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Abstract: The photon-number distribution between two

parts of a given volume is found for an arbitrary photon

statistics. This problem is related to the interaction of a

light beam with a macroscopic device, for example a di-

aphragm, that separates the photon �ux into two parts

with known probabilities. To solve this problem, a Gener-

alized Binomial Distribution (GBD) is derived that is ap-

plicable to an arbitrary photon statistics satisfying prob-

ability convolution equations. It is shown that if photons

obey Poisson statistics then the GBD is reduced to the or-

dinary binomial distribution, whereas in the case of Bose-

Einstein statistics the GBD is reduced to the Polya distribu-

tion. In this case, the photon spatial distribution depends

on the phase-space volume occupied by the photons. This

result involves a photon bunching e�ect, or collective be-

havior of photons that sharply di�ers from the behavior of

classical particles. It is shown that the photon bunching

e�ect looks similar to the quantum interference e�ect.

Keywords: Bose-Einstein statistics; Polya distribution;

photon bunching; quantum interference

PACS: 42.50.-p, 02.50.-r, 42.50.Fx, 42.50.Ar, 05.30.-d

DOI 10.1515/phys-2015-0005
Received April 24, 2014; accepted August 22, 2014

1 Introduction
This article examines the spatial distribution of photons

in a light beamwith arbitrary photon statistics. If the pho-

tons obey the Bose-Einstein (BE) statistics, then the pho-

ton spatial distribution is found to exhibit certain features,

termed here the ’photon bunching e�ect’, or collective

photon behavior that di�ers sharply from the behavior of

classical particles.

In the literature, the term photon bunching is some-

times related to the Brown-Twiss e�ect, which is explained

by intensity �uctuations in the light beam [1]. In this paper,

the term photon bunching is used in an entirely di�erent
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sense, in that the e�ects considered in this article are not

associated with intensity �uctuations. As shown in Sec-

tions 4-5, the photon bunching e�ect in the BE statistics

is rather similar to the quantum interference e�ect, which

was �rst observed in [2].

The problem considered in this work is stated in Sec-

tion 2, which also contains the basic formula for the �ux

of classical particles obeying Poisson statistics and for the

�ux of quantum particles obeying BE statistics.

To solve the stated problem, a Generalized Binomial
Distribution (GBD) is derived in Section 3 for an arbitrary

photon statistics. It is shown that in the case of BE statis-

tics, the GBD reduces to the Polya distribution, which pre-

dicts the photon bunching e�ect that is discussed in Sec-

tion 4.

The equivalence of various statistical problems is dis-

cussed in Section 5, suggesting the possibility of applying

the results obtained to other equivalent problems involv-

ing the interaction of photon �uxwith a beamsplitter, pho-

todetector, or neutral �lter. The main conclusions of this

work are summarized in Section 6.

A theoretical approach developed in this paper allows

one to study the subtle features of spatial distribution of

particles in the BE statistics, as well as in any other pho-

ton statistics. In the limit of large phase-space volumes,

the results obtained in this work coincide with the known

classical solution, while in the limit of small phase vol-

umes the results are found to be consistent with an exper-

iment [3] which examined the phenomenon of quantum

interference between twophotons incident on the same in-
put port of a beamsplitter.

2 Interaction of a light beam with a
diaphragm from the viewpoint of
photon statistics

2.1 Statement of the problem

Consider a beam of light that has a uniform distribution

of statistical properties over its cross-section. Let the beam

cross-section s be divided into two arbitrary parts, a and b.
The photon statistics in part a is measured during a cer-

tain sampling time τ, i. e. in sampling volume A = acτ,
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where c is the speed of light. Capital characters A, B, and
Swill be used in this paper to designate sampling volumes

corresponding to light beam cross-section areas a, b and s
(Figure 1).

Figure 1: An illustration of a light beam cross-section, representing
the interaction of photon flux with a diaphragm when k photons
pass through the hole A while n − k photons are absorbed by the
screen B. Sampling volumes A and S may correspond to possible
detector apertures in a photon statistics measurement.

If a sampling volume is normalized to a coherence vol-

ume, then it will correspond to a certain phase-space vol-

ume, because a coherence volume corresponds to a single

phase-space cell. Therefore, volumes of A, B and S = A+B
may be considered as dimensionless phase-space volumes

consisting of an arbitrary number of cells.

Since the light beam is supposed to have a uniform

distribution of statistical properties over its cross-section,

probabilities α and β for a photon to be in volume A or B,
respectively, are given by

α = A
A + B , β = B

A + B , (1)

so that α + β = 1.

Photon statistics in an arbitrary volume will be dis-

cussed in this article. In volume A, the photon statis-

tics is represented by an in�nite series pn(A), where

n = 0, 1, 2, . . . and pn(A) is theprobability that n photons
are in volume A.

The following problem is considered in this work:

Assume the photon statistics in S = A+B is knownand

the probabilities α and β for a photon to be in volumes A
and B, respectively, are given. What, then, is the probabil-

ity distributionW(k, n−k) for k photons to be in A and n−k
photons to be in B? Both classical and quantum solutions

to this problem are discussed in this work. The results ob-

tained for the quantum statistics, as shown below, include

aphotonbunching e�ect that looks similar to the quantum

interference e�ect.

2.2 A flux of classical particles

Let us begin with the assumption that beam S consists of

classical non-interacting particles that appear in the se-

lected volume independently of each other, so that there

are no correlations between the particles. In this case,

statistics pn(S) in volume S = A+B is related to the relevant

statistics in A and B by the classical equation of probabil-

ity convolution:

pn(A + B) =
n∑
k=0

pk(A)pn−k(B). (2)

Equation (2) is known to be applicable to random pro-

cesses in areasA and B if there are no correlations between

these random processes [5]. In addition, (2) takes into ac-

count the conservation of energy, or the number of parti-

cles n = k + (n − k), if light beam S is separated into two

parts A and B.
Classical non-interacting particles also obey Poisson

statistics in the arbitrary volume A, so that

pk(A) =
(wA)k
k ! e−wA , (3)

where w is the average number of particles per unit vol-

ume. The Poisson statistics is known to hold for photons

in a coherent radiation �eld [6], i. e. in the case of ampli-

tude stabilized laser radiation.

Substituting (3) into (2) yields

(A + B)n
n ! =

n∑
k=0

AkBn−k
k !(n − k) !

. (4)

This equation is an identity, which after multiplying both

sides by n! turns into the binomial theorem. Therefore, the

Poisson statistics (3) satis�es the probability convolution

equation (2).

All the above are well-known facts that are presented

here for the sake of convenience in comparing classical

and quantum solutions.

2.3 A flux of quantum particles satisfying
Bose-Einstein statistics

Now let beam S be thermal radiation, so that the photons

in beam S obey BE statistics:

pk =
wk

(1 + w)k+1
, (5)

where w is the degeneracy parameter, or the average num-

ber of particles in a coherence volume. Writing photon

statistics in this form, one assumes that the sampling vol-

ume in the statistics measurement coincides with the co-

herence volume, i. e. a single phase-space cell.

The BE statistics in an arbitrary phase-space volume

A is given by:
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pk(A) =
A(A + 1)...(A + k − 1)

k !
wk

(1 + w)k+A
. (6)

This formula was derived by Leonard Mandel from com-

binatorial considerations [7]. Actually, (6) is a negative bi-

nomial distribution. If A = 1 then (6) becomes the usual

expression for the BE statistics (5) in a single cell of the

phase-space.

Equation (6) can be conveniently presented as

pk(A) =
Ak
k !

wk
(1 + w)k+A

, (7)

where

Ak = A(A + 1)...(A + k − 1) (8)

is the rising factorial, or Pochhammer’s symbol.

We saw above that the Poisson statistics satis�es the

system of probability convolution equations (2). Let us

now determine whether the BE statistics satis�es (2). Sub-

stituting (7) into (2) after obvious reductions yields

(A + B)n
n ! =

n∑
k=0

Ak
k !

Bn−k
(n − k) !

. (9)

This is the well-known Vandermonde’s identity [8], which

is a generalization of the binomial theorem (4) for rising

factorials. A proof of this identity is given in Appendix 1.

Thus, the BE statistics (7) also satis�es the probability

convolution equations (2). This is because the BE statis-

tics ignores intensity �uctuations in the light beam, and

hence does not take into account correlations of photon

numbers in volumes A and B, which was proven, among

other sources, in [9].

Along with the BE statistics, the Glauber’s statistics

[10] for a homogeneously broadened spectral line also sat-

is�es (2), which can be shown by direct veri�cation (see

Appendix 2).

Generally speaking, any proper photon statistics²

should satisfy the probability convolution equation (2).

In other words, for any photon statistics, photon num-

bers in volumes A and B are independent random vari-

ables, which means that no photon statistics can take into

account photon correlations. This conclusion is explained

within the densitymatrix approach by the fact that photon

2 The term "photon statistics" is applicable only to randomprocesses

and does not apply to controlled processes, such as a light beamwith

given amplitudemodulation, sub-Poissonianprocesses, etc., because
in controlled processes photon statistics depends on the choice of

starting points for the sampling intervals and, therefore, cannot be

uniquely de�ned.

correlations aredescribedbynon-diagonal elementswhile

photon statistics is represented by the diagonal elements

of the density matrix. In a semiclassical approach, to ac-

count for photon correlations one should examine the in-

tensity correlation function rather than photon statistics.

This issue is discussed in detail in [6].

3 Generalized binomial distribution
Dividing the n-th equation in (2) by pn(A + B) yields

n∑
k=0

W(k, n−k) = 1, (10)

where

W(k, n−k) = pk(A) pn−k(B)
pn(A + B)

. (11)

The idea behind this expression is that W(k, n − k) is the

probability that k photons are in volume A on condition

that n−k photons are in B. The denominator in (11) guaran-

tees that this probability is correctly normalized according

to (10). In other words, eq. (11) gives the probability distri-

bution of photons among parts A and B of volume S given

it contains n photons. Equation (11) is valid for an arbitrary

photon statistics that satis�es (2).

3.1 Classical statistics

In the classical case, all the probabilities in (11) are given

by Poisson statistics (3). Substituting (3) into (11) and tak-

ing into account (1) gives

W(k, n−k) = n !
k !(n−k) !

αkβn−k . (12)

This is the binomial distribution that occurs when a �ux

of classical non-interacting particles is separated into two

parts with probabilities α and β.
Obviously, should anynonpoissonian statistics be sub-

stituted into (11) then the binomial distribution (12) would

not be obtained. Therefore, the binomial distribution is

valid only if particles in beam S obey Poisson statistics.

The reverse statement is also true: let X and Y denote num-

bers of photons in volumes A and B, correspondingly. If X
and Y are independent random variables and the condi-

tional distribution of X given X + Y is binomial then both

X and Y should obey Poisson statistics (for details see [4]).

In other words, the binomial distribution (12) and the Pois-

son statistics are closely interconnected phenomena – in a

beam of photons one is impossible without the other. For



44 | A. Ilyin

this reason, it would be a mistake to use the binomial dis-

tribution with any non-Poisson statistics. In the next Sec-

tion the replacement of the binomial distribution is found

in the case of BE statistics.

Equation (11), according to its derivation, holds for

an arbitrary photon statistics that is a solution of (2). An

arbitrary photon statistics inevitably tends towards Pois-

son statistics in the limit of small photon density because,

in this limit, the average distance between photons is

much greater than the coherence length. This means that

the photons may not take part in quantum interference

and should, therefore, behave like classical noninteract-

ing particles that obey Poisson statistics. This conclusion

is supported by the fact that the Poisson statistics, like any

photon statistics, is a solution of (2). Therefore, for any

photon statistics, Eq. (11) will include the binomial distri-

bution as a special case in the limit of small photon den-

sity.

Consequently, equation (11) can be regarded as a Gen-
eralized Binomial Distribution, which is valid for arbitrary

statistics pk(A) that satis�es the probability convolution

equations (2).

The binomial distribution (12) is obtained for Poisson

statistics on the condition of uniformly distributed radia-

tion statistical properties over the beam cross-section, ac-

cording to the statement of the problem. For a nonuniform

distribution of statistical properties (for example, nonuni-

form distribution of radiation intensity) the photon den-

sity ωwill vary across the beam cross-section. In this case,

the probabilities α and β for a photon to be in A and B,
respectively, will be given by some integral expressions

rather than by (1). However, it can be easily shown that

this will not change the �nal result (12) that includes only

the probabilities. This conclusion is in line with the results

presented in [4].

3.2 Quantum statistics

In the quantum case, all the probabilities in (11) are given

byEq. (7) for theBE statistics in anarbitrary volume. This is

true because the BE statistics, as well as the Poisson statis-

tics, satis�es (2), as shown in Section 2.3. Therefore, sub-

stituting (7) into (11) yields

W(k, n−k)= pk(A)pn−k(B)
pn(S)

=

n !
k !(n−k)!

AkBn−k
S n

= Ckn
A(A+1) . . . (A+k−1)B(B+1) . . . (B+n−k−1)

S(S + 1) . . . (S + n − 1)
. (13)

This probability distribution is known as the Polya distri-

bution. Eq. (13) determines the probabilities of di�erent

photon-number distributions (k, n− k) between volumes

A and B if n photons in S = A + B obey the BE statistics.

Therefore, (13) is a replacement for the classical binomial

distribution in the case where the incident photons obey

quantum statistics.

It is known that the Polya distribution takes into ac-

count aftere�ects that are alien to theBernoulli process [5].

This property of the Polya distribution is shown below to

produce the photon bunching e�ect.

Given A = αS and B = βS, eq. (13)may bewritten using

probability α that a photon is in A and probability β that a

photon is in B:

W(k, n−k) = (αS)k
k !

(βS)n−k
(n−k) !

n !
S n

. (14)

This form of the generalized binomial distribution in BE

statistics will be convenient for further calculations.

If S → ∞ then the Polya distribution (14) becomes the

classical binomial distribution:

lim

S→∞
W(k, n − k) = lim

S→∞

(αS)k
k !

(βS)n−k
(n − k) !

n !
S n

=

(
n
k

)
αkβn−k , (15)

which means that the classical binomial distribution (12)

is applicable not only in the case of Poisson statistics (as

noted above), but also in the case of BE statistics in the

limit of low particle density n � S. In this limit the mean

distance between photons is much greater than the coher-

ence length and photons behave on average as indepen-

dent classical particles that do not tend to bunch. In the

opposite limit as S → 0 photons show nonclassical prop-

erties, which will be discussed below.

Informationon thedegeneracyparameterw ismissing

from (14), which means that the probability distribution

(14) does not depend on the radiation temperature and the

frequency range selected to study photon statistics. How-

ever, probabilitiesW(k, n − k) depend on the phase space

volume S occupied by the photons. That is the fundamen-

tal di�erence between (14), which is valid for the BE statis-

tics, and the classical binomial distribution (12), which is

valid for Poisson statistics.

The Polya distribution (14) gives the exact quantum

statistical solution to the problem of interaction of an ar-

bitrary number of photons of thermal radiation occupy-

ing arbitrary phase-space volume S, with a classical device

that separates the photon �ux into two parts with known

probabilities α = A/S and β = B/S.
In this section it was shown that, in the case of BE

statistics, the generalized binomial distribution (11) takes
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the formofPolyadistribution that is known tooccur in ran-

dom processes that di�er from the Bernoulli process [5].

4 Photon bunching in
Bose-Einstein statistics

This Section presents several examples of the general-

ized binomial distribution in the BE statistics. Probabili-

tiesW(k, n−k) of di�erent photon-number states (k, n−k)
for n photons in volume S are calculated on the basis

of (14) in some simple cases, the number of photons in A
being designated as k and the number of photons in B be-

ing n − k.

4.1 One photon

If one photon is in volume S = A + B then the probabili-

ties of photon-number states (1,0) and (0,1) designating a

photon in A or in B, respectively, are given by

W(1, 0) =

(αS)1
1 !

(βS)0
0 !

1 !

S 1

= α,

W(0, 1) =

(αS)0
0 !

(βS)1
1 !

1 !

S 1

= β.
(16)

Probabilities (16) turn out to be independent of volume S.
One photon is found in A with probability α or in B with

probability β as it should be according to (1).

4.2 Two photons

If there are twophotons in S then the probabilities of di�er-

ent photon-number distributions between volumes A and

B, according to (14), are:

W(2, 0) =

α(αS + 1)
S + 1 −→ α2,

W(1, 1) =

2αβS
S + 1 −→ 2αβ,

W(0, 2) =

β(βS + 1)
S + 1 −→ β2.

(17)

In this caseprobabilitiesW(k, n−k) dependonvolume S oc-
cupied by the photons. The limit values of corresponding

probabilities as S → ∞ are shown on the right-hand side

of (17). These limit values coincide with the well known

classical results based on the binomial distribution as it

should be according to (15).

Probabilities (17) are shown in Figure 2 as functions

of volume S occupied by the photons in the case where

Figure 2: Non-classical probabilities of two-photon distribution
among two halves of volume S in the Bose-Einstein statistics. Vol-
ume S is given in the units of coherence volume.

A = B (α = β = 0.5).

Decreasing volume S makes classical probabilities invalid

because in quantum statistics, as follows from Figure 2,

photons tend to bunch together if they are located in

a small phase-space volume. Photon bunching is mani-

festedby anabnormally highprobability of states (2,0) and

(0,2) that designate both photons occupying only one half

of volume S if that volumebecomes small, e. g. less than 2-3

coherence volumes. Note that S = scτ, therefore, Smay be

varied by changing the beam cross-section s and/or sam-

pling time τ.

4.3 Three photons

If three photons are in volume S then using (14) one

obtains the following probabilities of di�erent photon-

number con�gurations:

W(3, 0) = α (αS + 1)(αS + 2)
(S + 1)(S + 2)

−→ α3,

W(2, 1) = 3αβ S(αS + 1)
(S + 1)(S + 2)

−→ 3α2β,

W(1, 2) = 3αβ S(βS + 1)
(S + 1)(S + 2)

−→ 3αβ2,

W(0, 3) = β (βS + 1)(βS + 2)
(S + 1)(S + 2)

−→ β3.

(18)

The basic features of the three-photon distribution among

volumes A and B are the same as in the previous exam-

ple of two photons. In the limit of large volume S → ∞,

shown on the right-hand side of (18), photons behave as if

they were independent classical particles obeying the bi-

nomial distribution. In contrast to such classical behavior,

photons occupying a small volume of about several bins

exhibit a spatial distribution that deviates markedly from

the predictions of the classical binomial distribution.
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Figure 3: (Color online) Non-classical probabilities of three-photon
con�gurations versus volume S occupied by the photons in a case
where the volume is divided into two unequal parts (A = 0.55 S).
The limit values ofW(k, 3 − k) for large S coincide with classical
probabilities.

Three-photon con�guration probabilities (18) are shown

as functions of volume S in Figure 3, for a non-symmetrical

division of S into two parts (α = 0.55). It is obvious from

the plots that for small values of S, less than 3-4 coher-

ence volumes, the probabilitiesW(k, 3−k) di�er markedly

from the classical limits that are obtained as S → ∞. This,

again, is the manifestation of photon bunching in quan-

tum statistics.

4.4 Fifty photons

As an example of bunching of a large number of photons

in quantum statistics, consider �fty photons in volume S
that is divided into two equal parts (α = β = 0.5). Fig-

ure 4 presents probabilitiesW(k, n − k) that k photons are
in part Awhile n− k photons are in part B given total num-

ber of photons in S is n = 50. Di�erent curves correspond

to di�erent values of phase-space volume S occupied by

the photons.

A case with S = 10

4

is a good approximation to the

limit of S → ∞ because in this case each photon occupies,

on average, a volume of 200 bins, and the probability dis-

tributionW(k, n − k), according to (15), looks like the clas-

sical binomial distribution.

Fifty photons occupying a single bin (curve S = 1)

exhibit substantially non-classical properties because the

probability distribution in this quantumstate displayspro-

nounced maxima at k = 0 and k = n. This is a mani-

festation of photon bunching, which is a tendency toward

collective behavior in quantum statistics. In this case the

probability that a group of photons is separated into two

Figure 4: (Color online) Non-classical probability distributions of 50
photons among two equal parts of volume S. Di�erent curves corre-
spond to di�erent phase-space volumes S occupied by the photons
obeying the Bose-Einstein statistics. Histogram S = 10

4 is close
to the classical binomial distribution while other histograms show
the deviation of quantum particles’ distribution from the classical
distribution. Photon bunching, or a tendency toward coalescence,
is well manifested if photons are found in a small phase-space vol-
ume, for example if S = 1.

almost equal parts is minimal, while in the classical case

described by the binomial formula this probability is max-

imal (curve S = 10

4

). In the limit S → 0, a photon bunch

looks like a single quantum entity that is not inclined to

dissolve into smaller groups of photons.

According to the above, in Poisson statistics (coher-

ent radiation) photons behave like classical particles in ac-

cordancewith the classical binomial distribution, while in

quantum statistics (blackbody radiation) photons exhibit

di�erent features showing a tendency toward bunching,

or collective behavior. In Figure 4, curve S = 10

4

actually

describes the behavior of classical particles while other

curves show the deviation of quantum particles from clas-

sical behavior that becomes more pronounced for smaller

phase-space volumes occupied by the particles.

It is worthwhile noting that the average number of

photons per one cell in BE statistics is de�ned by the tem-

perature and frequency of radiation:

w =

1

e hν
kT − 1

. (19)

Therefore, 50 photons in one coherence volume could be

observed with notable probability if kT ≈ 50hν, i. e. either
in a low-frequency range of blackbody radiation or for a

black body of very high temperature.

The Polya distribution (13) and Figures 2-4 present the

quantum solution to the problem stated in Section 2.1 re-

garding the distribution of n photons among volumes A
and B in the case of BE statistics.
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5 Statistical equivalence of
di�erent problems

The problem stated in Section 2.1 is directly related to the

interaction of a light beam with a diaphragm because the

distributionW(k, n − k) de�nes the probability that k pho-
tons pass through the hole A while n − k photons are ab-

sorbed by the screen B (see Figure 1). This problem is also

related to the following three problems:

1) Photon number distribution at the output ports of a

beamsplitter of transmittance α = A/S;
2) Statistics of photon detection by a photodetector of

quantum e�ciency α.
3) Photon statistics behind a neutral �lter of transmit-

tance α.
In all of the aboveproblems, a photon�ux is separated

into two parts with given probabilities α and β = 1 − α.
Although very di�erent physical processes are involved in

these problems, with regard to photon statistics they are

equivalent and described by the same formulas provided

the light beam has the same properties in all problems.

This is because in statistics it is the probability of an event
that is important, not the nature of the event.

For example, the photon statistics in part A of light

beam S (Figure 1) should coincide with photon statistics

produced by the same light beam S after a beamsplitter

of transmittance α = A/S, because the probability that a

photon is in volume A equals the probability that a photon

is transmitted through the beamsplitter. Likewise, if the

probability of photodetection is α, the same as the prob-

ability of a photon passing through the beamsplitter, then

the statistics of photo-absorptions should be the same as

the photon statistics behind the beamsplitter. A neutral �l-

ter actually may be considered as a beamsplitter if the re-

�ected radiation is absorbed.

Consequently, the above problems are equivalentwith

respect to photon statistics, provided the light beams in-

volved in these problems have identical properties, i. e. in
the di�erent problems the photons are in the same quan-

tum state. Therefore, any statistical result obtained for one

problem is sure to be valid for the other equivalent prob-

lems as well. In particular, the Polya distribution (14) and

photon bunching e�ects shown in Figures 2-4must hold in

all of the above problems if thermal photons are involved.

Given such an interpretation of the results, Figure 2

shows the nonclassical probabilities of photon-number

states at the output ports of a beamsplitter versus the vol-

ume occupied by the two photons before interacting with

the beamsplitter, provided that the photons obey the BE

statistics and have entered the same input port of the

beamsplitter. Such photon behavior as that shown in Fig-

ure 2 is not unusual: indeed, similar results were observed

in a quantum interference experiment [3], in which two

indistinguishable photons entered the same input port of

a beamsplitter. The probability of output states (2,0) and

(0,2)wasmeasured in this experiment against the distance

between two input photons and was found to be maxi-

mum for zero delay, just as indicated in Figure 2 (for de-

tails refer to [3]). Regardless of the fact that non-thermal

photons were used in this experiment, the experimental

results match well the curves presented in Figure 2. Qual-

itative coincidence of experimental and theoretical curves

indicates that the photon bunching e�ect considered in

this work does really exist and turns out to be analogous to

the quantum interference e�ect that was examined in the

above experiment.

The bunching of photons means that the photon

statistics behind a beamsplitter should, in a general case,

deviate from the classical binomial distribution, which

holds only if the incident photons obey the Poisson statis-

tics. That conclusion was proven in deriving eq. (12). A

similar result was obtained using a di�erent theoretical

method in [11, 12] and later con�rmed experimentally in

[13] for a system of multiplexed on-o� detectors.

The applicability of the results shown in Figure 2 to

the equivalent problems of photon interaction with a di-

aphragm, photodetector, and neutral �lter suggests that

the quantum interference phenomenon (or photon bunch-

ing e�ect) may also manifest itself in situations where no

beamsplitters are involved. This conclusion is based on the

fact that the photon bunching e�ect is a property of pho-

tons in a certain quantum state rather than the property of

a macroscopic device.

6 Conclusions
The major results of this work are derived from two basic

facts: �rstly, the probability convolution equations (2) for

the interaction of a light beam with a macroscopic device,

pn(A + B) =
n∑
k=0

pk(A)pn−k(B)

and, secondly, Mandel’s formula (6) for the Bose-Einstein

statistics in an arbitrary phase-space volume A

pk(A) =
A(A + 1)...(A + k − 1)

k !
wk

(1 + w)k+A
,

where w is the degeneracy parameter of photon gas.

It is shown that theMandel’s formula satis�es the con-

volution equations, which immediately yields the proba-
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bility (13) of di�erent photon-number states (k, n − k) after
the interaction of photon �ux with a macroscopic device:

W(k, n − k) = pk(A)pn−k(B)
pn(S)

= Ckn
AkBn−k
(A + B)n

.

The last formula is thePolyadistribution that, according to

the analysis presented in Sections 4-5, describes the pho-

ton bunching e�ect (which looks like quantum interfer-

ence) in the BE statistics.

Therefore, the main results of this work have been ob-

tained as a direct consequence of �rst principles, i. e. the
quantum statistics. No additional assumptions weremade

and no approximate methods were applied to obtain the

results. For this reason, the Polya distribution (13) is the

exact quantum statistical solution of the stated problem.

The main conclusions of this work may be summa-

rized as follows:

1. It is shown that the Bose-Einstein statistics satis�es

the probability convolution equations, which is an-

other proof of the well-established fact that photon

statistics is unable to take into account intensity �uc-

tuations and related photon correlations.

2. For probabilities of �nal photon-number states (k, n)
arising if the photon �ux is separated into two parts a

generalized binomial distribution is obtained

W(k, n) = pk(A) pn(B)
pk+n(A + B)

that is applicable for arbitrary photon statistics pk(A)
satisfying the probability convolution equations.

3. In the case of Bose-Einstein statistics, the generalized

binomial distribution takes the form of the Polya dis-

tribution, which presents the exact quantum solution

of the problemof interaction of an arbitrary number of

thermal photons occupying an arbitrary phase-space

volume with a macroscopic device that separates the

photon �ux into two parts with known probabilities.

4. Due to the statistical equivalence of di�erent prob-

lems, the theoretical results obtained for the interac-

tionof photons of arbitrary statisticswith adiaphragm

can be applied to the interaction of photons with a

beamsplitter, neutral �lter, or photodetector.

5. It is shown that the classical binomial distribution cor-

rectly describes the probabilities of output photon-

number states after the interaction of photonswith the

macroscopic device in two cases only: (a) if the pho-

tons obey Poisson statistics; or (b) if the average dis-

tance between photons greatly exceeds the coherence

length (in this case any photon statistics tends toward

Poisson statistics). Therefore, these two conditions de-

termine the domain of applicability of the binomial

formula.

6. It follows from Figures 2-4 that photon bunching, or

quantum interference in theBE statistics, becomesno-

table if the mean occupation number is larger than

unity ω & 1.
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Appendix 1: Proof of identity (9)
Equation (9) includes the numerical sequence

fk(A) =
Ak
k ! , (20)

so that (9) can be written as

fn(A + B) =
n∑
k=0

fk(A) fn−k(B). (21)

The generating function of sequence (20) is

F(A) = 1

(1 − z)A
, (22)

which can be veri�ed by direct expansion of (22) in a

Maclaurin series:

1

(1 − z)A
=

∞∑
k=0

Ak
k ! z

k
=

∞∑
k=0

fk(A)zk . (23)

Identity (21) is now validated by the following obvious re-

lation between the generating functions:

1

(1 − z)A+B
=

1

(1 − z)A
1

(1 − z)B
, (24)

Q.E.D.

Appendix 2: The Glauber’s statistics
satis�es the probability
convolution equation

Let P(A) be the generating function (GF) of statistics pk(A)
in an arbitrary phase-space volume A. If this statistics sat-
is�es eq. (2) then its GF obeys [5]

P(A + B) = P(A)P(B). (25)

The functional equation (25) in P has the solution

P(A) = P(1)A , (26)
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where P(1) is the GF of photon statistics in a unit volume

A = 1. Obviously, any statistics satis�es (2) if its GF satis-

�es (26).

Recalling that by de�nition A = acτ, eq. (26) may be

written as

P(A) = F(z)τ , (27)

where F(z) = P(1)ac.
The photon statistics obtained by Glauber [10] for a

Lorentzian spectral line has GF (in Glauber’s notations)

Q(λ, τ) = exp

{
−

[(
γ2 + 2γWλ

)
1/2

− γ

]
τ
}
, (28)

where γ is the half-width of the spectral line,W is the aver-

age number of photons per second, τ is the sampling time

in the photon statistics measurement, and λ = 1 − z.
So, the GF of Glauber’s statistics (28) has the form

Q(λ, τ) = F(z)τ, which coincides with (27). For this reason,

Glauber’s statistics satis�es (2), Q.E.D.
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