus 6, is an implicit function of E
and r. If the eigenvalue problem is analytically solvable,
the roots of the termination condition Equation (3) are in-
dependent of the variable r in the sense that the roots of
6n = 0 are independent of any particular value of r. In
this case, the eigenvalues are simple zeros of this func-
tion. For instance, in the case of a pure Coulomb poten-
tial V(r) = —a/r, a > 0, the exact solutions of Schidinger
equation
2
DY) a6 < Eud o), G8)

k=d+26,a>0,0<r<oo, uf(0)=0.
By means of the asymptotic solutionsnearr = Oand r = oo,
Equation (18) assumes the form

u‘,fl(r) = kDR £ (), k=d+2l,

x=+/—-En, (19)

where the functions f, satisfy the differential equation

(1-k

/ (~a+(k-1)x)
G280 f» Carfiotio

fu(1),

r

f,'l'(r) = (2;{ +

forn = 0,1, 2,... Thus, continuing the pure Coulomb
case, with

1-k

Ro() = 2+ =, _-a+(k-1)x

. (20)

So(7)

we use AIM to compute the sequences A, and
Sn, n=0,1,2,...initiated with A_1(r) = 1 and s_1(r) = O.
The termination condition is 6, = O,n = 0,1,2,... We
observe that if 6, = 0, then 6§,,; = O for all n. Direct
computation implies

2

80 =0, Eo = -¢3
81 =0, Eo =%y E1=—gSy
85,=0, Eo=—gip Ei=—gSp E2= -5y
83 =0, Eo = %5 E1 = g%y

Ey = %5, B3 =~
and in general
b =0 = E=—gip j=0,1,2,...,n
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as the well-know eigenvalue formula for the Coulomb po-
tential in d-dimensions. The situation is quite different in
the case of ¢ # 0. Here we use AIM with (see equation
Equation (17))

Ao(r) = (1;") —Z%In [4ic )], (21)
So)) = E-%- (k ;”%m 4 n)], @

where the termination condition 6, = O is a function of
both r and E, namely

6n = 6n(E;1) =0. (23)

The problem is then finding an initial value r = ry that
would stabilize the recursive computation of the roots by
the termination condition Equation (23) for all n. This is
still an open problem with no general strategy to locate
this initial value. A good choice for ry depends on the
shape of the potential under consideration and sometimes
on the asymptotic solution process itself. Thus two policies
for the choice of rq are: (1) the point where the minimum of
the potential occurs if it is not infinity; (2) the point where
the maximum of the ground-state asymptotic solution oc-
curs. For the Cornell potential, because of the attractive
Coulomb term, the potential function is not bounded be-
low and we therefore choose ry to be the location of the
maximum of the ground-state wave function as follows.
The asymptotic solution is given by:

Uas(r) = r& V24 (c1/3 r) , (24)

and we suppose that 7 is the position of the maximum of
Uas(r). We start with ro = 7, then we gradually increase
the value of ro until we reach stability in the computa-
tional process, in the sense that it converges in few iter-
ations. Thus, once a suitable value is found for ro for a
parameter patch, the actual eigenvalue calculations are
extremely fast. We only found one difficulty with this ap-
proach for the present problem, namely when c is small
so that the wave function is very spread out (like the pure
Coulomb case). In order to deal wih this, we adopted the
following strategy: we took r as a point at which the tail
of the asymptotic solution Equation (24) starts to dimin-
ish rapidly. In Figure 1, we show plots of uas for different
values of c. These graphs suggest that the starting value of
ro = 20 for the potential V(r) = -1/r + 0.01r, the start-
ing value of ro = 5 for the potential V(r) = -1/r + r, and
ro =1for V(r) = -1/r+ 100r. For the purpose of consis-
tency we have calculated each eigenvalue to 12 significant
figures and recorded in a subscript the minimum num-
ber of iterations required to reach this precision. The com-
putation of the Airy function is straightforward, thanks
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Figure 1: The spatial spread of the asymptotic solution ugs as c in-
creases.

o5 L1

0 1 2 3 4 5 6 7 8 9 10 11 1213 14 15

Figure 2: The wave function u(r) obtained by integrating Equa-
tion (9) with k = 4 and the energy eigenvalue E = Ezé =
8.997414071 taken from Table 1. This corresponds, for example,
tothecased = 4,{=0,andn = 6.

to Maple, where the AiryAi’ and its derivative are built-in
functions. The eigenvalues reported in Table 1 were com-
puted using Maple version 16 running on an Apple iMAC
computer in a high-precision environment. In order to ac-
celerate our computation we have written our own code for
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Table 1: Eigenvalues E‘r’ff}"’ for V(r) = —1/r + r. The initial value used by AIM is ro = 5. The subscript N refers to the number of iteration used

by AIM.

¢ n E&? ¢ n EI

0 0 1.397875641660y.5s O O 1.397 875641 660y-70
1 3.47508654539%6y.73 1 2.825 646 640 704y_s6
2 5.032914359536y.735 2 3.850 580 006 803 -5
3 6.370149 125 48657, 3 4.726 752 007 09643
4 7.574932640591y5 4 5.516 979 644 329y_37
5 8.687914590401y.5 5 6.248395 598 411y_33

¢ n E%* ¢ n E&*

0 0 2.202884354411y.56 O O 2.202 884354 411y_s6
1 3.998899718709y.6; 1 3.363 722259 378y-s,
2 5.457 656703 862y.5 2 4.301 971 630 406y_4s
3 6.740670678009y-6; 3 5.130 492519 711y_s
4 7.909993263 956y 4 7.085 515 480 564y_37
5 8.997414071258y55 5 8.799 435 022 938y-i1

Table 2: Eigenvalues Ezl:“ for V(r) = —1/r + 0.01 r. The initial value used by AIM is ro = 20 or as indicated. The subscript N refers to the

number of iteration used by AIM.

d=3
EnO

d=3
EOI

~0.221 030 563 404y_79
0.034 722 241 998y_70
0.141 913 022 811y_¢6
0.220287 171 811y.¢0
0.344 602 792 592y_75
0.448 055 673 514y_g5

-0.221 030 563 404N-79
0.017 400 552 510y-¢1
0.102 472 150 415y-47
0.159 830 894 61339
0.206 238 109 687 y_41
0.246 682 072 100y_34

d=4
EnO

a=h
Eq,

{ n
0O 0
1
2
3
4
5
{ n
0O 0
1
2
3
4
5

—-0.057 503 250 143 N_¢9
0.087 181 857 064 y_¢3
0.176 559 165 345y_7,
0.247 865 703 619y-¢7

0.309777 243 6955-¢9,r,-25
0.365723900484y-71,r,-25

U M WN R OIS, WN R OIS

-0.057 503 250 143 N-¢9
0.065 687 904 463 y_54
0.133 067 612 35643
0.183 984 697 12336

0.227 037 524 190y_37.r,-25
0.287 224084 341 y-39.r,-25

Table 3: Eigenvalues Eﬁf for V(r) = -1/r + 100 r. The initial value used by AIM is ro = 1 or as indicated. The subscript N refers to the
number of iteration used by AIM.

n

d=3
EOI

46.402 258 652 779y-104
85.339 271 687 574N-106
116.728 692 980 119y-103
144.315 456 241 781y-99
169.460 543 870 657 n-102
192.850291 861 086x-103

0

U & WN RFPR O

46.402 258 652 779N-75
70.016 058 921 076y-¢2
89.715 370910 984 y-51
107.334 329 106 273 n-46
123.561 985 764 157 N_s6,ro-1.5
138.761 138 633 388n-50,r,-1.5
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Table 4: A comparison between the eigenvalues the S-wave heavy quarkonium results of Eichten et al.[4], Chung and Lee [2] and those of
the present work, Egg3 for ground state with the Coulombic parameter a in the potential V(r) = —a/r + r. The initial value used by AIM was
fixed at ro = 6. The subscript N refers to the number of iteration used by AIM.

a E}, (Eichten E3 o(AIM) a  Ej,(Chungand Lee [2]) E o (AIM)
et al.[4])

0.2 2.167 316 2.167 316 208 772 717N-104 0.1 2.253 678 2.253 678 098 810 761104
0.4 1.988504 1.988 503 899 750 869y-105 0.3 2.078 949 2.078 949 440 194 840105
0.6 1.801074 1.801 073 805 646 947N-104 0.5 1.895 904 1.895 904 238 476 99446
0.8 1.604 410 1.604 408 543 236 5855-103 0.7 1.703 935 1.703 934 818 031 980104
1.0 1.397877 1.397 875 641 659 907 §-102 0.9 1.502 415 1.502 415 495 453 73999
1.2 1.180836 1.180833 939 744 787n-109 1.1 1.290 709 1.290 708 615 983 606105
1.4 0.952 644 0.952 640 495 218 560x-110 1.3 1.068171 1.068 171 244 486 97 1109
1.6 0.712 662 0.712 657 680 461 0345-115 1.5 0.834 162 0.834 162211 049 953111
1.8 0.460266 0.460 260113 873 608y-117 1.7 0.588 049 0.588 049 168 557 953115

a root-finding algorithm instead of using the default pro-
cedure Solve of Maple 16. The results of AIM may be ob-
tained to any desired degree of precision: we have reported
most of our results to twelve decimal places, and those of
Table 3 to fifteen places, as an illustration. Of course, once
the energy eigenvalue has been determined accurately, it
is straightforward to integrate Equation (9) to find the cor-
responding wave function u(r) : we exhibit the result in
Figure 2.

In Table 2 we report the eigenvalues for
the Schrodinger equation with the potential
V(r) =-1/r+0.01r. The AIM iterations used ro = 20.
In Table 3, we report the eigenvalues for the Schrodinger
equation with the potential V(r) =-1/r+ 100r where
with ro = 1. In Table 4 we compare our AIM ground-state
eigenenergies for the potential V(r) = —a/r + r and differ-
ent values of the parameter a, with those computed ear-
lier by Eichten et al. [4] using an interpolation technique
and that of Chung and Lee [2] using the Crank-Nicholson
method. Since the asymptotic solution Equation (24) is
independent of the Coulombic parameter a we use AIM
with ro = 1, as shown in Figure 1.

5 Conclusion

The solution procedure presented in this paper is based
on the asymptotic iteration method and is very simple.
It yields highly accurate eigenvalues with little computa-
tional effort. To our knowledge, this work is the first at-
tempt to employ the asymptotic iteration method where
the AIM sequences A, and s,,n = 0,1, 2,..., are com-
puted in terms of higher transcendental functions, rather

than polynomials or rational functions. This simple and
practical method can easily be implemented with any
available symbolic mathematical software to elucidate the
dependence of the energy spectrum on potential parame-
ters. Once accurate eigenvalues are at hand, it is straight-
forward to obtain the corresponding wave functions.
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