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Abstract: In this paper we have studied the Kantowski-
Sachs cosmological model with the quark and strange
quark matter in the f (R) theory of gravity. The general so-
lutions of the �eld equations are obtained by assuming the
physical condition shear scalar σ is proportional to scalar
expansion θ, which leads to the relation B = An between
metric coe�cients B and A. The physical and geometrical
aspects of the model are also discussed.
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1 Introduction
A fundamental theoretical challenge to gravitational the-
ories has been imposed by the recent observational data
[1–6] on the late time acceleration of the universe and the
existence of the darkmatter. Carroll et al. [7] explained the
presence of a late time cosmic acceleration of the universe
in f (R) gravity. The f (R) gravity models are reviewed by
Capozziello and Faraoni [8]. The f (R) theory of gravity has
also been helpful in describing the evolution of the uni-
verse.

f (R) gravity is getting a lot of attention since it can de-
scribe early acceleration Theory [9]. Most of the work has
been done in f (R) gravity with di�erentmatter sources. On
the other hand, a quark and strange quarkmatter solution
in the framework of f (R) gravity has not yet been investi-
gated in detail. It will be interesting to study the f (R) grav-
ity model in the case of quark and strange quark matter.
So, we are interested in behaviors of quark and strange
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quark matter in f (R) gravity for a Kantowski-Sachs uni-
verse.

In this study,wewill examinequark and strangequark
matter in a Kantowski-Sachs space-time. It is well known
that quark-gluon plasma existed during one of the phase
transitions of the universe at the early time when the cos-
mic temperature was T ∼ 200MeV. Typically, strange
quark matter is modeled with an (EoS) equation of state
p = (ρ − 4Bc)

3 based on the phenomenological bag model
of quark matter, in which quark con�nement is described
by an energy termproportional to the volume. In this equa-
tion Bc is the di�erence between the energy density of the
perturbative and nonperturbative QCD vacuum, known as
the bag constant. ρ and p are the energy density and ther-
modynamic pressure of the quark matter respectively. In
this model, quarks are through as degenerate Fermi gas,
which exists only in a region of space endowedwith a vac-
uum energy density Bc (bag constant). Also, in the frame-
work of this model, the quarkmatter is composed of mass-
less u and d quarks, massive s quarks and electrons. In
the simpli�ed version of the bag model, it is assumed that
quarks are massless and non-interacting. Therefore, we
have quark pressure pq =

ρq
3 (ρq is the quark energy den-

sity), the total energy density is ρ = ρq + Bc and the total
pressure is p = pq − Bc. There are many studies on quark
matter in general relativity. Mak and Harko [10] have stud-
ied charged strange quark matter in the spherically sym-
metric space-time admitting conformal motion. The study
of strange quark matter attached to the string cloud in
the spherical symmetric space-time admitting conformal
motion have been done by Yavuz et al. [11]. Adhav et al.
[12, 13] have discussed string cloud and domain walls with
quark matter in an n-dimensional Kaluza-Klein cosmolog-
ical model in general relativity, and strange quark matter
attached to a string cloud in Bianchi type-III space time in
general relativity. Katore [14] studied a cosmologicalmodel
with strange quark matter attached to cosmic strings for
FRW space-time in general relativity.

Yilmaz et al. [15] have discussed quark and strange
quark matter in f (R) gravity for Bianchi I and V space time
models. They have concluded that Quark Matter may be-
have like phantom-type dark energy for ε < −1, and quark
matter may be source of early dark energy, which causes
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early acceleration of the universe due to negative pressure.
Furthermore, obtained f (R) solutions represent early eras
of the universe since f (R) solutions for quark matter coin-
cidewith f (R) equations for in�ation. Adhav [16] discussed
theKantowski-Sachs string cosmologicalmodel in the f (R)
theory of gravity. Recently, Sahoo and Mishra [17] studied
the axially symmetric space-time with strange quark mat-
ter attached to string clouds in bimetric theory.

The anisotropy, quark matter and strange quark mat-
ter play a signi�cant role in the early stage of evolution of
the universe and hence the study of anisotropic and ho-
mogeneous cosmological models becomes important. In
this paper, we have studied the Kantowski-Sachs cosmo-
logical model with quark and strange quark matters in the
f (R) theory of gravity. The general solutions of the �eld
equations are obtained by assuming the physical condi-
tion shear scalar σ is proportional to scalar expansion θ,
which leads to the relation B = An between metric coef-
�cients B and A. The physical and geometrical aspects of
the model are also discussed.

2 Metric and the �eld equations
The standard representation of Kantowski-Sachs space-
time [18] is given by

ds2 = dt2 − A2dr2 − B2(dθ2 + sin2 θdϕ2), (1)

where A and B are cosmic scale factors and are functions
of the cosmic time t.

The corresponding Ricci scalar is given by

R = −2
[
Ä
A + 2B̈

B + 2 ȦḂAB + Ḃ
2

B2 + 1
B2

]
, (2)

where dot (·) represents derivative with respect to t.
The �eld equations in the f (R) theory of gravity are

given by [19, 20].

F(R)Rµν −
1
2 f (R)gµν −∇µ∇ν(R) + gµν�F(R) = κTµν . (3)

where F(R) = df (R)/dR, � ≡ ∇µ∇µ, ∇µ is the covariant
derivative, Tµν is the standard matter energy-momentum
tensor derived from the Lagrangian Lm, and κ (=

8πG
c4 = 1)

is the coupling constant in gravitational units. These are
the fourth-order partial di�erential equations in the met-
ric tensor gµν. The fourth order is due to the last two terms
on the left hand side of the equation. If we take f (R) = R,
these equations reduce to the�eld equations of general rel-
ativity.

Now contracting the �eld equations (3), we get

F(R)R − 2f (R) + 3�F(R) = T . (4)

From equation (4), we get

f (R) = 1
2[F(R)R + 3�F(R) − T]. (5)

This is used to analyze several features of f (R) gravity.
The energy momentum tensor for quark matter is

given as

T(Quark)µν = (ρ + p)uµuν − pgµν or

T(Quark)νµ = diag(ρ, −p, −p, −p), (6)

where ρ = ρq + Bc, p = pq − Bc and uµ = uµ = δµ0 is the four
velocity in the comoving coordinates. Since quark matter
behaves as a nearly perfect �uid [15, 21–24], wewill use the
following equation of state for quark matter

pq = ερq , 0 ≤ ε ≤ 1. (7)

Also the linear equation of state for strange quark matter
is [25, 26]

p = ε(ρ − ρ0), (8)

where ρ0 is the energy density at zero pressure and ε is a
constant.

When ε = 1
3 and ρ0 = 4Bc the above linear equation

of state is reduced to the following equation of state for
strange quark matter in the bag model [15, 24]

p = (ρ − 4Bc)
3 . (9)

where Bc is the Bag constant.
In the comoving co-ordinate system, the �eld equa-

tions (3) for themetric (1) with the help of equation (6) can
be written as(

Ä
A + 2 B̈B

)
F + 1

2 f (R) −
(
Ȧ
A + 2 ḂB

)
Ḟ = − (ρq + Bc) ,

(10)(
Ä
A + 2 ȦḂAB

)
F + 1

2 f (R) −
(
2Ḃ
B

)
Ḟ − F̈ = (pq − Bc) , (11)

(12)(
B̈
B + ȦḂAB + Ḃ

2

B2 + 1
B2

)
F + 1

2 f (R) −
(
Ȧ
A + ḂB

)
Ḟ − F̈

= (pq − Bc) , (13)

where overhead dot (·) denotes derivative with respect to
time t.
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3 Solutions of the �eld equations
Subtracting equations (10) from (11) and (10) from (13), we
get(

2 ȦḂAB −
2Ḃ
B

)
F +
(
Ȧ
A

)
Ḟ − F̈ = ρq + pq , (14)(

ȦḂ
AB −

Ä
A −

B̈
B + Ḃ

2

B2 + 1
B2

)
F +
(
Ḃ
B

)
Ḟ − F̈ = ρq + pq .

(15)

The �eld equations (14) and (15) are a system of two non-
linear di�erential equations with �ve unknowns A, B, F, ρ
and p. Hence, in order to solve system completely we as-
sume a physical condition that expansion scalar θ is pro-
portional to the shear scalar σ which gives the following
relation between metric function as

B = An , (16)

where n 6= 1 is an arbitrary constant.
Kantowaski and Sachs [18], Kristian and Sachs [27]

and Thorne [28] suggested that the Hubble expansion of
the universe is isotropic to within 30% (from observations
of the velocity red-shift relation for extra-galactic sources).
Collins et al. [29] have pointed out that for spatially ho-
mogeneous metric the normal congruence to the homoge-
neous hypersurface satis�es the condition σ

θ = constant.
Banerjee and Santos [30] had obtained the solutions of
Bianchi type II, VIII and IX under this condition. Recently,
many authors have assumed this condition in order to ob-
tain solutions of the �eld equations for di�erent types cos-
mological models [31–38].

We de�ne the spatial volume Vand average scale fac-
tor a of the universe as

V = AB2, a = (AB2)
1
3 . (17)

The directional Hubble parameters in the directions of r, θ
and ϕ axes respectively are de�ned as

Hr =
Ȧ
A , Hθ = Hϕ = ḂB , (18)

The mean Hubble parameter H is de�ned as

H = 1
3
V̇
V = 1

3

(
Ȧ
A + 2Ḃ

B

)
, (19)

Subtracting equations (15) from equation (14) and using
equation (16), we obtain(

Ä
A + 2n Ȧ

2

A2 + ȦḞAF

)
= 1
(1 − n)A2n . (20)

We know that the power-law relation between scale factor
and scalar �eld has been used by Johri and Desikan [39],
whereas, Kotub Uddin et al. [40] have established a result
in the context of f (R) gravity which shows

F ∝ an ,

where m is an arbitrary constant.
Recently, this has been used by Sharif and Shamir

[19, 20].
Now, we solve equation (20) by using a power-law re-

lation between F and a [19, 20, 39, 40]

F = kam , (21)

where k is the constant of proportionality and m is any in-
teger.

Using equation (17) and (21) in equation (20)we obtain

Ä
A +

(
6n + m(2n + 1)

3

)
Ȧ2

A2 = 1
(1 − n)A2n . (22)

Let Ȧ = S(A) then Ä = ṠS, where Ṡ = dS
dA .

Using this in above equation (22) and integrating we
get

Ȧ2 = 3A2(1−n)

(1 − n)[3(n + 1) + m(2n + 1)] + c1. (23)

Choosing integration constant c1 = 0 and again integrat-
ing, we obtain the following scale factors

A = (αt + β)
1
n , (24)

B = (αt + β), (25)

where α =
{

3n2
(1−n)[3(n+1)+m(2n+1)]

} 1
2 , β = c2α and c2 is inte-

gration constant.

The metric (1) with the help of equations (24), (25) can
be written as

ds2 = dt2 − (αt + β)
2
n dr2 − (αt + β)2[dθ2 + sin2 θdϕ2].

(26)

3.1 Some physical properties

Using equations (24) and (25) in equation (17), the volume
scale factor V of the universe is given by

V = (αt + β)
(2n+1)
n . (27)

Using equations (24) and (25) in equation (17), the direc-
tional Hubble parameters in the directions of r, θ and ϕ
axes are given by

Hr =
1

n(αt + β) , Hθ = Hϕ = α
(αt + β) . (28)
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The mean Hubble parameter H is obtained by using equa-
tions (19) and (28) as

H = 1
3n

(
2nα + 1
αt + β

)
. (29)

The expansion scalar θ = 3H is given by

θ = 1
n

(
2nα + 1
αt + β

)
. (30)

The mean anisotropy parameter of the expansion

∆ = 1
3

3∑
i=1

(Hi−H
H
)2 is given as

∆ = 2
(
αn − 1
2nα + 1

)2
. (31)

The shear scalar is de�ned as σ2 = 1
2

( 3∑
i=1
H2
i − 3H2

)
and

found to be

σ2 = 1
3n2

(
αn − 1
αt + β

)2
. (32)

The deceleration parameter is de�ned as q = d
dt
( 1
H
)
− 1

and found to be

q =
(
αn − 1
2nα + 1

)
. (33)

3.1.1 Quark matter for Kantowski-Sachs model

Using equations (21), (24) and (25) in equation (14)with the
help of linear equation of state (7) for ε = 1

3 , we obtain the
energy density and pressure of the quark matter as

ρq =
αk
12n2

[
3m(2n + 1)(nα + 1) − m2α(2n + 1)2 + 18n

]
× (αt + β)

(2n+1)m−6n
3n , (34)

pq =
αk

(6n)2
[
3m(2n + 1)(nα + 1) − m2α(2n + 1)2 + 18n

]
× (αt + β)

(2n+1)m−6n
3n , (35)

Using equations (21), (24), (25) and (34) in equation (10),
the f (R) function for quark matter is found to be

f (R) = αk
6n2

[
3m(2n + 1)(nα + 1) − m2α(2n + 1)2 + 18n

]
× (αt + β)

(2n+1)m−6n
3n . (36)

Using equations (24) and (25) in equation (2), the scalar
curvature R for the quark matter is found to be

R = −2
[
α2(1 − n) + 2nα + n2(α2 + 1)

n2(αt + β)2

]
, (37)

which clearly indicates that f (R) cannot be explicitly writ-
ten in terms of R.

However, using this value of R, the f (R) function turns
out to be

f (R) =
λ2
[
3m(2n + 1)(nα + 1) − m2α(2n + 1)2 + 18n

][
α2(1 − n) + 2nα + n2(α2 + 1)

]−λ1 Rλ1

(38)

where λ1 = 6n − (2n + 1)m
3n , λ2 = αk(n)λ1−2

6(2)λ1
are the con-

stants.

This gives f (R) only as a function of R.

3.1.2 Strange quark matter for Kantowski-Sachs model

Using equations (21), (24) and (25) in equation (14)with the
help of a linear equation of state (9), we obtain the energy
density and pressure of the strange quark matter as

ρ = αk
12n2

[
3m(2n + 1)(nα + 1) − m2α(2n + 1)2 + 18n

]
× (αt + β)

(2n+1)m−6n
3n + Bc , (39)

p = αk
(6n)2

[
3m(2n + 1)(nα + 1) − m2α(2n + 1)2 + 18n

]
× (αt + β)

(2n+1)m−6n
3n − Bc . (40)

Using equations (21), (24), (25) and (39) in equation (10),
the f (R) function for strange quark matter is found to be

f (R) = αk
6n2

[
3m(2n + 1)(nα + 1) − m2α(2n + 1)2 + 18n

]
× (αt + β)

(2n+1)m−6n
3n − 2Bc . (41)

Thus, the f (R) function can be written in term of R as

f (R) =
λ2
[
3m(2n + 1)(nα + 1) − m2α(2n + 1)2 + 18n

][
α2(1 − n) + 2nα + n2(α2 + 1)

]−λ1
× Rλ1 − 2Bc , (42)

where λ1 = 6n − (2n + 1)m
3n , λ2 = αk(n)λ1−2

6(2)λ1
are the con-

stants.

4 Discussion and conclusion
In this paperwe have studied the Kantowski-Sachs cosmo-
logical model with quark and strange quark matter in the
f (R) theory of gravity. We have obtained solutions of the
�eld equations by assuming the physical condition shear



94 | K.S. Adhav et al.

scalar σ is proportional to scalar expansion θ, which leads
to the relation B = An between metric coe�cients B and
A. We have also evaluated the function of the Ricci scalar
R, and f (R), by using an equation of state (EoS) for quark
and strange quarkmatters. In this model we observed that
the spatial volume V is �nite at t = 0 and it expands as t
increase and becomes in�nitely large as t → ∞ as shown
in Figure 1. From Figure 2, it is observed that the expan-
sion scalar θ starts with a �nite value at t = 0, and as time

1 2 3
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0.6

V

t

Figure 1: The variation of V vs. t.
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Figure 2: The variation of θ vs. t.

increases it decreases to a constant value and remains con-
stant as t → ∞. The energy density of the quark matter ρq
is �nite at t = 0 and then decreases to become constant as
t → ∞, provided that m < 6n

(2n+1) and n > 0, as shown in
Figure 3. For 0 < n < 1, the deceleration parameter q of
the universe is in the range −1 < q < 0, as shown in Fig-
ure 4, whichmatches with the observationsmade by Riess
et al., Perlmutter et al. and Knop et al. [1, 2, 41, 42] that the
present dayuniverse is undergoing accelerated expansion.
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Figure 3: The variation of ρq vs. t.

Figure 4: The variation of q vs. n.
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