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Abstract: We reconsider the idea in spectroscopy of de-
tecting extra dimensions by regarding the nucleus as a
homogeneous sphere. In our results, it turns out that the
gravitational potential inside the nucleus ismuch stronger
than the potential induced by a particle in the same regime
in ref. [16], and thus a more signi�cant correction of the
ground state energy of hydrogen-like atoms is obtained,
which can be used to determine the existence of ADD’s ex-
tra dimensions. In order to get a larger order of magnitude
for the correction, it is better to apply our theory to high-Z
atoms or muonic atoms, where the volume of the nucleus
can’t be ignored and the relativistic e�ect is important. Our
work is based on theDirac equation in aweak gravity �eld,
and the result is more precise.
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1 Introduction
Gravity is the most mysterious force in modern physics.
There are many problems in Einstein’s theory of gravity.
The most famous one is that the theory is nonlinear, non-
renormalized, and hard to quantize. Although the quan-
tum gravity haven’t been obtained, some theories such as
string theory and loop gravity are making progress [1, 2].
In addition, some semiclassical quantum theories [3, 4]
based on quantum �eld theory and general relativity also
have made some achievements. Corda, for example [5, 6],
recently found that a black holes can be considered as
a gravitational analogue of the Hydrogen atom. Another
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famous problem is that the energy scale of gravity, Mpl
(Mpl = 1016 TeV is the Planck energy), is far larger than the
electroweak scaleM* = 1 − 10 TeV, which is known as the
gauge hierarchy problem.Arkanihamed, Dimopoulos, and
Dvali [7–9] proposed a brane model (ADD model) to deal
with the problem. In the ADDmodel, all matter and forces
except for gravity are con�ned within a 3-brane whose
width isM−1* , and the extra dimensions are perpendicular
to thematter brane and compact. For simplicityweassume
that these extra dimensions are circles with the same cir-
cumference L and are compacti�ed on an N-dimensional
torus TN . The gravity of a particle with mass m is

ϕ =



− m
M2
plr

, r >> L

− m
M2
plr

(1 + αe−
r
λ ), r ∼ L

− m
MN+2

* r1+N
. r << L

(1)

where α, λ ∼ L are related to the structure of the extra di-
mension space, with α = N, λ = L for TN space. N is the
number of the extra dimensions. The Planck energy isn’t a
fundament constant in the ADD model and is replaced by
the electroweak scale M*:

M2
pl = M2+N

* LN . (2)

So the energygapbetween thegravity andelectroweakdis-
appeared. The size of the extra dimension is

L ≈ 10−17+
30
N cm, (3)

which is large compared with the Planck length. The case
N = 1 (L ≈ 1013 cm ) can be easily ruled out, since L can
be compared with the radius of the solar system and New-
tonian gravity works well. The case N = 2 (L ≈ 10−2 cm)
may be explored by the torsion pendulum test and it is in-
dicated that L < 37 µm and M* > 1.5 TeV for N = 2 [10].
When N ≥ 3, the extra dimensions are too small to be de-
tected by mechanics methods. Many physicists have tried
to detect the existence of the extra dimensions via high
energy experiment and astrophysics observation [11–15].
Since spectroscopic experiments can be the most precise
way to study physics theories, some physicists [16–18]
have also suggested �nding the extra dimensions by de-
tecting the shift of the energy levels of atoms. In ref. [16],
the nucleus is a point-like source and the electron is non-
relativistic. The results indicated that the shift would be
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more obvious when the charge of the nucleus increased or
the electron was replaced by the heavier muon, because
the distance between the nucleus and electron (or muon)
is shorter and the gravity is stronger. However, it is unrea-
sonable for them to neglect relativistic e�ects and the vol-
ume of the nucleus, since when the charge number of nu-
cleus Z ∼ 100, the speed of the electron approaches c and
the electron is too close to the nucleus. In the subsequent
sections, we assume that the nucleus is a homogeneous
sphere. The gravity near the nucleus is derived in section 2.
Then in section 3 we give the Dirac equation in the gravity
�eld and calculate the correction of ground energy which
is signi�cantly stronger than the previous result in ref. [16].
Discussion and conclusion are also given in section 4.

2 The gravity of 3-sphere in 4+n
space-time

Since the nucleus is composed of protons and neutrons,
which are extremely similar in size andmass, we can treat
the nucleus as a homogeneous sphere. The general form
of the gravity of a homogeneous sphere is hard to deduce
from the formula (1). However, for N ≤ 4, there is an easy
way to estimate the gravitational potential near the nu-
cleus (r << L). From (3) we see that the nuclear radius (typ-
ical scale 10−15 m) is much smaller than the extra dimen-
sion scale L when N ≤ 4, so the potential near the nucleus
(r << L) is approximately the potential inducedby a sphere
in 4+N in�nite space-time. In the following sections, our
calculations are only for N = 2, 3, 4.

Given the existence of extra dimensions, the nucleus
may have a mass distribution in them. Since the thickness
of the matter brane M−1* = 10−17 cm is much smaller com-
pared with that of the nucleus, a homogeneous spherical
surfacewith radius R andmassM is not only in�nitely thin
in the ordinary 3+1 space-time, but also extremely thin in
the extra dimensions. When we neglect this thickness, the
gravitational potential near such a surface canbe obtained
by integrating the last formula in (1):

ϕ = − M
2RM2+N

* (N − 1)r

[
1

(r − R)N−1 −
1

(r + R)N−1

]
. (4)

From (4) we see that the potential is divergent when r ap-
proaches the surface. But this divergence can be removed
if we reconsider the tiny thickness of the matter brane
in extra dimensions. A similar phenomenon appeared in
electrostatics where the potential of a charged ball is di-
vergent in the center if we neglect its volume. The radius
of the ball, i.e. the charge distribution scale, o�ers a cut

o� to obtain a �nite result. Likewise, the thickness M−1*
provides a good cut o� of the gravitational potential and
smears the singularity in r = R. So we introduce the cut o�
ϕ(r) = ϕ(R+M−1* ), R−M−1* ≤ r ≤ R+M−1* to formula (4). The
gravity of a homogeneous 3-sphere can be obtained easily
with (4), when r > R +M−1* ,

ϕ =



− 3M
2M4

*R3r

[
r ln r + Rr − R − 2R

]
N = 2

− 3M
4M5

*R3r

[
ln r − Rr + R + 2Rr

r2 − R2

]
N = 3

− 3M
2(N − 1)M2+N

* R3r

{
1

N − 3

[
1

(r + R)N−3

− 1
(r − R)N−3

]
+ r
N − 2

[
1

(r − R)N−2 −
1

(r + R)N−2

]}
.

N ≥ 4
(5)

When r < R −M−1* ,

ϕ =



− 3M
2M4

*R3
[
lnM2

* (R2 − r2) − 2
]

N = 2

− 3M
4M5

*R3r

[
ln R − rr + R −

2Rr
r2 − R2 + 2M*r

]
N = 3

− 3M
2(N − 1)M2+N

* R3r

{
1

N − 3

[
1

(r + R)N−3

− 1
(R − r)N−3

]
− r
N − 2

[
1

(r + R)N−2 + 1
(R − r)N−2

]

+2rM
N−2
*

N − 2

}
. N ≥ 4

(6)
As the same reasonmentioned below (4), we introduce the
potential cuto�ϕ(r) = ϕ(R +M−1* ), R −M−1* ≤ r ≤ R +M−1* .
Now we need to derive the gravitational potential of a
sphere for r ∼ L and r ≥ L, which is di�erent from
Equations (5) and (6). Because the nucleus’ radius is
much smaller than L when N ≤ 4 (see equation (3); for
N = 4, L ∼ 10−10 cm is about 100 times of the nuclear
radius), the nucleus can be treated as a point mass when
r ∼ L or r ≥ L. Therefore the potential of the nucleus for
r � L and r ∼ L is just the �rst and second formula in (1).

3 The correction of the hydrogen
like atom ground energy

From Equation (6) we see that the gravitational potential
at the center of a nucleus is ϕ ≈ M

M4
*R3
≈ ρ

M4
*
≈ 10−13 � 1,

where ρ ≈ 1017 kg/m3 is the density of the nucleus. The
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e�ect of general relativity is weak, so the Dirac equation
coupled with gravity can be obtained in the weak �eld ap-
proximation.

The metric in the weak �eld approximation is

ds2 = (ηµν + hµν)dxµdxν , (7)

where hµν = 2δµνϕ. The interaction of the fermion
and gravity can be described by the Lagrangian density
[19] − 1

2hµνT
µν, where Tµν = ψ(iγµ∂ν)ψ is the fermion’s

momentum-energy tensor. We have ignored the second
and higher order terms of hµν and ϕ, since they are much
smaller than the �rst order terms of ϕ (ϕ ≤ 10−13). Adding
the interaction terms to the original Lagrangiandensitywe
can obtain the Dirac equation in the gravity �eld and the
Hamiltonian H = H0 + H′, where H0 is zeroth order in ϕ
and H′ is the correction due to gravity:

H0 = α · p + βm − Zαr , (8)

H′ = ϕ
(
H0 +

Zα
r + α · p

)
. (9)

Replacing the term α · p in Equation (9) by Equation (8) ,
we obtain

H = α · p + βm − Zαr + ϕ
(
2H0 +

2Zα
r − βm

)
. (10)

The �rst order correction in the energy is

∆En =
〈
n
∣∣∣∣ϕ(2En + 2Zα

r − βm
)∣∣∣∣ n〉

=
∞∫
0

[
(g2 + f 2)ϕ(2En +

2Zα
r ) + ϕm(g2 − f 2)

]
r2dr,

(11)

where the g, f are radial Dirac eigenfunctions[20]. The cor-
rection in the ground energy is

∆En=1 =
m

Γ(2γ + 1)

∞∫
0

ϕ
(
3γ + 4Z2α2

ρ

)
ρ2γe−ϱdρ, (12)

where ρ = 2Zαmr, and γ =
√
1 − Z2α2. The contribution of

the inverse-square gravity and the Yukuwa gravity in (1) is

∆E ≈ ZαMm
2

M2
pl

(13)

This is far smaller than the contribution of the high dimen-
sion gravity near the radius. The calculation indicates that

the dominant part of the correction of the ground energy
is

∆En=1 ≈



− 3Mm
M4

*R3Γ(2γ + 1)
ln (M*R)(

3γ
2γ + 1 + 2Z2α2

γR′

)
R′2γ+1, N = 2

− 3Mm
(N − 1)(N − 2)M4

*R3Γ(2γ + 1)(
3γ

2γ + 1 + 2Z2α2
γR′

)
R′2γ+1, N = 3, 4

(14)

where R′ = 2ZαmR.
To show that our results will reduce to Newtonian the-

ory in the absence of extra dimensions, there is a self-
consistent veri�cation: when the size of extra dimension
L approaches zero, the theory would also reduce to New-
tonian theory. From (2) we see that M* would be in�nitely
large in this case, and the correction of gravity from extra
dimensions would approach zero.

The Table 1 shows Pb+81, hydrogen, and Pb muonic
atoms’ frequency shifts when M* ≈ 1 TeV, and the third
column display LUO’s results in ref. [16].

4 Discussion and conclusion
From Table 1 we see that our corrections are dramatically
di�erent from the results in the ref [16]. On the one hand,
our results are signi�cantly larger. On the other hand,
in the ref [16], the frequency shift decreases dramatically
when N is increasing, but our results aren’t sensitive to the
number of extra dimensions.

The reasons for these di�erences canbe foundby com-
paring the gravity of a sphere (5), (6) and the gravity of
a point mass (1), which was used in ref [16–18]. In ref
[16], LUO introduced the cut o� R = A 1

3 r0 (the radius of

Table 1: The shift of the frequencies. In ref [16] ∆ν was not obtained
for N = 4

N ∆ν = ∆E
h ∆ν in ref [16]

Pb+81 2 2.3 × 104Hz 100Hz
3 1.1 × 103Hz 10−5Hz
4 3.7 × 102Hz

H 2 2.1 × 10−6Hz 10−8Hz
3 1.2 × 10−7Hz 10−13Hz
4 4.1 × 10−8Hz

Pb+82 + muon 2 1.4 × 1011Hz 109Hz
3 6.6 × 109Hz 104Hz
4 2.2 × 109Hz
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a nucleus) to the gravity of a particle, so they only con-
sidered the contribution outside of the nucleus. Our re-
sults, however, show that the interior of the nucleus plays
a more signi�cant role in the correction, therefore our re-
sults are much larger. In addition, the gravity of a par-
ticle decreases more rapidly with increasing N, so their
results were highly sensitive to N. In our derivation, the
wave-function of the ground state is a constant around
the nucleus and the potential inside the nucleus has the
same order of magnitude for di�erent N (It can be found
in (6),ϕ ∼ − 3M

(N−1)(N−2)M4
*R3

). So our correction (14) isn’t so
sensitive to N in Table 1.

Table 1 also indicates that the spectroscopy of high Z
atoms and muonic atoms may serve as a new method to
detect extra dimensions. The previous results is based on
N = 2, 3, 4, but it can also be generalized to N ≥ 5 . The
reason can also be found in (6), where the gravitational
potential inside the sphere is ϕ ∼ − 3M

(N−1)(N−2)M4
*R3

, thus
it is proportional to nuclear density. If the nuclear radius
is bigger than the extra dimension scale L, we can divide
the nucleus into a number of smaller parts compared with
extra dimensions, within which the potentials are of the
same form ϕ ∼ − 3M

(N−1)(N−2)M4
*R3

. So the correction is almost
of the same order when N ≥ 3. Equation (14) provides the
threshold to detect extra dimensions. If experiments can
reach this precision, we will �nd the extra dimension or
rule out the ADD model.

There are some uncertain things. The �rst one comes
from the uncertainty of M* ≈ 1 ∼ 10 TeV. Because
∆ν = ∆E

h ∝ M
−4
* , the order of ∆ν’s magnitudes will change

greatly. The other uncertainty is that we can’t determine
the number of extra dimensions by (14). Wemust consider
a smaller term in the derivation which we didn’t give in
(14):

∆E′n=1 ≈ −
3(N − 3)Mm

(
3γ + 4Z2α2

R′

)
(N − 1)(N − 2)M4

*R3Γ(2γ + 1)

(
2Zαm
M*

)N−3
× ln M*

2Zαm , (15)

where N = 3, 4. This decreases with the increasing N:

∆E′n=1
∆En=1

≈
{
10−3 N = 3
10−6 N = 4.

(16)

So more rigorous accuracy is needed to detect the number
of extra dimensions.

Acknowledgement: This work is supported by National
Natural Science foundation of China with grant No.
11274246.

References
[1] J. Polchinski, String Theory, Vol. I.II. (Cambridge University

Press, Cambridge, England, 1998)
[2] C. Rovelli, Quantum Gravity (Cambridge University Press, Cam-

bridge, England, 2004)
[3] M.K. Parikh, Gen. Rel. Grav. 36, 2419 (2004)
[4] S.W. Hawking, Commun. Math. Phys. 43, 199 (1975)
[5] C. Corda, Eur. Phys. J. C 73, 2665 (2013)
[6] C. Corda, Int. Journ. Mod. Phys. D 21, 1242023 (2012)
[7] N.A. Hamed, S. Dimopoulos, G. Dvali, Phys. Lett. B 429, 263

(1998)
[8] N.A. Hamed, S. Dimopoulos, G. Dvali, Phys. Rev. D 59, 086004

(1999)
[9] N.A. Hamed, S. Dimopoulos, G. Dvali, J.M. Russell, Phys. Rev. D

65, 024032 (2002)
[10] D.J. Kapner et al., Phys. Rev. Lett. 98, 021101 (2007)
[11] V.P. Goncalves, W.K. Sauter, M. Thiel, Phys. Rev. D 89, 076003

(2014)
[12] H. Sun, arXiv:1406.3897
[13] G.F. Giudice, R. Rattazzi, J.D. Wells, Nucl. Phys. B 544, 3 (1999)
[14] S. Dimopoulos, G. Landsberg, Phys. Rev. Lett. 87, 161602 (2001)
[15] C. Hanhart, J.A. Pons, D.R. Phillips, S. Reddy, Phys. Lett. B. 509,

1 (2001)
[16] F. Luo, H.Y. Liu, Chin. Phys. Lett. 23, 2903 (2006)
[17] F. Luo, H.Y. Liu, Int. J. Theor. Phys. 46, 606 (2007)
[18] Y.X. Liu, X.H. Zhang, Y.S. Duan, Mod. Phys. Lett. A 23, 1853

(2008)
[19] A. Zee, Quantum �eld theory in a nutshell (Princeton University

Press, Princeton, 2003)
[20] H.A. Bethe, E.E. Salpeter, Quantummechanics of one- and two-

electron atoms (Plenum, New York, 1977)


	1 Introduction
	2 The gravity of 3-sphere in 4+n space-time
	3 The correction of the hydrogen like atom ground energy
	4 Discussion and conclusion

