
Article

Egidio Bagus Sudewo, Muhammad Kunta Biddinika*, Rusydi Umar and Abdul Fadlil

Evaluating the Impact of Optimizer
Hyperparameters on ResNet in Hanacaraka
Character Recognition
https://doi.org/10.1515/pdtc-2024-0061
Received September 21, 2024; accepted January 26, 2025;
published online February 24, 2025

Abstract: This study evaluates the performance of various
optimizers on a ResNet-18 based Convolutional Neural
Network (CNN) model for the task of recognizing Hana-
caraka Javanese script characters. The image dataset is
divided into three sets: training, validation, and test, with
image sizes of 64 × 64 pixels and a batch size of 64. The
tested optimizers include SGD, Adam, RMSprop, Adagrad,
Adadelta, NAdam, and Adamax, all with a learning rate of
0.001 and trained for 10 epochs. The results show that
NAdam provides the best performance with accuracy,
precision, recall, and F1-Score values reaching 100 %, fol-
lowed by Adamax with metrics above 97 %. Adam and
Adagrad also demonstrate high performance with metric
values above 97 %. Meanwhile, SGD shows fairly good
performance with an accuracy of 93.72 %, and Adadelta
shows adequate performance with an accuracy of 86.58 %.
RMSprop yields the lowest performance with an accuracy
of 81.74 %. Accuracy and loss graphs indicate that Adamand
Adadelta offer the best balance between training and
validation performance, while RMSprop and NAdam
exhibit significant instability. This study highlights the
importance of selecting the appropriate optimizer to ach-
ieve optimal performance in Hanacaraka character classi-
fication, with NAdam and Adamax being the best choices.

Keywords: Hanacaraka Javanese script; CNN; optimizer;
character recognition; ResNet-18

1 Introduction

Character recognition is a crucial field in image processing
and computer vision, with various applications such as Op-
tical Character Recognition (OCR), handwriting recognition,
and document digitization. In the context of Hanacaraka
character recognition, the traditional Javanese script, the
challenges are significant due to its complex and diverse
characters.

ResNet (Residual Network) is a convolutional neural
network architecture that has proven to be highly effective
in various image recognition tasks (Han-wen et al. 2021;
Singh and Schicker 2021). One of the main advantages of
ResNet is its ability to overcome the vanishing gradient
problem through the use of residual blocks (Nicholas et al.
2022; Sudewo, Biddinika, and Fadlil 2024b). This allows for
the creation of very deep networks without losing critical
information during training.

Recent studies demonstrate the capability of Convolu-
tional Neural Networks (CNN) in solving diverse classification
problems with high accuracy and efficiency. Murinto and
Melany (2023) showed that MobileNetV2 combined with
transfer learning improved classification accuracy for coffee
beans up to 96%, outperforming conventional CNN ap-
proaches (Murinto and Melany 2023). Similarly, Cahya and
Murinto (2021) achieved remarkable results in classifying
batik motifs, with a training accuracy of 100% and testing
accuracy of 99%, underscoring the potential of CNN for
intricate pattern recognition tasks (Cahya and Murinto 2021).
In another study, Rosyda (2022) successfully applied the Log-
DIWPSOoptimization algorithm to improve CNNperformance
on the CIFAR-10 dataset, demonstrating a significant accuracy
increase from28.07% to 69.3 %within 10 epochs (Rosyda 2022).
Lei, Pan, and Huang (2019) introduced the Hybrid Dilated CNN
(HDC) model, reducing training time while enhancing accu-
racy by over 14%, showcasing advancements in architectural
innovations to improve CNNefficiency andprecision (Lei, Pan,
and Huang 2019).

This study aims to evaluate the impact of optimizer
hyperparameters on the performance of ResNet in the task

*Corresponding author: Muhammad Kunta Biddinika, Master of
Informatics Engineering, Universitas Ahmad Dahlan, Yogyakarta,
Indonesia, E-mail: muhammad.kunta@mti.uad.ac.id. https://orcid.org/
0000-0003-4104-3755
Egidio Bagus Sudewo, Rusydi Umar and Abdul Fadlil, Master of
Informatics Engineering, Universitas Ahmad Dahlan, Yogyakarta, Indonesia

PDT&C 2025; 54(2): 113–123

Open Access. © 2025 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.

https://doi.org/10.1515/pdtc-2024-0061
mailto:muhammad.kunta@mti.uad.ac.id
https://orcid.org/0000-0003-4104-3755
https://orcid.org/0000-0003-4104-3755

of Hanacaraka character recognition. By conducting sys-
tematic experiments and analyses on various optimizers and
their settings, we aim to provide practical guidelines for
developing more effective and efficient character recogni-
tion models. The integration of state-of-the-art optimization
techniques and architectural insights is expected to address
the challenges posed by the intricate nature of Hanacaraka
script, paving the way for advancements in traditional script
recognition technologies.

This study aims to evaluate the impact of optimizer
hyperparameters on the performance of ResNet in the
task of Hanacaraka character recognition. By conducting
systematic experiments and analyses on various opti-
mizers and their settings, we can gain a better under-
standing of how each optimizer affects the model’s
convergence, accuracy, and generalization ability. The
results of this research are expected to provide practical
guidelines for developing more effective and efficient
character recognition models.

2 Materials and Methods

This study uses a quantitative methodology, utilizing image
data as the computational subject using the CNN method
with ResNet-18 architecture and a learning rate of 0.001, with
the optimizer as an additional comparison component. This
research utilizes Google Colab and various libraries as sup-
porting tools.

2.1 Research Steps

The flowchart of this research, shown in Figure 1, begins
with a literature review to understand the basics and de-
velopments in Hanacaraka character recognition using CNN
algorithms. Next, a dataset of Javanese script character im-
ages is collected and resized to 64 × 64 pixels. The pre-
processing step is then performed by converting images to
tensors and applying data augmentation if necessary. The
ResNet-18 based CNN algorithm is implemented and the
model is trained using various optimizers such as SGD,
Adam, and others for 10 epochs. After model training, the
model is tested with the validation dataset during the model
testing phase tomeasure its performance. The testing results
are evaluated based on accuracy, precision, recall, and F1-
Score, determining the best optimizer. Finally, the output in
the form of predicted images from the CNN model demon-
strates the model’s performance in recognizing Javanese
script characters.

2.2 Literature Review

The initial stage of this research involves a literature review
to understand the basic concepts and recent developments
in Hanacaraka Javanese script character recognition using
Convolutional Neural Network (CNN) algorithms. This pro-
cess helps identify the most effective methods and appro-
priate strategies for model implementation. The literature
used in this research includes several studies relevant to the
use of CNN algorithms in various image classification ap-
plications. Murinto and Melany (2023) utilized MobileNetV2
and transfer learning on VGG16 and MobileNetV2 models to
classify coffee beans, achieving the highest accuracy of 96 %,
demonstrating an improvement over conventional CNN
models (Murinto and Melany 2023). Cahya and Murinto
(2021) classified batikmotifs in the southern coastal region of
Java using CNN, achieving 100 % training accuracy, 99 %
testing accuracy, and 93.3 % validation accuracy using a
dataset consisting of 630 training data, 180 validation data,
and 90 test data (Cahya and Murinto 2021). Rosyda (2022)
applied the Logarithm Decreasing Inertia Weight Particle
Swarm Optimization (LogDIWPSO) algorithm to improve
CNN accuracy on the CIFAR-10 dataset, reaching an accuracy
of 69.3 % from a baseline of 28.07 % at the tenth epoch
(Rosyda 2022). Lei, Pan, and Huang (2019) developed the
Hybrid Dilated CNN (HDC) model for character image clas-
sification, which addresses the loss of detail in dilated CNN,
reducing training time by 2.02 % and improving training and
testing accuracy by 14.15 % and 15.35 %, respectively. All
these studies provide valuable insights into improving CNN
model accuracy and efficiency in various image classifica-
tion applications (Lei, Pan, and Huang 2019).

Figure 1: Research steps.

114 E.B. Sudewo et al.

2.3 Datasets

This research uses a dataset of Hanacaraka Javanese script
character images sourced from Kaggle, provided by Hanna
Hunnafa, as shown in Figure 2. The dataset consists of 12,000
PNG images, divided into 8,400 training data images, 2,400
validation data images, and 1,200 testing data images.

2.4 Preprocessing

Preprocessing is a stage to prepare the images before
training the model using the dataset. This step is crucial to
ensure that all images classified by the CNN method have
uniform pixel sizes, as this can affect the accuracy of the
results (Hasan et al. 2020). The preprocessing process in-
cludes converting image channels fromRGB to grayscale and
resizing the images so that all data have the same pixel
resolution.

Figure 3(a) shows an image sized at 224 × 224 pixels. This
size makes it difficult to train the model due to the high
number of pixels that need to be extracted, necessitating the

resizing technique during preprocessing. The resizing pro-
cess involves reducing the image size from 224× 224 pixels to
64 × 64 pixels as shown in Figure 3(b). Although this size
differs significantly from the original size, it does not reduce
the information in the 224 × 224 pixel image.

2.5 Convolutional Neural Network

Convolutional Neural Network (CNN) is one of the most
effective artificial neural network architectures for process-
ing grid-structured data such as images (see Figure 4). CNN
consists of several key layers thatwork sequentially to extract
and process important features from the input data (Liu, Pu,
and Sun 2021; Muis, Sunardi, and Yudhana 2023). First, the
convolutional layer uses filters to capture local patterns such
as edges, textures, and other visual patterns from the images.
This layer allows the network to learn hierarchical repre-
sentations of the input where each filter is responsible for
extracting specific features (Basha et al. 2020). After that, the
pooling layer is used to reduce the dimensions of the feature
maps produced by the convolutional layer, as shown in

Figure 2: Javanese Hanacaraka script.

ResNet in Hanacaraka Character Recognition 115

Figure 4. This not only reduces computational complexity but
also helps prevent overfitting by simplifying the generated
representations.

Then, the ReLU (Rectified Linear Unit) layer introduces
non-linearity into the network by converting negative values
to zero. This is important because non-linearity allows CNN
to learnmore complex relationships between input features,
enhancing the network’s ability to accurately classify and
recognize objects. Finally, the fully connected layer at the
end of the network combines the features extracted from the
entire image to make the final decision such as classifying
the objects in the image.

Some well-known CNN architectures, such as AlexNet
(Madhulatha and Ramadevi 2020), VGGNet (Agrawal and
Mittal 2020), GoogLeNet (Inception) (Shadin, Sanjana, and

Lisa 2021), and DenseNet (Sudewo, Biddinika, and Fadlil
2024a), each offer innovations in the use of convolutional
layers, managing multi-scale information, and addressing
gradient issues. CNNs are not only used in image recognition
and classification but are also widely applied in object
detection, image segmentation, and even natural language
processing. Their success in various image processing tasks
makes CNN one of themost effective and popular tools in the
world of pattern recognition and visual analysis.

2.6 ResNet-18

ResNet-18 is a variant of the Residual Network (ResNet)
architecture known for balancing relatively shallow depth

Figure 3: Preprocessing Hanacaraka Script (a) before (b) after.

Figure 4: Convolutional Neural Network (taken from: Researchgate.net).

116 E.B. Sudewo et al.

with its ability to address the vanishing gradient problem
(Lu et al. 2023). By using residual blocks, ResNet-18 can
build deeper networks without experiencing performance
degradation (Chandu and Bharatha Devi 2023). Each block in
ResNet-18 consists of several convolutional layers followed
by skip connections, allowing direct information flow across
multiple layers (Ahmed et al. 2024), as shown in Figure 5.

This capability makes ResNet-18 a popular choice for
various image recognition tasks, such as image classification,
object detection, and segmentation, due to its combination of
good performance and relatively simple structure.

2.7 Hyperparameters

Hyperparameters areparameters set before themodel training
process begins and are not updated during training. They in-
fluence themodel’s behavior and performance but their values
are not determined directly from the training data (Bartz et al.
2023). Examples of hyperparameters include learning rate,
momentum, the number of layers and neurons in the network,
and many others (Roy et al. 2023). The appropriate selection of
hyperparameters can affect model convergence, final perfor-
mance, and generalization ability (Alkaff and Prasetiyo 2022).

2.8 Optimizers

An optimizer is an algorithm used to update the model’s
weights based on the gradients of the loss function. The
optimizer is responsible for finding the optimal weights that
can reduce themodel’s error (Cong and Zhou 2023). Common
optimizers include Stochastic Gradient Descent (SGD),
Adaptive Moment Estimation (Adam), Root Mean Square
Propagation (RMSprop), as well as many others (Yaqub et al.

2020). Each optimizer has unique characteristics in how they
adjust the learning rate and optimize the training process.

Commonly used optimizers include:
(1) Stochastic Gradient Descent (SGD): This method updates

the model’s weights based on the gradient of the loss
function against a randombatch of data (Prasher, Nelson,
and Sharma 2022). Although simple and efficient for large
datasets, SGD tends to be slow in reaching the global
minimumand requires careful tuning of the learning rate
(Duda 2019).

(2) Adaptive Moment Estimation (Adam): Adam combines
the momentum and RMSprop to adaptively adjust the
learning rate based on the first moment (mean) and sec-
ond moment (uncentered variance) of the gradient
(Norouzi and Ebrahimi 2019). This accelerates conver-
gence and improves training stability although it requires
careful hyperparameter tuning (Mourya and Patil 2024).

(3) RootMean Square Propagation (RMSprop): This optimizer
adjusts the learning rate based on the exponentially
weighted average of squared gradients of parameters
(Kumar Reddy, Srinivasa Rao, and Prudvi Raju 2018).
RMSprop helps stabilize parameter updates and speeds up
convergence by considering gradient fluctuations across
parameters.

(4) Adaptive Gradient Algorithm (AdaGrad): By adjusting the
learning rate based on the historical gradient of param-
eters, AdaGrad is effective for handling sparse features in
the data, although it is prone tomonotonically decreasing
learning rates (Radha and Prasanna 2024).

(5) AdaDelta: As a variant of AdaGrad, AdaDelta limits
gradient accumulation with an exponential moving win-
dow, keeping the learning rate stable without manual
tuning. This helps maintain consistency and efficiency in
neural network training (Sveleba et al. 2023).

Figure 5: Resnet-18 (source: Researchgate.net).

ResNet in Hanacaraka Character Recognition 117

(6) Adamax: A variant of the Adam algorithm that uses the
infinity norm to update parameters, providing better
numerical stability, especially with large gradients or
large-scale data. With decentralized exponential mo-
mentum for the first and second moments, Adamax of-
fers more stable parameter updates and resistance to
large gradient fluctuations (Das et al. 2023).

(7) NAdam (Nesterov-accelerated Adaptive Moment Esti-
mation): Combines the Nesterov accelerated gradient
(NAG) technique with Adam for more efficient param-
eter updates. NAdam gives a “peek” at the gradient at
future positions to enhance convergence and uses the
first and second moment adaptation from Adam, which
accelerates convergence and improves training effi-
ciency (Harish et al. 2024).

2.9 Model Testing

Accuracy is a model evaluation measure that describes how
accurately a classificationmodel predicts the class or label of
the data. Accuracy values range from 0 to 1, with a value of 1
indicating perfect predictions or no errors in classification
(Riadi, Yudhana, and Djou 2024).

Accuracy(%) = TP + TP
TP + FP + FN + TN

× 100 %

Thefigures in thematrix provide information regarding
TP (true positive), TN (true negative), FP (false positive), and
FN (false negative).

3 Results and Discussion

The results of comparing hyperparameter optimizers on the
CNN model based on ResNet-18 were obtained by training

the model using a dataset of Javanese Hanacaraka script
images, divided into three sets: training, validation, and test.
The images were resized to 64 × 64 pixels and converted into
tensors. The learning rate used was 0.001, and the batch size
was 64. The model was implemented using optimizers such
as SGD, Adam, RMSprop, Adagrad, Adadelta, Nadam, and
Adamax on the validation set and trained for 10 epochs.

In Figure 6, NAdam shows the best performance among
all the optimizers tested, with accuracy, precision, recall, and
F1-Score reaching 100%. This indicates that NAdam can
optimize the model maximally for the task of recognizing
Javanese characters, providing perfect results without errors.
The use of the Nesterov accelerated gradient (NAG) technique
combined with moment adaptation from Adam appears to
offer an advantage in faster and more efficient convergence.

Adamax also provides excellent results, with accuracy,
precision, recall, and F1-Score of 97.92 % each. Adamax, as a
variant of Adam that uses infinity norm for parameter up-
dates, seems to offer very good numerical stability, allowing
the model to handle large fluctuations in gradients.

Adam and Adagrad show high performance with metric
values above 97%, making both strong choices for the task of
Hanacaraka character recognition. Adam, known for its
combination ofmomentum and learning rate adaptation, and
Adagrad, which adjusts the learning rate based on gradient
frequency, both provide consistent and accurate results.

SGD (Stochastic Gradient Descent) performs quite well
with 93.72 % accuracy and 93.57 % F1-Score. Although not as
good as more advanced optimizers like Adam or NAdam,
SGD remains a reliable and simple choice, especially for
tasks that are not overly complex.

Adadelta shows adequate performance with 86.58 %
accuracy and 86.15 % F1-Score. While not as effective as
Adam or Adamax, Adadelta remains a solid choice, partic-
ularly when stability in parameter updates is a primary
consideration.

93
.7
2%

94
.5
5%

93
.7
2%

93
.5
7%

97
.5
2%

97
.9
6%

97
.5
2%

97
.5
2%

81
.7
4%

88
.5
7%

81
.7
4%

81
.6
0%

97
.5
8%

98
.1
7%

97
.5
8%

97
.5
0%

86
.5
8%

87
.6
3%

86
.5
8%

86
.1
5%10

0%

10
0%

10
0%

10
0%

97
.9
2%

97
.9
2%

97
.9
2%

97
.9
2%

A C CURACY PREC I S I ON RECA L L F 1 - S CORE

OPTIMIZER RESULT
SGD Adam RMSprop Adagrad Adadelta Nadam Adamax

Figure 6: Training results.

118 E.B. Sudewo et al.

Conversely, RMSprop yields the lowest performance
with 81.74 % accuracy and 81.60 % F1-Score. RMSprop,
designed to address the declining learning rate issue in
Adagrad, appears less effective for the task of Hanacaraka
character recognition in this study. This lower performance
may be due to its inability to handle large variations in
gradients as effectively as other optimizers.

The evaluation results show that the choice of optimizer
significantly impacts the model’s performance in the task of
recognizing Javanese Hanacaraka characters. NAdam and
Adamax proved to be the best choices, providing highly ac-
curate and consistent results in detecting Javanese charac-
ters. NAdam’s advantage is particularly evident from the
combination of the NAG technique and moment adaptation,
offering faster and more stable convergence.

Adam and Adagrad also demonstrate very good per-
formance, reflecting the effectiveness of algorithms capable
of adjusting the learning rate during training. Although not
as effective as more advanced optimizers, SGD still provides
solid and reliable results in many situations.

In contrast, RMSprop’s performance shows that
although some optimizers are designed to address specific
weaknesses in other algorithms, they may not always be
suitable for all types of tasks. In this case, RMSprop was less
effective in handling large gradient variations for Hana-
caraka character recognition.

Overall, this study emphasizes the importance of select-
ing the appropriate optimizer to achieve optimal perfor-
mance in Hanacaraka character classification. Optimizers
such as NAdam and Adamax show great potential for prac-
tical applications in character recognition while results ob-
tained from other optimizers provide valuable insights into
their effectiveness under various training conditions.

Table 1 presents the evaluation results of various opti-
mizers in recognizing Javanese Hanacaraka characters,
covering precision, recall, and F1-Score metrics for each
character. From the table, it is evident that the NAdam and
Adamax optimizers consistently deliver high performance
across almost all characters, with precision, recall, and F1-
Score values close to or reaching 1.00. For instance, for the
character “ba,” these two optimizers achieve perfect scores
in all three metrics. This indicates that these optimizers are
highly effective in accurately and consistently identifying
Javanese script characters. Conversely, optimizers such as
RMSprop, Adagrad, and Adadelta exhibit greater perfor-
mance variation. For example, RMSprop has low precision
values for some characters like “da” (0.85) and “ba” (0.73)
while Adagrad and Adadelta show good results for some
characters but lack overall consistency. SGD and Adam
consistently deliver good results, though still falling short of
NAdamandAdamax in some cases. From these results, it can

be concluded that NAdam and Adamax are the best choices
for the task of recognizing Javanese Hanacaraka characters,
providing higher accuracy and consistency compared to
other optimizers.

Figure 7 displays a series of graphs comparing the per-
formance of various optimizers used in training the neural
network. Each graph shows loss and accuracy for training
and validation data over several epochs. The optimizers
compared include Adam, SGD, RMSprop, AdaGrad, Adadelta,
andNAdam. The four lines on each graph represent Training
Loss (blue), Validation Loss (orange), Training Accuracy
(green), and Validation Accuracy (red).

The Adam optimizer demonstrates stable perfor-
mance with a consistent decrease in Training Loss and a
gradual increase in Training Accuracy. However, slight
overfitting is visible from the difference between Training
Accuracy and Validation Accuracy. The Adadelta optimizer
shows a similar pattern, with a consistently decreasing
training loss and increasing accuracy for both training and
validation data, indicating better generalization compared
to other optimizers.

On the other hand, RMSprop and NAdam optimizers
show significant instability, evidenced by largefluctuations in
Validation Loss and Validation Accuracy. Although Training
Loss for these optimizers decreases well, the instability in
validation data suggests that the model may have general-
ization issues. This makes these optimizers less reliable than
Adam and Adadelta in terms of overall performance.

The SGD optimizer shows a rapid decrease in Training
Loss but reaches a plateau, indicating that adjustments to
the learning rate ormore epochsmight be needed for better
results. Meanwhile, the AdaGrad optimizer seems to
experience overfitting, with Training Accuracy increasing
but Validation Accuracy remaining flat. This indicates that
while the model learns well on training data its perfor-
mance does not improve on validation data. Overall, Adam
and Adadelta appear to provide the best balance between
training and validation performance while other opti-
mizers exhibit issues with overfitting or instability. There
are some differences with the literature review results, as
shown in Table 2.

In the comparison of hyperparameter optimization
results for the ResNet-18 based CNN model in recognizing
Javanese Hanacaraka characters, NAdam proved to be the
best optimizer with accuracy, precision, recall, and F1-Score
reaching 100 %. This demonstrates NAdam’s effectiveness in
optimizing the model for this task, outperforming other
optimizers such as Adamax, Adam, and SGD which also
showed good performance, albeit with slightly lower values.

Comparisons with other studies show variations in
CNN application and results depending on the object. For

ResNet in Hanacaraka Character Recognition 119

Ta
bl
e

:
Re

su
lts

of
pr
ec
is
io
n,

re
ca
ll,
an
d
F
-S
co
re

of
Ja
va
ne
se

sc
rip

tl
et
te
rs
.

Ch
ar
ac
te
rs

O
pt
im

iz
er

SG
D

Ad
am

RM
Sp

ro
p

Ad
ag

ra
d

Ad
ad

el
ta

N
Ad

am
Ad

am
ax

Pr
ec
is
io
n

Re
ca
ll

F
-

Sc
or
e

Pr
ec
is
io
n

Re
ca
ll

F
-

Sc
or
e

Pr
ec
is
io
n

Re
ca
ll

F
-

Sc
or
e

Pr
ec
is
io
n

Re
ca
ll

F
-

Sc
or
e

Pr
ec
is
io
n

Re
ca
ll

F
-

Sc
or
e

Pr
ec
is
io
n

Re
ca
ll

F
-

Sc
or
e

Pr
ec
is
io
n

Re
ca
ll

F
-

Sc
or
e

ba

.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.


ca

.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.


da

.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.


dh
a


.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



. 



.



.



.



.



.


ga

.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.


ha

.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.


ja

.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.


ka

.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.


la

.



.



.



.



.



.



. 



.



.



.



.



.



.



.



.



.



.



.



.



.



.


m
a


.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.


na

.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.


ng
a


.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.


ny
a


.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.


pa

.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.


ra

.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.


sa

.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.


ta

.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.


th
a


.



.



.



.



.



.



.



.



.



.



. 



.



.



.



.



.



.



.



.



.



.


w
a


.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.


ya

.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.


120 E.B. Sudewo et al.

example, a study on coffee bean classification using Mobi-
leNetV2 achieved 96 % accuracy while batik motif classifi-
cation reached 100 % accuracy on training data and 93.3 %

on test data. This indicates that eachmodel and dataset have
specific characteristics and results, although the focus on
using CNN for classification tasks varies.

Figure 7: Accuracy and loss graph.

Table : Summary of literature review.

Research Title Method used Result

This current
research

Evaluating the impact of optimizer hyper-
parameters on ResNet in Hanacaraka character
recognition

CNN with Resnet- High performance with accuracy reaching
.%–%, showing NAdam as the best
optimizer.

Murinto and
Melany ()

MobileNetV classification of coffee bean types CNN + transfer learning
(MobileNetV)

Accuracy reaching %, showing improvement over
regular CNN models.

Prayinta and
Murinto ()

Classification of Batik in southern coast area of
Java using convolutional neural network method

CNN Training accuracy of % and testing accuracy of
.%, showing a good model for batik motif
classification

Rosyda () Logarithm decreasing inertia weight particle
Swarm optimization algorithms for CNN

CNN + LogDIWPSO Achieved accuracy of .%, showing a significant
improvement from the baseline.

Lei, Pan, and
Huang ()

A dilated CNN model for image classification Backpropagation Reduced training time by .% and increased ac-
curacy by .% in training and .% in testing
on average.

ResNet in Hanacaraka Character Recognition 121

4 Conclusion and Recommendation

The conclusion of this study is that the choice of optimizer
significantly impacts the model’s performance in recog-
nizing Javanese Hanacaraka characters. Among the tested
optimizers, NAdam proved to be the best, achieving 100 %
accuracy, precision, recall, and F1-Score. This highlights
NAdam’s effectiveness in optimizing the model through the
combination of Nesterov Accelerated Gradient (NAG) and
momentum adaptation, leading to faster and more stable
convergence. Adamax also demonstrated excellent perfor-
mance, followed by Adam and Adagrad, with all metrics
scoring above 97 %.

SGD, although simple, performed reasonably well with
an accuracy of 93.72 % but was outperformed by more
advanced optimizers like NAdam and Adamax. Adadelta
provided adequate performance with stable parameter up-
dates, while RMSprop showed the lowest performance, likely
due to its inability to handle large gradient variations
effectively for Hanacaraka character recognition.

Overall, this study emphasizes the importance of
selecting the appropriate optimizer to achieve optimal per-
formance in Hanacaraka character classification. NAdam
and Adamax proved to be the most effective choices while
the results from other optimizers provide additional insights
into their effectiveness under different training conditions.

Acknowledgments: The authors are grateful for the support
in facilitating this study.
Research funding: This work was supported by Directorate
of Research, Technology, and Community Service (DRTPM),
Ministry of Education, Culture, Research and Technology,
Republic of Indonesia (0609.12/LL5-INT/AL.04/2024, 085/PTM/
LPPM-UAD/VI/20).

References

Agrawal, A., and N. Mittal. 2020. “Using CNN for Facial Expression
Recognition: A Study of the Effects of Kernel Size andNumber of Filters
on Accuracy.” The Visual Computer 36 (2): 405–12.

Ahmed, F., A. Fatima, M. Mamoon, and S. Khan. 2024. “Identification of the
Diabetic Retinopathy Using ResNet-18.” In 2nd International
Conference on Cyber Resilience, ICCR 2024, 1–6. Dubai, UAE: IEEE.

Alkaff, A. K., and B. Prasetiyo. 2022. “Hyperparameter Optimization on CNN
Using Hyperband on Tomato Leaf Disease Classification.” In
Proceedings – 2022 IEEE International Conference on Cybernetics and
Computational Intelligence, CyberneticsCom 2022, 479–83. Malang,
Indonesia: IEEE.

Bartz, E., T. Bartz-Beielstein, M. Zaefferer, and O. Mersmann. 2023.
Hyperparameter Tuning forMachine and Deep Learningwith R: A Practical
Guide. Singapore: Springer.

Basha, S. H. S., S. R. Dubey, V. Pulabaigari, and S. Mukherjee. 2020. “Impact
of Fully Connected Layers on Performance of Convolutional Neural
Networks for Image Classification.” Neurocomputing 378: 112–9.

Cahya, T., and M. Murinto. 2021. “Classification of Batik in Southern Coast
Area of Java Using Convolutional Neural Network Method.” Jurnal
Informatika 15 (2): 123–30.

Chandu, N., and N. Bharatha Devi. 2023. “Detection of Plant Disease Using
ResNet Framework in Comparison with Neural Network Classifier to
Improve Classification Accuracy.” In Proceedings of 8th IEEE
International Conference on Science, Technology, Engineering and
Mathematics, ICONSTEM 2023, 1–6. Chennai, India: IEEE.

Cong, S., and Y. Zhou. 2023. “A Review of Convolutional Neural Network
Architectures and Their Optimizations.” Artificial Intelligence Review 56:
1905–69.

Das, P., S. Gupta, J. Patra, and B. Mondal. 2023. “ADAMAX Optimizer and
CATEGORICAL CROSSENTROPY Loss Function-Based CNN Method for
Diagnosing Lung Cancer.” In 7th International Conference on Trends in
Electronics and Informatics, ICOEI 2023 – Proceedings, 806–10.
Tirunelveli, India: IEEE.

Duda, J. 2019. “SGD Momentum Optimizer with Step Estimation by Online
Parabola Model,” arXiv, 1–7. https://doi.org/10.48550/arXiv.1907.07063

Han-wen, Z., H. Ying, Z. Yong-jia, and W. Cheng-yu. 2021. “Fingerspelling
Identification for American Sign Language Based on Resnet-18.”
International Journal of Advanced Networking and Applications 13 (1):
4816–20.

Harish, V., T. Vijaya Kumar, P. Rajasekaran, P. Poovizhi, P. Jason Joshua, and
R. Sridhar. 2024. “Classification of Early Skin Cancer Prediction Using
Nesterov- Accelerated Adaptive Moment Estimation (NADAM)
Optimizer Algorithm.” In 2024 International Conference on Cognitive
Robotics and Intelligent Systems, ICC – ROBINS 2024, 257–62.
Coimbatore, India: IEEE.

Hasan, M. M., H. Ali, M. F. Hossain, and S. Abujar. 2020. “Preprocessing of
Continuous Bengali Speech for Feature Extraction.” In 2020 11th
International Conference on Computing, Communication and Networking
Technologies, ICCCNT 2020, 1–4. Kharagpur, India: IEEE.

Kumar Reddy, R., B. Srinivasa Rao, and K. Prudvi Raju. 2018. “HandwrittenHindi
Digits Recognition Using Convolutional Neural Network with RMSprop
Optimization.” In Proceedings of the 2nd International Conference on
Intelligent Computing and Control Systems, ICICCS 2018, 45–51. Madurai,
India: IEEE.

Lei, X., H. Pan, and X. Huang. 2019. “A Dilated Cnn Model for Image
Classification.” IEEE Access 7: 124087–95.

Liu, Y., H. Pu, and D. Wen Sun. 2021. “Efficient Extraction of Deep Image
Features Using Convolutional Neural Network (CNN) for Applications
in Detecting and Analysing Complex Food Matrices.” Trends in Food
Science and Technology 113 (May): 193–204.

Lu, Y., W.Ma, X. Dong,M. Brown, T. Lu, andW. Gan. 2023. “Differentiate Xp11.
2 Translocation Renal Cell Carcinoma from Computed Tomography
Images and Clinical Data with ResNet-18 CNN and XGBoost.” Computer
Modeling in Engineering and Sciences 136 (1): 348–61.

Madhulatha, G., and O. Ramadevi. 2020. “Recognition of Plant Diseases
Using Convolutional Neural Network.” In Proceedings of the 4th
International Conference on IoT in Social, Mobile, Analytics and Cloud,
ISMAC 2020, 738–43. Palladam, India: IEEE.

Mourya, R., and G. Patil. 2024. “Dental Caries Detection through Resnet 50
Using Adam Optimizer.” Iconic Research And Engineering Journals 7 (8):
203–7.

Muis, A., S. Sunardi, and A. Yudhana. 2023. “Medical Image Classification of
Brain Tumor Using Convolutional Neural Network Algorithm.” Jurnal
Infotel 15 (3): 227–32.

122 E.B. Sudewo et al.

https://doi.org/10.48550/arXiv.1907.07063

Murinto, M. R., and M. Melany. 2023. “Classification of Coffee Bean Types
Using Convolutional Neural Networks and Transfer Learning on the
VGG16 andMobileNetV2Models.” Jurnal Riset Sains Dan Teknologi 7 (2):
183–9.

Nicholas, P. J., A. To, O. Tanglay, I. M. Young, and M. E. Sughrue. 2022.
“Using a ResNet-18 Network to Detect Features of Alzheimer’s Disease
on Functional Magnetic Resonance Imaging: A Failed Replication.
Comment on Odusami et Al. Analysis of Features of Alzheimer’s
Disease.” Diagnostics 12 (5): 1094.

Norouzi, S., and M. Ebrahimi. 2019. “A Survey on Proposed Methods to
Address Adam Optimizer Deficiencies.” Department of Electrical and
Computer Engineering, University of Toronto. Available from: http://
www.cs.toronto.edu/∼sajadn/sajad_norouzi/ECE1505.pdf

Prasher, S., L. Nelson, and A. Sharma. 2022. “Analysis of DenseNet201 with
SGD Optimizer for Diagnosis of Multiple Rice Leaf Diseases.” In
Proceedings – 2022 International Conference on Computational
Modelling, Simulation and Optimization, ICCMSO 2022, 182–6. Pathum
Thani, Thailand: IEEE.

Prayitna, T. C., and M. Murinto. 2021. “Classification of Batik in Southern
Coast Area of Java Using Convolutional Neural Network Method.”
Jurnal Informatika 15 (3): 39–46.

Radha, D., and S. Prasanna. 2024. “A Unique ADAGRAD Optimized DCNN
with RESNET-18 Architecture for Indoor Agriculture-Based Crop Yield.”
In Proceedings – International Conference on Computing, Power, and
Communication Technologies, IC2PCT 2024, 767–71. Greater Noida,
India: IEEE.

Riadi, I., A. Yudhana, andM. Rosyidi Djou. 2024. “Optimization of Population
Document Services in Villages Using Naive Bayes and K-NN Method.”
International Journal of Computing and Digital Systems 15 (1): 127–38.

Rosyda, M. 2022. “Logarithm Decreasing Inertia Weight Particle Swarm
Optimization Algorithms for Convolutional Neural Network.” Juita 10
(1): 99–105.

Roy, S., R. Mehera, R. K. Pal, and S. K. Bandyopadhyay. 2023.
“Hyperparameter Optimization for Deep Neural Network Models: A
Comprehensive Study on Methods and Techniques.” Innovations in
Systems and Software Engineering. https://doi.org/10.1007/s11334-023-
00540-3.

Shadin, N. S., S. Sanjana, and N. J. Lisa. 2021. “COVID-19 Diagnosis from
Chest X-Ray Images Using Convolutional Neural Network(CNN) and
InceptionV3.” In 2021 International Conference on Information
Technology, ICIT 2021 – Proceedings, Vol. 3, 799–804.

Singh, S., and D. Schicker. 2021. “Seven Basic Expression Recognition
Using ResNet-18,” 1–3. Available from: http://arxiv.org/abs/2107.04569.

Sudewo, E. D. B., M. K. Biddinika, and A. Fadlil. 2024a. “DenseNet
Architecture for Efficient and Accurate Recognition of Javanese Script
Hanacaraka Character.”MATRIK: Jurnal Manajemen, Teknik Informatika
Dan Rekayasa Komputer 23 (2): 453–64.

Sudewo, E. D. B., M. K. Biddinika, and A. Fadlil. 2024b. “Javanese Script
Hanacaraka Character Prediction with ResNet-18 Architecture.”
Jurteksi 10 (2): 401–8.

Sveleba, S., I. Katerynchuk, I. Kunyo, V. Brygilevych, V. Kotsun, and
Yu Sidelnyk. 2023. “Dynamics of the Learning Process of a Multilayer
Neural Network when Using the AdaDelta Optimization Method.” In
2023 24th International Conference on Computational Problems of
Electrical Engineering, CPEE 2023, 1–4. Grybów, Poland: IEEE.

Yaqub, M., F. Jinchao, M. Sultan Zia, K. Arshid, K. Jia, Z. Ur Rehman, and
A. Mehmood. 2020. “State-of-the-Art CNN Optimizer for Brain Tumor
Segmentation inMagnetic Resonance Images.”Brain Sciences 10 (7): 1–19.

ResNet in Hanacaraka Character Recognition 123

http://www.cs.toronto.edu/~sajadn/sajad_norouzi/ECE1505.pdf
http://www.cs.toronto.edu/~sajadn/sajad_norouzi/ECE1505.pdf
https://doi.org/10.1007/s11334-023-00540-3
https://doi.org/10.1007/s11334-023-00540-3
http://arxiv.org/abs/2107.04569

	Evaluating the Impact of Optimizer Hyperparameters on ResNet in Hanacaraka Character Recognition
	1 Introduction
	2 Materials and Methods
	2.1 Research Steps
	2.2 Literature Review
	2.3 Datasets
	2.4 Preprocessing
	2.5 Convolutional Neural Network
	2.6 ResNet-18
	2.7 Hyperparameters
	2.8 Optimizers
	2.9 Model Testing

	3 Results and Discussion
	4 Conclusion and Recommendation
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Euroscale Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1000
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.10000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /DEU <FEFF00280073006500650020006700650072006d0061006e002000620065006c006f00770029000d005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f002000700072006f006400750063006500200063006f006e00740065006e00740020007000720069006e00740069006e0067002000660069006c006500730020006100630063006f007200640069006e006700200074006f002000740068006500200064006100740061002000640065006c0069007600650072007900200072006500710075006900720065006d0065006e007400730020006f00660020004400650020004700720075007900740065007200200028004a006f00750072006e0061006c002000500072006f00640075006300740069006f006e002900200044006100740065003a002000300033002f00300031002f0032003000310035002e0020005400720061006e00730070006100720065006e0063006900650073002000610072006500200072006500640075006300650064002c002000520047004200200069006d0061006700650073002000610072006500200063006f006e00760065007200740065006400200069006e0074006f002000490053004f00200043006f0061007400650064002000760032002e002000410020005000440046002f0058002d0031006100200069007300200063007200650061007400650064002e000d005f000d000d00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e002c00200075006d00200044007200750063006b0076006f0072006c006100670065006e0020006600fc0072002000640065006e00200049006e00680061006c0074002000670065006d00e400df002000640065006e00200044006100740065006e0061006e006c006900650066006500720075006e0067007300620065007300740069006d006d0075006e00670065006e00200076006f006e0020004400450020004700520055005900540045005200200028004a006f00750072006e0061006c002000500072006f00640075006300740069006f006e00290020005300740061006e0064003a002000300031002e00300033002e00320030003100350020007a0075002000650072007a0065007500670065006e002e0020005400720061006e00730070006100720065006e007a0065006e002000770065007200640065006e00200072006500640075007a0069006500720074002c0020005200470042002d00420069006c006400650072002000770065007200640065006e00200069006e002000490053004f00200043006f00610074006500640020007600320020006b006f006e00760065007200740069006500720074002e00200045007300200077006900720064002000650069006e00650020005000440046002f0058002d00310061002000650072007a0065007500670074002e>
 /ENU ()
 /ENN ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (ISO Coated v2 \(ECI\))
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 8.503940
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

