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Abstract: The photon-number distribution between two
parts of a given volume is found for an arbitrary photon
statistics. This problem is related to the interaction of a
light beam with a macroscopic device, for example a di-
aphragm, that separates the photon flux into two parts
with known probabilities. To solve this problem, a Gener-
alized Binomial Distribution (GBD) is derived that is ap-
plicable to an arbitrary photon statistics satisfying prob-
ability convolution equations. It is shown that if photons
obey Poisson statistics then the GBD is reduced to the or-
dinary binomial distribution, whereas in the case of Bose-
Einstein statistics the GBD is reduced to the Polya distribu-
tion. In this case, the photon spatial distribution depends
on the phase-space volume occupied by the photons. This
result involves a photon bunching effect, or collective be-
havior of photons that sharply differs from the behavior of
classical particles. It is shown that the photon bunching
effect looks similar to the quantum interference effect.
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1 Introduction

This article examines the spatial distribution of photons
in a light beam with arbitrary photon statistics. If the pho-
tons obey the Bose-Einstein (BE) statistics, then the pho-
ton spatial distribution is found to exhibit certain features,
termed here the ’photon bunching effect’, or collective
photon behavior that differs sharply from the behavior of
classical particles.

In the literature, the term photon bunching is some-
times related to the Brown-Twiss effect, which is explained
by intensity fluctuations in the light beam [1]. In this paper,
the term photon bunching is used in an entirely different
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sense, in that the effects considered in this article are not
associated with intensity fluctuations. As shown in Sec-
tions 4-5, the photon bunching effect in the BE statistics
is rather similar to the quantum interference effect, which
was first observed in [2].

The problem considered in this work is stated in Sec-
tion 2, which also contains the basic formula for the flux
of classical particles obeying Poisson statistics and for the
flux of quantum particles obeying BE statistics.

To solve the stated problem, a Generalized Binomial
Distribution (GBD) is derived in Section 3 for an arbitrary
photon statistics. It is shown that in the case of BE statis-
tics, the GBD reduces to the Polya distribution, which pre-
dicts the photon bunching effect that is discussed in Sec-
tion 4.

The equivalence of various statistical problems is dis-
cussed in Section 5, suggesting the possibility of applying
the results obtained to other equivalent problems involv-
ing the interaction of photon flux with a beamsplitter, pho-
todetector, or neutral filter. The main conclusions of this
work are summarized in Section 6.

A theoretical approach developed in this paper allows
one to study the subtle features of spatial distribution of
particles in the BE statistics, as well as in any other pho-
ton statistics. In the limit of large phase-space volumes,
the results obtained in this work coincide with the known
classical solution, while in the limit of small phase vol-
umes the results are found to be consistent with an exper-
iment [3] which examined the phenomenon of quantum
interference between two photons incident on the same in-
put port of a beamsplitter.

2 Interaction of a light beam with a
diaphragm from the viewpoint of
photon statistics

2.1 Statement of the problem

Consider a beam of light that has a uniform distribution
of statistical properties over its cross-section. Let the beam
cross-section s be divided into two arbitrary parts, a and b.
The photon statistics in part a is measured during a cer-
tain sampling time 7, i.e. in sampling volume A = acr,
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where c is the speed of light. Capital characters A, B, and
S will be used in this paper to designate sampling volumes
corresponding to light beam cross-section areas a, b and s
(Figure 1).

B
@ S=A+B

Figure 1: An illustration of a light beam cross-section, representing
the interaction of photon flux with a diaphragm when k photons
pass through the hole A while n - k photons are absorbed by the
screen B. Sampling volumes A and S may correspond to possible
detector apertures in a photon statistics measurement.

If a sampling volume is normalized to a coherence vol-
ume, then it will correspond to a certain phase-space vol-
ume, because a coherence volume corresponds to a single
phase-space cell. Therefore, volumes of A, Band S = A+B
may be considered as dimensionless phase-space volumes
consisting of an arbitrary number of cells.

Since the light beam is supposed to have a uniform
distribution of statistical properties over its cross-section,
probabilities a and  for a photon to be in volume A or B,
respectively, are given by

A B

“a+p Pravm “)

a

sothata + f = 1.

Photon statistics in an arbitrary volume will be dis-
cussed in this article. In volume A, the photon statis-
tics is represented by an infinite series pn(A4), where
n=0, 1, 2, ...and pn(A)is the probability that n photons
are in volume A.

The following problem is considered in this work:

Assume the photon statisticsin S = A+ B is known and
the probabilities @ and S for a photon to be in volumes A
and B, respectively, are given. What, then, is the probabil-
ity distribution W(k, n—k) for k photons to bein A and n—k
photons to be in B? Both classical and quantum solutions
to this problem are discussed in this work. The results ob-
tained for the quantum statistics, as shown below, include
aphoton bunching effect that looks similar to the quantum
interference effect.

2.2 Aflux of classical particles

Let us begin with the assumption that beam S consists of
classical non-interacting particles that appear in the se-
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lected volume independently of each other, so that there
are no correlations between the particles. In this case,
statistics pn(S) in volume S = A+B is related to the relevant
statistics in A and B by the classical equation of probabil-
ity convolution:

pn(A+B) = pi(A)pn k(B). #)

k=0

Equation (2) is known to be applicable to random pro-
cesses in areas A and B if there are no correlations between
these random processes [5]. In addition, (2) takes into ac-
count the conservation of energy, or the number of parti-
clesn = k + (n - k), if light beam S is separated into two
parts A and B.

Classical non-interacting particles also obey Poisson
statistics in the arbitrary volume A4, so that

(WA)k -wA
k! ’
where w is the average number of particles per unit vol-
ume. The Poisson statistics is known to hold for photons
in a coherent radiation field [6], i. e. in the case of ampli-
tude stabilized laser radiation.
Substituting (3) into (2) yields

pi(A) = (3)

(A+B)" (~ AkBvk
n! =Zk!(n—k)!‘ “)
k=0

This equation is an identity, which after multiplying both
sides by n! turns into the binomial theorem. Therefore, the
Poisson statistics (3) satisfies the probability convolution
equation (2).

All the above are well-known facts that are presented
here for the sake of convenience in comparing classical
and quantum solutions.

2.3 A flux of quantum particles satisfying
Bose-Einstein statistics

Now let beam S be thermal radiation, so that the photons
in beam S obey BE statistics:

Wk

T @ wkt

Pk )

where w is the degeneracy parameter, or the average num-
ber of particles in a coherence volume. Writing photon
statistics in this form, one assumes that the sampling vol-
ume in the statistics measurement coincides with the co-
herence volume, i. e. a single phase-space cell.

The BE statistics in an arbitrary phase-space volume
A is given by:
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A+1)..A+k-1) wk
k! (1 +w)k+A”

pi(A) = A (6)

This formula was derived by Leonard Mandel from com-
binatorial considerations [7]. Actually, (6) is a negative bi-
nomial distribution. If A = 1 then (6) becomes the usual
expression for the BE statistics (5) in a single cell of the
phase-space.

Equation (6) can be conveniently presented as

A? k
pr(4) = 0 Jw, (7)
where B
AF=AA+1)...A+k-1) (8)

is the rising factorial, or Pochhammer’s symbol.

We saw above that the Poisson statistics satisfies the

system of probability convolution equations (2). Let us

now determine whether the BE statistics satisfies (2). Sub-

stituting (7) into (2) after obvious reductions yields
(A+B)" <~ Ak Bk

=) )
n! P k! (n-k)!

This is the well-known Vandermonde’s identity [8], which
is a generalization of the binomial theorem (4) for rising
factorials. A proof of this identity is given in Appendix 1.

Thus, the BE statistics (7) also satisfies the probability
convolution equations (2). This is because the BE statis-
tics ignores intensity fluctuations in the light beam, and
hence does not take into account correlations of photon
numbers in volumes A and B, which was proven, among
other sources, in [9].

Along with the BE statistics, the Glauber’s statistics
[10] for a homogeneously broadened spectral line also sat-
isfies (2), which can be shown by direct verification (see
Appendix 2).

Generally speaking, any proper photon statistics?
should satisfy the probability convolution equation (2).

In other words, for any photon statistics, photon num-
bers in volumes A and B are independent random vari-
ables, which means that no photon statistics can take into
account photon correlations. This conclusion is explained
within the density matrix approach by the fact that photon

2 The term "photon statistics" is applicable only to random processes
and does not apply to controlled processes, such as a light beam with
given amplitude modulation, sub-Poissonian processes, etc., because
in controlled processes photon statistics depends on the choice of
starting points for the sampling intervals and, therefore, cannot be
uniquely defined.
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correlations are described by non-diagonal elements while
photon statistics is represented by the diagonal elements
of the density matrix. In a semiclassical approach, to ac-
count for photon correlations one should examine the in-
tensity correlation function rather than photon statistics.
This issue is discussed in detail in [6].

3 Generalized binomial distribution

Dividing the n-th equation in (2) by pr(A + B) yields

Z Wk, n-k) = 1, (10)
k=0
where
W(k, n—k) = P& Pn-i(B) a1)

pn(A + B)

The idea behind this expression is that W(k, n - k) is the
probability that k photons are in volume A on condition
that n—k photons are in B. The denominator in (11) guaran-
tees that this probability is correctly normalized according
to (10). In other words, eq. (11) gives the probability distri-
bution of photons among parts A and B of volume S given
it contains n photons. Equation (11) is valid for an arbitrary
photon statistics that satisfies (2).

3.1 Classical statistics

In the classical case, all the probabilities in (11) are given
by Poisson statistics (3). Substituting (3) into (11) and tak-
ing into account (1) gives

n!

W(k, n-k) = i

=K1 (12

(Xk ﬁn—k .
This is the binomial distribution that occurs when a flux
of classical non-interacting particles is separated into two
parts with probabilities a and f.

Obviously, should any nonpoissonian statistics be sub-
stituted into (11) then the binomial distribution (12) would
not be obtained. Therefore, the binomial distribution is
valid only if particles in beam S obey Poisson statistics.
The reverse statement is also true: let X and Y denote num-
bers of photons in volumes A and B, correspondingly. If X
and Y are independent random variables and the condi-
tional distribution of X given X + Y is binomial then both
X and Y should obey Poisson statistics (for details see [4]).
In other words, the binomial distribution (12) and the Pois-
son statistics are closely interconnected phenomena - ina
beam of photons one is impossible without the other. For
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this reason, it would be a mistake to use the binomial dis-
tribution with any non-Poisson statistics. In the next Sec-
tion the replacement of the binomial distribution is found
in the case of BE statistics.

Equation (11), according to its derivation, holds for
an arbitrary photon statistics that is a solution of (2). An
arbitrary photon statistics inevitably tends towards Pois-
son statistics in the limit of small photon density because,
in this limit, the average distance between photons is
much greater than the coherence length. This means that
the photons may not take part in quantum interference
and should, therefore, behave like classical noninteract-
ing particles that obey Poisson statistics. This conclusion
is supported by the fact that the Poisson statistics, like any
photon statistics, is a solution of (2). Therefore, for any
photon statistics, Eq. (11) will include the binomial distri-
bution as a special case in the limit of small photon den-
sity.

Consequently, equation (11) can be regarded as a Gen-
eralized Binomial Distribution, which is valid for arbitrary
statistics py(A) that satisfies the probability convolution
equations (2).

The binomial distribution (12) is obtained for Poisson
statistics on the condition of uniformly distributed radia-
tion statistical properties over the beam cross-section, ac-
cording to the statement of the problem. For a nonuniform
distribution of statistical properties (for example, nonuni-
form distribution of radiation intensity) the photon den-
sity w will vary across the beam cross-section. In this case,
the probabilities a and f for a photon to be in A and B,
respectively, will be given by some integral expressions
rather than by (1). However, it can be easily shown that
this will not change the final result (12) that includes only
the probabilities. This conclusion is in line with the results
presented in [4].

3.2 Quantum statistics

In the quantum case, all the probabilities in (11) are given
by Eq. (7) for the BE statistics in an arbitrary volume. This is
true because the BE statistics, as well as the Poisson statis-
tics, satisfies (2), as shown in Section 2.3. Therefore, sub-
stituting (7) into (11) yields

i A)ppiB)  nl AR
Wik n-i0= pn(S) " kl(n-k)! Sn
_ (KA(A+D). . (A+k-1DB(B+1)... (B+n-k-1)

SS+1)...(S+n-1)

(13)

This probability distribution is known as the Polya distri-
bution. Eq. (13) determines the probabilities of different
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photon-number distributions (k, n - k) between volumes
A and B if n photons in S = A + B obey the BE statistics.
Therefore, (13) is a replacement for the classical binomial
distribution in the case where the incident photons obey
quantum statistics.

It is known that the Polya distribution takes into ac-
count aftereffects that are alien to the Bernoulli process [5].
This property of the Polya distribution is shown below to
produce the photon bunching effect.

Given A = aSand B = BS, eq. (13) may be written using
probability a that a photon is in A and probability § that a
photon is in B:

_ (a9)* (BS)"* n!
k! (n-k)! sS7°
This form of the generalized binomial distribution in BE
statistics will be convenient for further calculations.
If S > oo then the Polya distribution (14) becomes the
classical binomial distribution:

W(k, n-k) (14)

(@S)X (BS)"™* n!
kU (n-k)!sSm

_ (Z) akﬁn—k,

which means that the classical binomial distribution (12)
is applicable not only in the case of Poisson statistics (as
noted above), but also in the case of BE statistics in the
limit of low particle density n < S. In this limit the mean
distance between photons is much greater than the coher-
ence length and photons behave on average as indepen-
dent classical particles that do not tend to bunch. In the
opposite limit as S - 0 photons show nonclassical prop-
erties, which will be discussed below.

Information on the degeneracy parameter w is missing
from (14), which means that the probability distribution
(14) does not depend on the radiation temperature and the
frequency range selected to study photon statistics. How-
ever, probabilities W(k, n — k) depend on the phase space
volume S occupied by the photons. That is the fundamen-
tal difference between (14), which is valid for the BE statis-
tics, and the classical binomial distribution (12), which is
valid for Poisson statistics.

The Polya distribution (14) gives the exact quantum
statistical solution to the problem of interaction of an ar-
bitrary number of photons of thermal radiation occupy-
ing arbitrary phase-space volume S, with a classical device
that separates the photon flux into two parts with known
probabilities a = A/S and B = B/S.

In this section it was shown that, in the case of BE
statistics, the generalized binomial distribution (11) takes

lim W(k, n — k) = lim
S>oo S0

(15)
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the form of Polya distribution that is known to occur in ran-
dom processes that differ from the Bernoulli process [5].

4 Photon bunching in
Bose-Einstein statistics

This Section presents several examples of the general-
ized binomial distribution in the BE statistics. Probabili-
ties W(k, n-k) of different photon-number states (k, n—k)
for n photons in volume S are calculated on the basis
of (14) in some simple cases, the number of photons in A
being designated as k and the number of photons in B be-
ingn - k.

4.1 One photon

If one photon is in volume S = A + B then the probabili-
ties of photon-number states (1,0) and (0,1) designating a
photon in A or in B, respectively, are given by

(@S)! (BS)° 1!

o ( 13!)6 (OS!)T f - (16)
weo,1) = 02)! Bu st B

Probabilities (16) turn out to be independent of volume S.
One photon is found in A with probability a or in B with
probability B as it should be according to (1).

4.2 Two photons

If there are two photons in S then the probabilities of differ-
ent photon-number distributions between volumes A and
B, according to (14), are:

alaS+1)
w(2,0) = 51 - a?,
w(1,1) = 2a+[35 - 2ap, (17)
_BBS+1)
w(o,2) = s B>.

In this case probabilities W(k, nk) depend on volume S oc-
cupied by the photons. The limit values of corresponding
probabilities as S - oo are shown on the right-hand side
of (17). These limit values coincide with the well known
classical results based on the binomial distribution as it
should be according to (15).

Probabilities (17) are shown in Figure 2 as functions
of volume S occupied by the photons in the case where
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W(k,2-k)
0.5
(¢ )] I —
0.4
ol = -
(2,0), (0,2)
0.2/
0.1
0 1 2 3 S

Figure 2: Non-classical probabilities of two-photon distribution
among two halves of volume S in the Bose-Einstein statistics. Vol-
ume S is given in the units of coherence volume.

A=B(a=pB=0.5).

Decreasing volume S makes classical probabilities invalid
because in quantum statistics, as follows from Figure 2,
photons tend to bunch together if they are located in
a small phase-space volume. Photon bunching is mani-
fested by an abnormally high probability of states (2,0) and
(0,2) that designate both photons occupying only one half
of volume S if that volume becomes small, e. g. less than 2-3
coherence volumes. Note that S = scT, therefore, S may be
varied by changing the beam cross-section s and/or sam-
pling time 7.

4.3 Three photons

If three photons are in volume S then using (14) one
obtains the following probabilities of different photon-
number configurations:

(aS +1)(aS +2)

W(3,0)=a (Sg(l)g8+2)) ——)a3’
_ aS+1 . )
w,1) = Baﬁ(siég(s I)Z) > 3a°f, 8)
+
w(1,2) = 3a/37(3+ ) - 3ap?,
W0, 3) = B(BS +DBS+2) 3

S+1)(S+2)

The basic features of the three-photon distribution among
volumes A and B are the same as in the previous exam-
ple of two photons. In the limit of large volume S > oo,
shown on the right-hand side of (18), photons behave as if
they were independent classical particles obeying the bi-
nomial distribution. In contrast to such classical behavior,
photons occupying a small volume of about several bins
exhibit a spatial distribution that deviates markedly from
the predictions of the classical binomial distribution.
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W(k,n-k) a = 0.55
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0.3 N ———
P ——
0.2
\-
/ 03 | —T——
0.1
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Figure 3: (Color online) Non-classical probabilities of three-photon
configurations versus volume S occupied by the photons in a case
where the volume is divided into two unequal parts (A = 0.555).
The limit values of W(k, 3 - k) for large S coincide with classical
probabilities.

Three-photon configuration probabilities (18) are shown
as functions of volume S in Figure 3, for a non-symmetrical
division of S into two parts (a = 0.55). It is obvious from
the plots that for small values of S, less than 3-4 coher-
ence volumes, the probabilities W(k, 3—-k) differ markedly
from the classical limits that are obtained as S - oo. This,
again, is the manifestation of photon bunching in quan-
tum statistics.

4.4 Fifty photons

As an example of bunching of a large number of photons
in quantum statistics, consider fifty photons in volume S
that is divided into two equal parts (a = 8 = 0.5). Fig-
ure 4 presents probabilities W(k, n — k) that k photons are
in part A while n - k photons are in part B given total num-
ber of photons in S is n = 50. Different curves correspond
to different values of phase-space volume S occupied by
the photons.

A case with S = 10* is a good approximation to the
limit of S - oo because in this case each photon occupies,
on average, a volume of 200 bins, and the probability dis-
tribution W(k, n - k), according to (15), looks like the clas-
sical binomial distribution.

Fifty photons occupying a single bin (curve S = 1)
exhibit substantially non-classical properties because the
probability distribution in this quantum state displays pro-
nounced maxima at k = 0 and k = n. This is a mani-
festation of photon bunching, which is a tendency toward
collective behavior in quantum statistics. In this case the
probability that a group of photons is separated into two
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o =0.5
n =50

0.1

0 k — n

Figure 4: (Color online) Non-classical probability distributions of 50
photons among two equal parts of volume S. Different curves corre-
spond to different phase-space volumes S occupied by the photons
obeying the Bose-Einstein statistics. Histogram S = 10* is close
to the classical binomial distribution while other histograms show
the deviation of quantum particles’ distribution from the classical
distribution. Photon bunching, or a tendency toward coalescence,
is well manifested if photons are found in a small phase-space vol-
ume, for example if S = 1.

almost equal parts is minimal, while in the classical case
described by the binomial formula this probability is max-
imal (curve S = 10%). In the limit S - 0, a photon bunch
looks like a single quantum entity that is not inclined to
dissolve into smaller groups of photons.

According to the above, in Poisson statistics (coher-
ent radiation) photons behave like classical particles in ac-
cordance with the classical binomial distribution, while in
quantum statistics (blackbody radiation) photons exhibit
different features showing a tendency toward bunching,
or collective behavior. In Figure 4, curve S = 10* actually
describes the behavior of classical particles while other
curves show the deviation of quantum particles from clas-
sical behavior that becomes more pronounced for smaller
phase-space volumes occupied by the particles.

It is worthwhile noting that the average number of
photons per one cell in BE statistics is defined by the tem-
perature and frequency of radiation:

1

w=——.
h
exr —1

(19)

Therefore, 50 photons in one coherence volume could be
observed with notable probability if kT ~ 50hv, i. e. either
in a low-frequency range of blackbody radiation or for a
black body of very high temperature.

The Polya distribution (13) and Figures 2-4 present the
quantum solution to the problem stated in Section 2.1 re-
garding the distribution of n photons among volumes A
and B in the case of BE statistics.
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5 Statistical equivalence of
different problems

The problem stated in Section 2.1 is directly related to the
interaction of a light beam with a diaphragm because the
distribution W(k, n - k) defines the probability that k pho-
tons pass through the hole A while n — k photons are ab-
sorbed by the screen B (see Figure 1). This problem is also
related to the following three problems:

1) Photon number distribution at the output ports of a
beamsplitter of transmittance a = A/S;

2) Statistics of photon detection by a photodetector of
quantum efficiency a.

3) Photon statistics behind a neutral filter of transmit-
tance a.

In all of the above problems, a photon flux is separated
into two parts with given probabilities a and 8 = 1 - a.
Although very different physical processes are involved in
these problems, with regard to photon statistics they are
equivalent and described by the same formulas provided
the light beam has the same properties in all problems.
This is because in statistics it is the probability of an event
that is important, not the nature of the event.

For example, the photon statistics in part A of light
beam S (Figure 1) should coincide with photon statistics
produced by the same light beam S after a beamsplitter
of transmittance a = A/S, because the probability that a
photon is in volume A equals the probability that a photon
is transmitted through the beamsplitter. Likewise, if the
probability of photodetection is a, the same as the prob-
ability of a photon passing through the beamsplitter, then
the statistics of photo-absorptions should be the same as
the photon statistics behind the beamsplitter. A neutral fil-
ter actually may be considered as a beamsplitter if the re-
flected radiation is absorbed.

Consequently, the above problems are equivalent with
respect to photon statistics, provided the light beams in-
volved in these problems have identical properties, i. e. in
the different problems the photons are in the same quan-
tum state. Therefore, any statistical result obtained for one
problem is sure to be valid for the other equivalent prob-
lems as well. In particular, the Polya distribution (14) and
photon bunching effects shown in Figures 2-4 must hold in
all of the above problems if thermal photons are involved.

Given such an interpretation of the results, Figure 2
shows the nonclassical probabilities of photon-number
states at the output ports of a beamsplitter versus the vol-
ume occupied by the two photons before interacting with
the beamsplitter, provided that the photons obey the BE
statistics and have entered the same input port of the
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beamsplitter. Such photon behavior as that shown in Fig-
ure 2 is not unusual: indeed, similar results were observed
in a quantum interference experiment [3], in which two
indistinguishable photons entered the same input port of
a beamsplitter. The probability of output states (2,0) and
(0,2) was measured in this experiment against the distance
between two input photons and was found to be maxi-
mum for zero delay, just as indicated in Figure 2 (for de-
tails refer to [3]). Regardless of the fact that non-thermal
photons were used in this experiment, the experimental
results match well the curves presented in Figure 2. Qual-
itative coincidence of experimental and theoretical curves
indicates that the photon bunching effect considered in
this work does really exist and turns out to be analogous to
the quantum interference effect that was examined in the
above experiment.

The bunching of photons means that the photon
statistics behind a beamsplitter should, in a general case,
deviate from the classical binomial distribution, which
holds only if the incident photons obey the Poisson statis-
tics. That conclusion was proven in deriving eq. (12). A
similar result was obtained using a different theoretical
method in [11, 12] and later confirmed experimentally in
[13] for a system of multiplexed on-off detectors.

The applicability of the results shown in Figure 2 to
the equivalent problems of photon interaction with a di-
aphragm, photodetector, and neutral filter suggests that
the quantum interference phenomenon (or photon bunch-
ing effect) may also manifest itself in situations where no
beamsplitters are involved. This conclusion is based on the
fact that the photon bunching effect is a property of pho-
tons in a certain quantum state rather than the property of
a macroscopic device.

6 Conclusions

The major results of this work are derived from two basic
facts: firstly, the probability convolution equations (2) for
the interaction of a light beam with a macroscopic device,

n
pn(A +B) =Y pi(A)p, «(B)
k=0
and, secondly, Mandel’s formula (6) for the Bose-Einstein
statistics in an arbitrary phase-space volume A
AA+1)..(A+k-1) wK
k! (1 +w)k+A”

where w is the degeneracy parameter of photon gas.

It is shown that the Mandel’s formula satisfies the con-
volution equations, which immediately yields the proba-

pi(A) =
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bility (13) of different photon-number states (k, n — k) after
the interaction of photon flux with a macroscopic device:

Wk, n - k) = PAPni(B) _ i AB™E
DPn (S) (A+B)m

Thelast formula is the Polya distribution that, according to

the analysis presented in Sections 4-5, describes the pho-

ton bunching effect (which looks like quantum interfer-
ence) in the BE statistics.

Therefore, the main results of this work have been ob-
tained as a direct consequence of first principles, i. e. the
quantum statistics. No additional assumptions were made
and no approximate methods were applied to obtain the
results. For this reason, the Polya distribution (13) is the
exact quantum statistical solution of the stated problem.

The main conclusions of this work may be summa-
rized as follows:

1. It is shown that the Bose-Einstein statistics satisfies
the probability convolution equations, which is an-
other proof of the well-established fact that photon
statistics is unable to take into account intensity fluc-
tuations and related photon correlations.

2. For probabilities of final photon-number states (k, n)
arising if the photon flux is separated into two parts a
generalized binomial distribution is obtained

Wik, n) - D<A Pa(B)
b k+n(A + B)
that is applicable for arbitrary photon statistics p;(4)
satisfying the probability convolution equations.

3. Inthe case of Bose-Einstein statistics, the generalized
binomial distribution takes the form of the Polya dis-
tribution, which presents the exact quantum solution
of the problem of interaction of an arbitrary number of
thermal photons occupying an arbitrary phase-space
volume with a macroscopic device that separates the
photon flux into two parts with known probabilities.

4. Due to the statistical equivalence of different prob-
lems, the theoretical results obtained for the interac-
tion of photons of arbitrary statistics with a diaphragm
can be applied to the interaction of photons with a
beamsplitter, neutral filter, or photodetector.

5. Itisshown that the classical binomial distribution cor-
rectly describes the probabilities of output photon-
number states after the interaction of photons with the
macroscopic device in two cases only: (a) if the pho-
tons obey Poisson statistics; or (b) if the average dis-
tance between photons greatly exceeds the coherence
length (in this case any photon statistics tends toward
Poisson statistics). Therefore, these two conditions de-
termine the domain of applicability of the binomial
formula.
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6. It follows from Figures 2-4 that photon bunching, or
quantum interference in the BE statistics, becomes no-
table if the mean occupation number is larger than
unity w > 1.
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Appendix 1: Proof of identity (9)

Equation (9) includes the numerical sequence

A%
fild) = 27 20)
so that (9) can be written as
n
fa(A+B)=> " filA) foi(B). @
k=0
The generating function of sequence (20) is
1
FA) = = 22

which can be verified by direct expansion of (22) in a
Maclaurin series:

ﬁ = Z %zk = ka(A)zk.
k=0

k=0

(23)

Identity (21) is now validated by the following obvious re-
lation between the generating functions:
1 _ 1 1
(1-248  (1-24 (1-2)8’

(24)

Q.E.D.

Appendix 2: The Glauber’s statistics
satisfies the probability
convolution equation

Let P(A) be the generating function (GF) of statistics p;(A)

in an arbitrary phase-space volume A. If this statistics sat-
isfies eq. (2) then its GF obeys [5]

P(A + B) = P(A)P(B). (25)
The functional equation (25) in P has the solution
P(A) = P(1)", (26)
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where P(1) is the GF of photon statistics in a unit volume
A = 1. Obviously, any statistics satisfies (2) if its GF satis-
fies (26).

Recalling that by definition A = acT, eq. (26) may be
written as

P(A) = F(2)°, (27)

where F(z) = P(1)%¢.
The photon statistics obtained by Glauber [10] for a
Lorentzian spectral line has GF (in Glauber’s notations)

QA, 1) = exp {— [('yz + ZWW/\) v 'y:| T} , (28)

where ~ is the half-width of the spectral line, W is the aver-
age number of photons per second, 7 is the sampling time
in the photon statistics measurement, and A =1 - z.

So, the GF of Glauber’s statistics (28) has the form
Q(A, T) = F(z)", which coincides with (27). For this reason,
Glauber’s statistics satisfies (2), Q.E.D.
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