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Abstract: Realistic network-like systems are usually com-
posed ofmultiple networkswith interacting relations such
as school-enterprise research and development (R&D) col-
laboration networks. Here, we study the percolation prop-
erties of a special class of R&D collaboration network,
namely institute-enterprise R&D collaboration networks
(IERDCNs). We introduce two actual IERDCNs to show
their structural properties, and we present a mathemati-
cal framework based on generating functions for analyz-
ing an interacting network with any connection probabil-
ity. Then,we illustrate the percolation threshold and struc-
tural parameter arithmetic in the sub-critical and super-
critical regimes.We compare the predictions of ourmathe-
matical framework and arithmetic to data for two real R&D
collaboration networks and a number of simulations. We
find that our predictions are in remarkable agreementwith
the data. We show applications of the framework to elec-
tronics R&D collaboration networks.
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1 Introduction
In the past decade, complex networks have been studied
intensively andwidely applied inmany real natural, physi-
cal and social systems. The structure and function of a sin-
gle network component have already achieved great devel-
opment due to numerousmodeling and analysis works [1–
7]. However, in fact, as one component in a larger complex
ofmultiple systems, a single network does not live in isola-
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tion because it always interacts with and interdepends on
other networks [8]. Therefore, much attention has recently
been focused on the topic of multiple networks with com-
plex interplay and distinct topology.

Some studies on multiple networks, including inter-
acting networks and interdependent networks, are start-
ing to demonstrate excellent value. It is worth mention-
ing that several attractive models, which can be traced
back to Buldyrev [9], focus on the properties of interde-
pendent networks based on coupling between systems.
The purpose of these write-ups is to elucidate distinct net-
work nodes which depend on each other and determine
the robustness of networks in general [10–13]. In provid-
ingproper functionality,mutually coupled and trigger pro-
cesses have emphasized that when a failure has occurred
in nodes from one network, it causes nodes in another net-
work to fail. Furthermore, the failure of some initial nodes
may trigger cascading failures from one network to an-
other through a communication channel between a pair of
nodes that can evendestroy bothnetworks [14, 15]. Beyond
that, mathematical frameworks on interacting networks
are another ingenious objective of the study of multiple
networks. For instance, email, electronic commerce, elec-
tric grid, communications and socio-technical systems
have been characterized by networks of networks, and the
overall connectivity in these systems could be enhanced
by calculating the properties of the components [8, 16].
Leicht and D’Souza [8] developed a framework based on
generating functions for analyzing undirected interacting
networks given the node connectivity within and between
networks.Moreover, they derived exact expressions for the
percolation threshold describing the onset of large-scale
networks as well as each network individually. Aside from
that, Fu et al. [16] proposed a mathematical framework
based on generating functions for analyzing directed in-
teracting networks, derived the necessary and sufficient
condition for the absence of the system-wide giant in- and
out-component and proposed arithmetic to calculate the
corresponding structural measures in the sub-critical and
super-critical regimes. Both these efforts extend the appli-
cation of generating functions on percolation transition in
multiple coupled networks.
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It is generally known that regardless of individual en-
terprise, enterprise groups, or institutes in regional inno-
vation systems, master cutting-edge knowledge and tech-
niques are crucial. The R&D collaboration between insti-
tutes and enterprises is a vital form of new knowledge
and technique creation, and the key elements in form-
ing R&D collaboration networks is shared knowledge and
technique creation. Thus, we pay special attention to per-
colation in the IERDCNs because it is helpful for further
study of the transmission of knowledge and techniques in
networks. In particular, percolation can be used to mea-
sure the number of enterprises that obtain the knowledge
and techniques, while the giant component decides the
transfer scope of the knowledge and technology.

This study is mainly focused on the percolation prop-
erties of IERDCNs which is a special type of school-
enterprise R&D collaboration networks. Furthermore, we
define R&D agents as nodes and collaborations as edges.
There are two types of nodes which form different net-
works in IERDCNs, one is technology enterprises (here-
inafter referred to as enterprises) and the other is research
institutes (hereinafter referred to as institutes, which in-
clude colleges and private research institutes). Nodes al-
ways show their independence in their respective net-
works because of the intense competition between enter-
prises in the same industry. If one partner breaks down,
others will still work. So, IERDCNs are interacting net-
works containing connectivity links only, and it is appro-
priate to choose the mathematical framework created by
Leicht andD’Souza [8] as the basemodel. Something inter-
esting and distinct from prior studies is that in this study,
we tried to take connection probability into consideration.
Moreover, the conditions for these components to become
the giant ones are worthy of discussion. Hence, further in-
vestigations are needed to model the mechanism under-
lying discontinuous percolation processes. Our work can
supplement and enrich existing studies on multiple net-
works.

The rest of the paper is organized as follows. From de-
gree distribution, density, assortativity, and etc., Section
2 introduces the unique network topology and structural
properties of IERDCNs. Section 3 puts forward two mathe-
matical frameworks for IERDCNs, a general one and a spe-
cial one with connection probability, which are useful for
deriving percolation conditions and calculating the aver-
age sizes of components. We evaluate our arithmetic us-
ing a set of simulation instances and discuss the practical
application of IERDCNs in Section 4. Finally, in Section 5,
we discuss the possible implications and extensions of our
work.

2 Structural properties
As mentioned previously, enterprises and institutes com-
pose the IERDCNs which can be found mostly in tech-
nology innovation networks [17]. Resource-based theory
emphasizes that there is a heterogeneous resource in en-
terprises and institutes, in which percolation would be
able to create a synergistic effect of knowledge and tech-
nique flow in the overall R&D collaboration system. Mean-
while, any enterprise may not satisfy the need for innova-
tion by utilizing its limited internal resources. Instead, it
needs R&D collaboration to obtainmore resources, knowl-
edge and techniques.Moreover, enterprises in the same in-
dustry tend to select institutes as partners because of in-
tense inter-firm competition caused by the homogeneity
of the firms’ commodity or services. Institutes with abun-
dant intellectual resources have a team of professional
researchers and technicians. Through external collabora-
tion, institutesmay transmit their accumulatedknowledge
and generate intellectual property rights for new tech-
nology. Certainly, they can obtain economic benefits. For
instance, ENEA is an Italian government-sponsored R&D
center. If an enterprise has innovative ideas and wants to
invent a technique, it will entrust one or two institutes
of ENEA with the development of cutting-edge knowledge
and techniques, and after all research activities are com-
plete, the enterprise and the institutes will apply for a
patent and share ownership of the knowledge or tech-
nique. Thus, enterprises can greatly enhance their cur-
rent workflow, productivity and quality with the new tech-
niques, while institutes can increase their efforts on pro-
moting new technology when collaborating with enter-
prises.

Some interesting things that we found are that most
enterprises tend to select two institutes for R&D collabo-
ration, which may be a necessary safeguard to prevent the
failure of a single connection, as well as that there are few
enterprise-with-enterprise collaborations due to the inter-
firm competitionwementioned earlier. Furthermore, there
are also few internal connections between institutes. The
cause for this may be that each institute has abundant in-
tellectual resources.

As already stated in our introduction, an IERDCN is
comprised of an enterprise R&D network and an institute
R&Dnetwork. In the enterprise R&Dnetwork, different en-
terprises have their partner selection preferences, but en-
terprises in the same industry have special uniform char-
acteristics on collaborative R&D. Hence, we take the elec-
tronics enterprises in this study and investigate their com-
binations with the institute R&D network.
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Table 1: Characteristics of IERDCNs 1 and 2.

IERDCN 1 2
Density 0.0397 0.0952
Ave degree 2.4194 2.0000
Ave closeness 0.0012 0.0083
Ave distance 3.8631 5.7619
Ave betweenness 63.7742 50.0000
Ave clustering coeflcient 0.0000 0.0000

Two cases of IERDCNs in China have been investigated
in detail (see Fig. 1 for their typologies and Table 1 for
their characteristics). All enterprises and institutes are lo-
cated in Beijing Zhongguancun Science Park. There are
50 electronics enterprises which compose the enterprise
R&D network and 12 institutes which compose the insti-
tute R&D network in IERDCN 1 (Fig. 1(a)). Similarly, there
are 11 electronics enterprises and 11 institutes in IERDCN
2 (Fig. 1(b)). Some large conglomerates such as Lenovo,
Digital China, and BOE are very famous for independently
conducting R&D,while some like Founder, Tsinghua Tong-
fang, Datang, Potevio, and etc. have formed strategic R&D
partnerships with other enterprises that they have a long-
term business connectionwith,meaning that there are en-
terprises that do not collaborate with any institute in the
institute R&D network. It should be stressed that the links
come frompatent application,which is an important result
of R&D collaboration. If a couple of partners have applied
for patent protection for a new technique, R&D collabora-
tion between themhas become inevitable. All patent infor-
mation can be found on the website of the Chinese State
Intellectual Property Office.

IERDCN 2, extracted from IERDCN 1, is a special case
because it is not very easy to find an identical network.
Actually, it is a classic IERDCN, where there is no intra-
network R&D collaboration and each entity has only two
partners which are from the other network. This occurs
when all enterprises in the same industry have equal scale
andmarket position, aswell as there always being unsatis-
fied demand for future R&D. Furthermore, enterprises pre-
fer to collaborate with two institutes to ensure a higher
probability of success and lower costs. Every research in-
stitute, in themeantime, has the samepowerful technolog-
ical strength and is ready for collaborative R&D. It is impor-
tant that equal amounts of collaborations ensure that the
whole network works successfully.

Table 2 shows the average degree of intra-network and
inter-network connections for IERDCNs 1 and 2. In addi-
tion to the illustrations in Fig. 1, we can see that rarely
are there intra-network collaborations. In contrast, more

Table 2: Average degree of intra- and inter-network connections for
IERDCNs 1 and 2.

IERDCN 1 2

Enterprise R&D network d̄intra− 0.1600 0.0000
d̄inter− 1.4000 2.0000

Institute R&D network d̄intra− 0.1667 0.0000
d̄inter− 5.8333 2.0000

inter-network collaborations exist in IERDCN 1 where the
number of collaborations between institutes and enter-
prises is relatively large. It is obvious in IERDCN 2 that
the inter-network collaborations in the enterpriseR&Dnet-
work and institute R&D network are equal.

We have to explain these structural properties based
on the management attributes of enterprises and insti-
tutes. Firstly, collaboration and competition coexist in
each network. In addition to similar or identical prod-
ucts and services, competition comes from information,
skill and knowledge barriers. Collaboration relies on com-
plementarities in creating common benefits for alliance
partners, and it can help to diffuse advanced knowledge
and techniques. However, due to the lack of profit-driven
and informational communication, there are only a few
collaborations and these occur when enterprises or insti-
tutes have the same stockholders. Furthermore, we find
that enterprises enjoy collaborating with more than one
institute as the more collaboration there is, the better the
chances of generating new techniques and knowledge.
Moreover, some institutes have large quantities of partners
because of the institute’s higher R&D capability and repu-
tation. Even so, if an institute has too many partners, this
may overburden the institute and even lead to failure. To
avoid excessive competition, more regular collaboration
has emerged after several years of competition and collab-
oration.

Wemust emphasize that despite there being a link be-
tween the generation and transmission of knowledge and
techniques, it does not mean that knowledge and tech-
niquesmight be transmitted for certain. The reason for this
may be related to the diversity between different organiza-
tions and differences in absorbency. Especially in practice,
the collaborations between enterprises and institutes or
between themselves may fail, or enterprises and institutes
may accomplish the R&D tasks of selected partners rather
than complete all tasks. A collaboration between an enter-
prise and an institute may not result in the generation of
new knowledge or techniques. We will introduce connec-
tion probability to the modeling process for studying this
issue. In doing so, we implicitly assume that each collabo-
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Figure 1: An IERDCN (a) and a special case (b). The red and white circles represent enterprises with and without, respectively, connections to
institutes, while the blue and white squares represent institutes with and without, respectively, connections to enterprises.

ration has a risk of failing to generate knowledge and tech-
niques,which is a departure fromprior studies that use the
assumption that collaborations are 100 percent success-
ful. Nevertheless, studying the R&D collaborations in an
eight-year period has allowed us to confirm our assump-
tion and include it in this study based on the fact that it
is reasonable in practice. Additionally, the actual proba-
bility of intra-network and inter-network connections can
be determined by investigation and research. There may
be some structural properties which reflect the economic,
management or social attributes of networks that should
be taken into a mathematical model’s construction pro-
cess. The second arithmetic equation in the next section
will present the corresponding work.

3 A mathematical framework based
on generating functions

3.1 The generating functions of classic
IERDCNs

Here we give a brief description of generating functions,
which have been used in many network connectivity stud-
ies [8–10, 16, 18–21] that all found that the functions are
quite accurate when the structure of networks is approx-
imately tree-like. Now, consider classic IERDCNs formed
by two interacting networks, 1 and 2, whose characteris-
tic is, the very rarely observed, nodes in the same network
with inner links. Network 1 is composed of enterprises
with the similar products and services while network 2
is composed of institutes with identical R&D capabilities.
In practice, networks 1 and 2 represents a scenario full of
intense competition and no collaboration between enter-
prises or institutes in their respective networks. Each indi-

vidual network µ can be characterized by a multi-degree
distribution,{pµk1k2}, where p

µ
k1k2 is the probability that a

network µ’s node has k1 edges to nodes in network 1 and 2
edges to nodes in network 2. Themulti-degree distribution
for network µ can be written in the form of a generating
function:

Gµ(x1, x2) =
∞∑︁

k1=0,k2=0

pµk1k2x
k1
1 x

k2
2 . (1)

We also assume that the distribution pµk1k2 is correctly
normalized, so that:

Gµ (1, 1) = 1. (2)

Firstly, consider selecting uniformly at random a ν-µ
edge which is used to connect a couple of nodes in net-
work µ and network ν. Relative to a single network, the re-
maining local connectivity to nodes in other networks is
also accounted for by excess degrees [19]. We use pµνk1k2 to
denote the probability that a randomly chosen ν-µ edge to
a node with excess ν degrees has total ν-degrees of kν + 1.
Then, the generating function for the distribution {pµνk1k2}
is:

Gµν(x) =
∞∑︀

k1 ,...,kl=0
pµνk1 ...kl x

k1
1 . . . x

kl
l

=
∞∑︀

k1=0,k2=0

pµk1(kν+1)k2 (kν+1)∑︀∞
j1=0,j2=0

pµj1(jν+1)j2 (jν+1)
xk11 x

k2
2

. (3)

According to the structural properties of networks 1
and 2 in IERDCN 2,we have p11k1k2 = p

22
k1k2 = 0,whichmeans

that G11 (x1, x2) = G22 (x1, x2) = 0. Thus, we only consider
the excess degree of a node in networks 1 and 2, and the
generating functions can then be written as:

G12(x1, x2) =
∞∑︁

k1=0,k2=0

p1k1(k2+1)(k2 + 1)∑︀∞
k1=0,k2=0 p

1
k1k2k2

xk11 x
k2
2 (4)
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and

G21(x1, x2) =
∞∑︁

k1=0,k2=0

p2(k1+1)k2 (k1 + 1)∑︀∞
k1=0,k2=0 p

2
k1k2k1

xk11 x
k2
2 . (5)

Secondly, consider the component sizes of IERDCN 2.
All the component sizes are finite in the beginning, but af-
ter the emergence of a giant connected component, they
become larger and larger. When the component sizes are
too large to tolerate and to ignore the closed loop of edges,
the generating functions can be adjusted to calculate the
average component size [8, 16, 18]. They can also be ad-
justed to calculate the probability that a randomly cho-
sen node belongs to the giant component in a supercrit-
ical regime [8, 16, 18]. We have to scrutinize components
of a randomly chosen undirected edge. Let Hνµ(x1, x2) be
the generating function for the distribution of the sizes of
components reached by following randomly chosen edges
connecting nodes in network ν with nodes in network µ.

Fig. 2 shows all the types of connections possible for
the µ node as the receiver of a randomly chosen edge in its
component. Because G11 (x1, x2) = G22 (x1, x2) = 0, when
there is no giant component, we have:{︃

H12(x1, x2) = x1 · G12[H11(x1, x2), H21(x1, x2)]
H21(x1, x2) = x2 · G21[H12(x1, x2), H22(x1, x2)].

(6)

By taking the partial derivative of both sides in each
sub-equation of Eq. (6)with respect to xµ, the average com-
ponent size for any Hµν(x1, x2) can be calculated. Then,
let x1 = 1 and x2 = 1 and put them into the calcu-
lation process. For the sake of briefness, we would like
to use H

′λ
µ (1, 1), H

′λ
µν(1, 1), G

′λ
µ (1, 1) and G

′λ
µν(1, 1) instead

of ∂Hµ(x1 ,x2)
∂xλ

⃒⃒⃒
x1=1,x2=1

, ∂Hµν(x1 ,x2)
∂xλ

⃒⃒⃒
x1=1,x2=1

, ∂Gµ(x1 ,x2)
∂xλ

⃒⃒⃒
x1=1,x2=1

and ∂Gµν(x1 ,x2)
∂xλ

⃒⃒⃒
x1=1,x2=1

in the following parts of this paper
when there is no ambiguity. Thus:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H
′1
12(1, 1) = 1 + G

′1
12(1, 1) · H

′1
11(1, 1)

+G
′2
12(1, 1) · H

′1
21(1, 1)

H
′1
21(1, 1) = G

′1
21(1, 1) · H

′1
12(1, 1)

+G
′2
21(1, 1) · H

′1
22(1, 1)

H
′2
12(1, 1) = G

′2
12(1, 1) · H

′2
11(1, 1)

+G
′1
12(1, 1) · H

′2
21(1, 1)

H
′2
21(1, 1) = 1 + G

′2
21(1, 1) · H

′2
12(1, 1)

+G
′1
21(1, 1) · H

′2
22(1, 1).

(7)

In Eq. (7), all the G
′λ
µν(1, 1) terms can be calculated

based on Eqs. (4) and (5) if we know the multi-degree dis-
tribution of each network. For instance, G

′1
12(1, 1) = k̄12·k̄11

k̄12
,

where k11 and k12 have the samemeanings as k1 and k2 in
Eq. (1) and Eq. (3). Meanwhile, all the H

′λ
µν(1, 1) terms can

be solved in Eq. (7), which has four sub-equations and four
unknowns.

The generating function for the probability distribu-
tion of a component’s size of a randomly selected µ node
when there is no giant component can be written as
Hµ(x1, x2) = xµ[H1µ(x1, x2), Hµ2(x1, x2)], where we have:{︃
H

′2
1 (1, 1) = G

′1
1 (1, 1) · H

′2
11(1, 1) + G

′2
1 (1, 1) · H

′2
21(1, 1)

H
′1
2 (1, 1) = G

′1
2 (1, 1) · H

′1
12(1, 1) + G

′2
2 (1, 1) · H

′1
22(1, 1).

(8)
Because the H

′λ
µ (1, 1) terms can be calculated by

putting the results of Eq. (7) into Eq. (8), the average com-
ponent size will be solved.

Thirdly, we would like to discuss the percolation
threshold. Because of the absence of inner links in both
networks, H

′1
11(1, 1), H

′1
22(1, 1), H

′2
11(1, 1) and H

′2
22(1, 1)

should be canceled. For that reason, we can conclude that
G

′1
12(1, 1) and G

′2
21(1, 1) equal 0 (because k11 = k22 = 0).

Thus,H
′2
12(1, 1) andH

′2
21(1, 1) equal 0. PluggingG

′1
11(1, 1) =

G
′2
11(1, 1) = G

′1
22(1, 1) = G

′2
22(1, 1) = 0 into Eq. (7), it can

now be written as:{︃
H

′1
12(1, 1) = 1 + G

′2
12(1, 1) · H

′1
21(1, 1)

H
′1
21(1, 1) = G

′1
21(1, 1) · H

′1
12(1, 1).

(9)

Solving Eq. (9), we get:⎧⎨⎩ H
′1
12(1, 1) = 1

1−G′1
21(1,1)·G

′2
12(1,1)

H
′1
21(1, 1) =

G
′1
21(1,1)

1−G′1
21(1,1)·G

′2
12(1,1)

.
(10)

We believe that the necessary and sufficient condition
for the absence of the giant component of IERDCN 2 is:

G
′2
12(1, 1) · G

′1
21(1, 1) < 1. (11)

Finally, let us calculate the probability that a ran-
domly chosen node belongs to the giant component. Here,
uµν represents the probability that a randomly chosen
edge pointing at a µ node leaving from a network ν node is
not part of the giant component. We get:{︃

u12 = G12(u11, u21)
u21 = G21(u12, u22).

(12)

TakingG12 andG21 as known,we can solve for u12 and
u21, and then, we can calculate the probability that a ran-
domly chosen µ node belongs to the giant component Sµ
as follows: {︃

S1 = 1 − G1(u11, u21)
S2 = 1 − G2(u12, u22).

(13)

Above all, we discuss generating functions of the clas-
sic IERDCNs. In the following, we will show that our arith-
metic is based on connection probability.
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Figure 2: A diagrammatical representation of the topological constraints placed on the generating function Hνµ(x1 , x2) for the distribution
of sizes of components reachable by follow a randomly chosen ν-µ edge. When G11 (x1 , x2) = 0 and G22 (x1 , x2) = 0, the functions may be
expressed as this.

3.2 The generating functions of IERDCNs
with connection probability

Now we are in the position to introduce the case with con-
nection probability ω, where collaborations achieve par-
tial success in IERDCNs. Before discussing, we use ωµ,
ων and ωµν to denote, separately, the threshold value of
connecting a couple of intra-network and inter-network
nodes. In practice, the collaboration will not be main-
tained if it does not generate knowledge or techniques
which can flow through networks. Nevertheless, many re-
searchers believe that the collaboration is successful (links
exist) when enterprises try to contact institutes even be-
fore collaborative agreements have been signed. To better
describe this complex and dynamic phenomenon, we in-
troduce connection probability which represents the prob-
ability of success in a collaboration. According to different
situations, the connection probability of enterprises and
institutes may be different. However, here they have equal
collaboration choices as inner links rarely exist, so we let
ωµ and ων equal ω1, and ωµν equal ω2. Based on the gen-
erating functions mentioned above, we also use Gµ to cal-
culate the multi-degree distribution.

Firstly, connection probability was used to endow dif-
ferent weights for every ν-µ edge, meaning that it may
break some of the connections between nodes, selected
randomly, from network µ and network ν. Furthermore,
the optimal target range of the connection probability is
from 0 to ωi, as if the connection probability is beyond ωi,
the connection will break. So, by using the probability of
a randomly chosen ν-µ edge to a node with excess ν de-
grees, the generating functions of IERDCNs with connec-
tion probabilities based on Eq. (3) can be written as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G11(ω1 · x1, ω2 · x2) =
∞∑︀

k1=0,k2=0

p1(k1+1)k2 (k1+1)∑︀∞
k1=0,k2=0

p1k1k2 k1
· (ω1 · x1)k1 · (ω2 · x2)k2

G12(ω1 · x1, ω2 · x2) =
∞∑︀

k1=0,k2=0

p1k1(k2+1)(k2+1)∑︀∞
k1=0,k2=0

p1k1k2 k2
· (ω1 · x1)k1 · (ω2 · x2)k2

G21(ω1 · x1, ω2 · x2) =
∞∑︀

k1=0,k2=0

p2(k1+1)k2 (k1+1)∑︀∞
k1=0,k2=0

p2k1k2 k1
· (ω1 · x1)k1 · (ω2 · x2)k2

G22(ω1 · x1, ω2 · x2) =
∞∑︀

k1=0,k2=0

p2k1(k2+1)(k2+1)∑︀∞
k1=0,k2=0

p2k1k2 k2
· (ω1 · x1)k1 · (ω2 · x2)k2 .

(14)
Themulti-degreedistribution for eachnetworkmaybe

written in the form of a generating function:⎧⎪⎪⎨⎪⎪⎩
G1(ω1 · x1, ω2 · x2) =

∞∑︀
k1=0,k2=0

p1k1k2 · (ω1 · x1)k1 · (ω2 · x2)k2

G2(ω1 · x1, ω2 · x2) =
∞∑︀

k1=0,k2=0
p2k1k2 · (ω1 · x1)k1 · (ω2 · x2)k2 .

(15)
Secondly,wediscuss component sizes.Wealsohave to

scrutinize components of a randomly chosen undirected
edge with connection probability. Let Hνµ(x1, x2) be the
new generating function for the distribution of the sizes
of components reached by following randomly chosen ν-µ
edges in the optimal target interval. A key point that needs
to be emphasized is that the links between the ν-µ nodes
exist in 100 percent of cases.

Fig. 3 shows all the types of connections possible for
the µ node as the receiver of a randomly chosen edge
with some connection probability in its component.Mean-
while, letωλµ ·Hλµ(x1, x2)k1 +(1−ωλµ)·Hλµ(x1, x2)0 denote
the generating function for the distribution of the sizes of
components with total probability. We explicitly exclude
the giant component from Hλµ(x1, x2) and get:
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Hµν(x1, x2) = xµ ·
∞∑︁

k1=0,k2=0

pµνk1k2 · [ω1µ · H1µ(x1, x2)k1 + 1 − ω1µ , ωλµ · H1µ(x1, x2)kλ + 1 − ωλµ] (16)

where if µ = λ, then ωµν = ω1, else ωµν = ω2. We could change the form of Eq. (16) using Eq. (14) and Eq. (15). Thus:

Hµν(x1, x2) = xµ · Gµν[ω1µ · H1µ(x1, x2) + 1 − ω1µ , ωλµ · Hλµ(x1, x2) + 1 − ωλµ]. (17)

If we consider starting froma randomly chosen µ node instead of a ν-µ edge,we can obtain a topology that describes
the end of each edge incident to the µ node, such as the one from Fig. 3. The generating function that represents the
probability distribution of component sizes can be written as:

Hµ(x1, x2) = xµ · Gµ[ω1µ · H1µ(x1, x2) + 1 − ω1µ , ωλµ · Hλµ(x1, x2) + 1 − ωλµ]. (18)

In IERDCNs, Eq. (17) becomes:⎧⎪⎪⎪⎨⎪⎪⎪⎩
H11(x1, x2) = x1 · G11[ω1 · H11(x1, x2) + 1 − ω1, ω2 · H21(x1, x2) + 1 − ω2]
H12(x1, x2) = x1 · G12[ω1 · H11(x1, x2) + 1 − ω, ω2 · H21(x1, x2) + 1 − ω2]
H21(x1, x2) = x2 · G21[ω2 · H12(x1, x2) + 1 − ω2, ω1 · H22(x1, x2) + 1 − ω]
H22(x1, x2) = x2 · G22[ω2 · H12(x1, x2) + 1 − ω2, ω1 · H22(x1, x2) + 1 − ω]

(19)

and Eq. (18) becomes: {︃
H1(1, 1) = x1 · G1[ω1 · H11(1, 1) + 1 − ω1, ω2 · H21(1, 1) + 1 − ω2]
H2(1, 1) = x2 · G2[ω2 · H12(1, 1) + 1 − ω2, ω1 · H22(1, 1) + 1 − ω1].

(20)

Take the partial derivatives of both sides in each sub-equation of Eqs. (14)-(20) with respect to x1 and x2. Then, let
x1 = 1 and x2 = 1 and put them into the calculation process. We have:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H
′1
11(1, 1) = 1 + ω1 · G

′1
11(1, 1) · H

′1
11(1, 1) + ω2 · G

′2
11(1, 1) · H

′1
21(1, 1)

H
′1
12(1, 1) = 1 + ω1 · G

′1
12(1, 1) · H

′1
11(1, 1) + ω2 · G

′2
12(1, 1) · H

′1
21(1, 1)

H
′1
21(1, 1) = ω2 · G

′1
21(1, 1) · H

′1
12(1, 1) + ω1 · G

′2
21(1, 1) · H

′1
22(1, 1)

H
′1
22(1, 1) = ω2 · G

′1
22(1, 1) · H

′1
12(1, 1) + ω1 · G

′2
22(1, 1) · H

′1
22(1, 1)

H
′2
11(1, 1) = ω1 · G

′2
11(1, 1) · H

′2
11(1, 1) + ω2 · G

′1
11(1, 1) · H

′2
21(1, 1)

H
′2
12(1, 1) = ω1 · G

′2
12(1, 1) · H

′2
11(1, 1) + ω2 · G

′1
12(1, 1) · H

′2
21(1, 1)

H
′2
21(1, 1) = 1 + ω2 · G

′2
21(1, 1) · H

′2
12(1, 1) + ω1 · G

′1
21(1, 1) · H

′2
22(1, 1)

H
′1
12(1, 1) = 1 + ω2 · G

′2
22(1, 1) · H

′2
12(1, 1) + ω1 · G

′1
22(1, 1) · H

′2
22(1, 1)

(21)

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
H

′1
1 (1, 1) = 1 + G

′1
1 (1, 1) · ω1 · H

′1
11(1, 1) + G

′2
1 (1, 1) · ω2 · H

′1
21(1, 1)

H
′2
1 (1, 1) = G

′1
1 (1, 1) · ω1 · H

′2
11(1, 1) + G

′2
1 (1, 1) · ω2 · H

′2
21(1, 1)

H
′1
2 (1, 1) = G

′1
2 (1, 1) · ω2 · H

′1
12(1, 1) + G

′2
2 (1, 1) · ω1 · H

′1
22(1, 1)

H
′2
2 (1, 1) = 1 + G

′1
2 (1, 1) · ω2 · H

′2
12(1, 1) + G

′2
2 (1, 1) · ω1 · H

′2
22(1, 1).

(22)

Then, H
′λ
µ (1, 1) can be calculated by putting the results of Eq. (21) into Eq. (22). Now, the average component size

will be solved.
Thirdly, we would like to discuss the percolation threshold. By solving Eq. (21), we can get:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H
′1
11(1, 1) =

1−ω1·G
′2
22(1,1)+ω2

2·(G
′2
11(1,1)−G

′2
12(1,1))·[G

′1
21(1,1)·(1−ω1·G

′2
22(1,1))+ω1·G

′2
21(1,1)·G

′1
22(1,1)]

θ

H
′1
12(1, 1) =

(1−ω1·G
′2
22(1,1))·(1−ω1·G

′1
11(1,1)+ω1·G

′1
12(1,1))

θ

H
′1
21(1, 1) =

(1−ω1·G
′1
11(1,1)+ω1·G

′1
12(1,1))·ω2·[G

′1
21(1,1)·(1−ω1·G

′2
22(1,1))+ω1·G

′2
21(1,1)·G

′1
22(1,1)]

θ

H
′1
22(1, 1) =

G
′1
22(1,1)·ω2·(1−ω1·G

′1
11(1,1)+ω1·G

′1
12(1,1))

θ

H
′2
11(1, 1) =

G
′1
11(1,1)·ω2·(1−ω1·G

′1
22(1,1)+ω1·G

′1
21(1,1))

σ

H
′2
12(1, 1) =

ω2·(1−ω1·G
′1
22(1,1)+ω1·G

′1
21(1,1))·[G

′1
12(1,1)·(1−ω1·G

′2
11(1,1))+ω1·G

′1
11(1,1)·G

′2
12(1,1)]

σ

H
′2
21(1, 1) =

(1−ω1·G
′2
11(1,1))·(1−ω1·G

′1
22(1,1)+ω1·G

′1
21(1,1))

σ

H
′2
22(1, 1) =

1−ω1·G
′2
11(1,1)+ω2

2·(G
′2
21(1,1)−G

′2
22(1,1))·[G

′1
12(1,1)·(ω1·G

′2
11(1,1)−1)−ω1·G

′1
11(1,1)·G

′2
12(1,1)]

σ

(23)



Percolation on the institute-enterprise R&D collaboration networks | 57

Figure 3: A diagrammatical representation of the topological constraints placed on the generating function Hµν(ω1 · x1 , ω2 · x2) for the
distribution of the sizes of components reachable by following a randomly chosen ν-µ edge, where connection probability decides all the
links in IERDCNs.

where
θ = (1 − ω1 · G

′1
11(1, 1)) · (1 − ω1 · G

′2
22(1, 1)) · (1 − ω2 · G

′2
12(1, 1) · ω2 · G

′1
21(1, 1))

−ω1 · G
′2
11(1, 1) · ω2 · G

′1
12(1, 1) · ω2 · G

′1
21(1, 1) · (1 − ω1 · G

′2
22(1, 1))

−ω2 · G
′2
12(1, 1) · ω2 · G

′2
21(1, 1) · ω1 · G

′1
22(1, 1) · (1 − ω1 · G

′1
11(1, 1))

−ω1 · G
′2
11(1, 1) · ω2 · G

′1
12(1, 1) · ω2 · G

′2
21(1, 1) · ω1 · G

′1
22(1, 1)

(24)

and
σ = (1 − ω1 · G

′2
11(1, 1)) · (1 − ω1 · G

′1
22(1, 1)) · (1 − ω2 · G

′1
12(1, 1) · ω2 · G

′2
21(1, 1))

−ω1 · G
′1
11(1, 1) · ω2 · G

′2
12(1, 1) · ω2 · G

′2
21(1, 1) · (1 − ω1 · G

′1
22(1, 1))

−ω2 · G
′1
12(1, 1) · ω2 · G

′1
21(1, 1) · ω1 · G

′2
22(1, 1) · (1 − ω1 · G

′2
11(1, 1))

−ω1 · G
′1
11(1, 1) · ω2 · G

′2
12(1, 1) · ω2 · G

′1
21(1, 1) · ω1 · G

′2
22(1, 1).

(25)

Eqs. (23)-(25) show that the necessary and sufficient condition for the absence of a system-wide giant component
is: {︃

θ > 0 ∧ ω1 · G
′1
11(1, 1) < 1 ∧ ω1 · G

′2
22(1, 1) < 1 ∧ ω2

2 · G
′2
12(1, 1) · G

′1
21(1, 1) < 1

σ > 0 ∧ ω1 · G
′2
11(1, 1) < 1 ∧ ω1 · G

′1
22(1, 1) < 1 ∧ ω2

2 · G
′1
12(1, 1) · G

′2
21(1, 1) < 1.

(26)

To prove sufficiency, we apply these conditions to Eq. (23) and find that according Eq. (14) and Eq. (21), H
′1
11(1, 1) =

1+ω2·G
′2
11(1,1)·H

′1
21(1,1)

1−ω1·G
′1
11(1,1)

, G′
µν(1, 1) ≡ k̄µν ≥ 0 and G′

11(1, 1) almost equal to 0 (because of the rarity of inner links), so H
′1
11(1, 1)

converges to a value equal to or higher than 1. Furthermore, H
′1
12(1, 1) converges to a value equal to or higher than 1, and

H
′1
21(1, 1) and H

′1
22(1, 1) converge to values equal to or higher than 0. In the same way, H

′2
11(1, 1) and H

′2
12(1, 1) converge

to values equal to or higher than 0. Both H
′2
21(1, 1) and H

′2
22(1, 1) converge to values equal to or higher than 1. For all

parameters, when Eq. (26) is satisfied, sufficiency is proved.When ω1 ·G
′1
11(1, 1) ≥ 1∨ω1 ·G

′2
22(1, 1) ≥ 1∨ω2 ·G

′2
11(1, 1) ≥

1 ∨ ω2 · G
′1
22(1, 1) ≥ 1, a part of the whole network has already undergone the transition phase. Otherwise, a giant

component appears. Considering the sufficiency of Eq. (25), which has been proven, we have that it is the necessary and
sufficient condition for the absence of a system-wide giant component.
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Finally, the probability that randomly chosen nodes
and the fraction of network nodes that belong to the giant
componentwill be calculated.Once a giant component ap-
pears, we can calculate the properties of the components
not belonging to it. As Eq. (12) shows, uµν represents the
probability that a randomly chosen edge pointing at a µ
node leaving from a network ν node is not part of the gi-
ant component. As we mentioned, whether or not each
edge exists depends on the connection probability, and
our work, therefore, must ensure that all randomly chosen
ν-µ edges do not belong to the giant component. Now, let-
ting Gµν remain the same, we divide the parameters of Gµν
into two parts. As a probability, both parts are used for cal-
culating the distribution of outgoing edges excluding the
giant component.When the connection probability equals
to 1 − ωµν, neither an outgoing edge nor a giant compo-
nentwill appear in all networks. On the contrary, when the
connectionprobability equals toωµν, whichmeans that an
outgoing edge exists, and according to Eq. (15), the prob-
ability that outgoing edges do not belonging to the giant
component is ωµν · uµν. Thus, the probability that a ran-
domly chosen node does not belong to the giant compo-
nent is 1 − ωµν + ωµν · uµν and we get:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u11 = G11(1 − ω1 + ω1 · u11, 1 − ω2 + ω2 · u21)
u12 = G12(1 − ω1 + ω1 · u11, 1 − ω2 + ω2 · u21)
u21 = G21(1 − ω2 + ω2 · u12, 1 − ω1 + ω1 · u22)
u22 = G22(1 − ω2 + ω2 · u12, 1 − ω1 + ω1 · u22)

(27)

and

{︃
u1 = G1(1 − ω1 + ω1 · u11, 1 − ω2 + ω2 · u21)
u2 = G2(1 − ω2 + ω2 · u12, 1 − ω1 + ω1 · u22).

(28)

Let Sµ be the fraction of µ-nodes belonging to the giant
component, and it may be written as:{︃

S1 = 1 − u1
S2 = 1 − u2.

(29)

Our discussion for this case is general and applicable
to randomly connecting networks.

4 Applications

4.1 Comparison with actual networks

In this section, we apply our mathematical framework to
two actual IERDCNs with 100 percent connection proba-
bilitiesmentioned in Section 2. As Table 3 shows, there are

some discrepancies in the first one, but the discrepancies
between the theoretical calculations and the actual IERD-
CNs is proved to be acceptable. Meanwhile, in the second
one, the analytical results completely match the empirical
data. We will discuss this in more detail and see how pre-
cise our arithmetic is. For IERDCN 1, we get G

′1
11(1, 1) =

0, G
′2
11(1, 1) = 0.125, G

′1
12(1, 1) = 0.0142857143,

G
′2
12(1, 1) = 0.8571428571, G

′1
21(1, 1) = 6.2, G

′2
21(1, 1) =

0.1, G
′1
22(1, 1) = 3.5, and G

′2
22(1, 1) = 0. Obviously, given

thatG
′2
12(1, 1)·G

′1
21(1, 1) = 5.3142857140 > 1, a giant con-

nected component exists according to Eq. (26) when ω2 =
1. The two values from the analytical results and empirical
data are extremely close to each other. For IERDCN 2, we
get G

′2
12(1, 1) = 1, G

′1
21(1, 1) = 1, and G

′2
12(1, 1) · G

′1
21(1, 1) =

1 which disagree with Eq. (11) and Eq. (26) when ω1 = 0
and ω2 = 1. Thus, IERDCN 2 also has a giant connected
component.

However, according to our arithmetic, we can give
two cases with a smaller connection probability, and by
letting ω1 = 0.1, ω2 = 0.1 and ω1 = 0.1, ω2 = 0.2

for IERDCN 1, we can get:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G
′1
11(1, 1) = 0
G

′2
11(1, 1) = 0.125
G

′1
12(1, 1) = 0.0143
G

′2
12(1, 1) = 0.8571
G

′1
21(1, 1) = 6.2
G

′2
21(1, 1) = 0.1
G

′1
22(1, 1) = 3.5
G

′2
22(1, 1) = 0

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H
′1
11(1, 1) = 1.0083

H
′2
11(1, 1) = 0

H
′1
12(1, 1) = 1.0580

H
′2
12(1, 1) = 0.0028

H
′1
21(1, 1) = 0.6597

H
′2
21(1, 1) = 1.9539

H
′1
22(1, 1) = 0.3703

H
′2
22(1, 1) = 1.5385

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G
′1
11(1, 1) = 0
G

′2
11(1, 1) = 0.125
G

′1
12(1, 1) = 0.0143
G

′2
12(1, 1) = 0.8571
G

′1
21(1, 1) = 6.2
G

′2
21(1, 1) = 0.1
G

′1
22(1, 1) = 3.5
G

′2
22(1, 1) = 0

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H
′1
11(1, 1) = 1.0397

H
′2
11(1, 1) = 0

H
′1
12(1, 1) = 1.2738

H
′2
12(1, 1) = 0.0084

H
′1
21(1, 1) = 1.5841

H
′2
21(1, 1) = 1.9541

H
′1
22(1, 1) = 0.8916

H
′2
22(1, 1) = 1.5385.
And at this point, we have:

θ = 1 > 0 ∧ G
′1
11(1, 1) = 0 < 1 ∧ G

′2
22(1, 1) = 0 <

1 ∧ 0.1 · G
′2
12(1, 1) · 0.1 · G

′1
21(1, 1) = 0.0531 < 1

and
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Table 3: Analytical results and empirical data of IERDCN 1 and 2.

IERDCN 1 IERDCN 2
S1 S2 S1 S2

Analytical results 0.8174 0.9582 1.0000 1.0000
Empirical data 0.8200 1.0000 1.0000 1.0000

θ = 1 > 0 ∧ G
′1
11(1, 1) = 0 < 1 ∧ G

′2
22(1, 1) = 0 <

1 ∧ 0.2 · G
′2
12(1, 1) · 0.2 · G

′1
21(1, 1) = 0.2126 < 1

Because both of them satisfy Eq. (26), there is no gi-
ant component. Now, we can calculate the average com-
ponent size of a randomly selected µ network. By taking
into account all possible situations, we work out the aver-
age true values of component size. Table 4 shows the an-
alytical values and true values of component size. We find
that all pairs have a tolerated discrepancy (approximately
0.67%-1.4%) which is lower than the tolerance of 1 node.
These discrepancies may come from the inherent inaccu-
racy of the generating function. However, our arithmetic
is precise enough to estimate whether or not the networks
have undergone the transition phase and to calculate im-
portant structural property measures.

4.2 Application in actual networks

All the work we do possesses theoretical meaning, and
also has a very strong meaning in practice.

First of all, the component of nodes utilizes the re-
sources of the networks most efficiently by competing in-
side and collaborating outside the network, which pro-
vides a path for every node in the component to learn some
techniqueor knowledge fromotherswithout directlywork-
ing together. As Table 3 shows, in IERDCN 2, every enter-
prise and institute has a path to the giant component. Orig-
inal technological innovation ideas may come from every
enterprise and institute and must be done in partnership.
As for the links within the R&D network of enterprises or
institutes, it can be found that even if we remove all of
them, the network still has a giant component. Thismeans
that the necessary knowledge of technological R&D can
flow freely throughout the whole network and that there
is a high rate of success for patent output.

Secondly, we introduce connection probability to ex-
tend the application of generating functions. Currently,
links in many networks are unstable in the sense that they
can be changed with time or human will. As far as social
networks go, links between one person and another per-
son will be weak and can even disappear due to mistrust,

alienation, and sabotage. Likewise, in IERDCNs, a connec-
tion probability exists in all collaborations. In the collab-
oration process, everyone likes a partner with powerful
research capabilities, and never works together when ei-
ther side of the R&D collaboration fails. Additionally, en-
terprises have some interest in collaborating with insti-
tutes for technological R&D. As Table 4 and all parameters
show in the previous part of this section, this means there
is no giant component and connection probability that
can make the component size smaller. Furthermore, self-
governing choices of enterprises and institutes in prac-
tice reduce the chance that a lot of enterprises collabo-
rate with the same institute, which is relatively more con-
ducive to the technological R&D innovation of the whole
network. So, by using connection probability, we can ex-
plain the process of autonomous choice and better de-
scribe the complicated network environment in the real
world.

In addition, connection probability could explain the
disposable link phenomenon where if one link is used, it
cannot be used again. Such as in IERDCNs, any side of the
network can establish a partnership with each other, but
the collaboration is not successful without the outputting
of a patent or new technique. Some scholars such as Fu
et al. [16] use directed interacting networks for discussing
this issue. However, the unique contribution of our math-
ematical framework and arithmetic is that we provide an-
other method to solve the situation where there is an out-
going edge with no return or opposite. Connection proba-
bility may be seen as a precondition for whether or not a
R&D collaboration can generate a new technique, and its
value could refer to the average success rate of the R&D
collaboration with knowledge diffusion. Furthermore, it
could also give some basis for reference for government
to work out innovation policies. To percolate and promote
R&D collaboration to output as many new technologies
and patents as possible, the government couldmoderately
increase or reduce the connection probability. It is obvi-
ous that collaboration between enterprises and institutes
is important to technological R&D because of their com-
plementarily advantages. So, we always have ω2 > ω1 in
IERDCNs as previously mentioned. After the results listed
in Table 4, we give different analytical and simulation re-
sults (50 times) under four pairs of connection probabil-
ities (see Table 5 and Table 6). Neither Table 4 nor Table
5 has a giant component. However, Table 6 shows that the
networkhas alreadyundergone the transitionphase. Com-
paringTable 6withTable 5,wefind that the relative growth
rate of all average component sizes underω2 is larger than
under ω1. Furthermore, obviously, H

′1
1 (1, 1) and H

′1
2 (1, 1)

independently increase from three nodes to 11 nodeswhen
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Table 4: Analytical results and empirical data of IERDCN 1.

Enterprise R&D network When ω1 = 0.1 and ω2 = 0.1 When ω1 = 0.1 and ω2 = 0.2
H

′1
1 (1, 1) H

′2
1 (1, 1) H

′1
1 (1, 1) H

′2
1 (1, 1)

Analytical results 1.0396 0.1172 1.1906 0.2345
Empirical data 1.0250 0.1200 1.1735 0.2285

Institute R&D network When ω1 = 0.1 and ω2 = 0.1 When ω1 = 0.1 and ω2 = 0.2
H

′1
2 (1, 1) H

′2
2 (1, 1) H

′1
2 (1, 1) H

′2
2 (1, 1)

Analytical results 0.5202 1.0014 1.2526 1.0072
Empirical data 0.5000 1.0000 1.2417 1.0000

changing ω2 from 0.3 to 0.4, while remaining the same
when changing ω1 from 0.1 to 0.2. Similarly, the discrep-
ancy between the analytical results and simulation results
enlarges with the increase in connection probability and
the precision of the results change from0.26% to 0.5% and
0.09% to 0.48%, respectively. All results are given to show
the effectiveness and applicability of the proposed arith-
metic.

Finally, using our arithmetic, it is easy to calculate
every percolation threshold under some fixed connection
probability. As Fig. 4 shows, we give two groups of val-
ues to discuss how the connection probability of differ-
ent networks affects the percolation of the whole network.
The threshold value (0.43) of IERDCN 1 is easy to calcu-
late according to Eq. (26) which we have discussed. Fig.
4(a) indicates that the probability that a randomly chosen
node belongs to the giant component is hardly influenced
by ω1. Instead, Fig. 4(b) indicates that ω2 is the main in-
fluencer. When we let ω2 equal some fixed value and ω1

runs from 0 to 1, S1 and S2 measured a tiny change. How-
ever, if we let ω1 equal some fixed value and ω2 runs from
0.4301 to 1, we can see double inward curves and the cur-
vature of S2 changes greatly. For this reason, we believe
that the inter-firm competition and desire for new tech-
niquesmakes collaborations between institutes and enter-
prises very important to IERDCNs and IERDCN 2 is con-
sidered as an ideal state for both sides. In other words,
every enterprise can find one or two institutes to partner
with, while institutes have equal opportunities to collab-
orate with enterprises. There two situations that may oc-
cur such that they are depicted as IERDCNs 1 and 2. In
the first one, both sides are strongly inclined to collab-
orate with a famous and technologically strong partner,
which is very much like the celebrity effect. In another,
technological monopoly advantages are difficult to main-
tain with the flow of knowledge and techniques in the in-
dustry’s network, especially because institutes accumu-
late a wealth of R&D experience and master the advanced
technology in the industry’s field after a period of collabo-

ration. Additionally, some enterprises and institutes have
an established long-term R&D collaborative relationship,
which helps the network achieve the ideal state. We find
that the lower the interdependence between enterprises or
institutes, the higher the percolation in IERDCNs. That’s
why networks have a giant component with a lesser inner
connection probability and a higher interactive one. Addi-
tionally, it is common in many high-tech industries, such
as in IERDCN 1, that only 30 links between enterprises and
institutes is enough to maintain the supercritical regime.

5 Conclusion
Connection probability is able to consider pairs of nodes
with a temporary edge but that cannot effectively connect
to each other. The connection probability is so important
to a dynamically evolving network of R&D collaboration,
as the R&D collaboration network is a knowledge dissemi-
nation network. From the perspective of the success or fail-
ure of a collaboration, connection probability illustrates
that knowledge and techniques cannot be disseminated
with invalid collaboration.

Our mathematical framework and the arithmetic dis-
cussed in this paper are a near-perfect depiction of the
real state of IERDCNs and are accurate, as the results men-
tioned in Section 4 show. In this case, despite the sizes of
IERDCNs being not very large and the existence of discrep-
ancies, it does not greatly damage the validity of the arith-
metic. So, we may revise generating larger networks using
simulations for a while. However, we have simulated 50
networks randomly to study, and sometimes the discrep-
ancies are artificially enlarged. We believe that discrepan-
cies will likely be quite minimal if all samples are consid-
ered.

In this study, we have investigated two types of math-
ematical frameworks and arithmetic based on generating
functions for analyzing IERDCNs. Furthermore, we have
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Table 5: Analytical and simulation results of IERDCN 1 with no giant component.

ω1 = 0.1, ω2 = 0.3 ω1 = 0.1, ω2 = 0.4
H

′1
1 (1, 1) H

′2
1 (1, 1) H

′1
2 (1, 1) H

′2
2 (1, 1) H

′1
1 (1, 1) H

′2
1 (1, 1) H

′1
2 (1, 1) H

′2
2 (1, 1)

Analytical results (S1) 1.6498 0.3517 2.8465 1.0124 5.1414 0.4690 13.6074 1.0220
Simulation results (S′1) 1.6405 0.3492 2.8371 1.0000 5.1365 0.4635 13.5233 1.0000

ω1 = 0.2, ω2 = 0.3 ω1 = 0.2, ω2 = 0.4
H

′1
1 (1, 1) H

′2
1 (1, 1) H

′1
2 (1, 1) H

′2
2 (1, 1) H

′1
1 (1, 1) H

′2
1 (1, 1) H

′1
2 (1, 1) H

′2
2 (1, 1)

Analytical results (S1) 1.6579 0.9241 2.8661 1.0325 5.3193 1.2323 14.1124 1.0577
Simulation results (S′1) 1.6463 0.9200 2.8401 1.0167 5.3115 1.2200 14.0067 1.0167

Table 6: Analytical and simulation results of IERDCN 1 with a giant component.

ω1 = 0.4, ω2 = 0.5 ω1 = 0.5, ω2 = 0.6 ω1 = 0.6, ω2 = 0.7
S1 S2 S1 S2 S1 S2

Analytical results (S1) 0.1522 0.2302 0.3214 0.4565 0.4633 0.6193
Simulation results (S′1) 0.1518 0.2300 0.3224 0.4650 0.4656 0.6350

ω1 = 0.7, ω2 = 0.8 ω1 = 0.8, ω2 = 0.9 ω1 = 0.9, ω2 = 1.0
S1 S2 S1 S2 S1 S2

Analytical results (S1) 0.5905 0.7471 0.7074 0.8554 0.8156 0.9541
Simulation results (S′1) 0.5940 0.7800 0.7112 0.8950 0.8198 1.0000

Figure 4: Analytical results and simulation results of S versus different ω1s and ω2s, where S denotes the probability that a randomly cho-
sen node is a part of the giant component. In this figue (a) shows the probability when ω2 = 0.6 and ω1 changes from 0 to 1. And (b) shows
the probability when ω1 = 0.3 and ω2 changes from 0.4301 to 1.

given the necessary and sufficient conditions for the ab-
sence of system-wide giant components. Using our arith-
metic, we can calculate the corresponding parameters in
the sub-critical and supercritical regimes. Using two ac-
tual IERDCNs, we discussed the application and validity
of our mathematical framework and arithmetic. It is quite
clear that the interactive connection probability of net-
works is a determining factor of percolation, while the in-
ner connection probability has less influence. Some rea-
sonable and helpful advice is given to promote regional
technological R&D and innovation. By adjusting the prob-
ability values, we also found that the supercritical regime

of the whole network is maintained mainly by collabora-
tion between enterprises and institutes.
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