Home Synthesis and characterization of thermally stable quinoxaline-based polyamides
Article
Licensed
Unlicensed Requires Authentication

Synthesis and characterization of thermally stable quinoxaline-based polyamides

  • Arati V. Diwate ORCID logo , Shivaji D. Ghodke ORCID logo EMAIL logo , Rakhi G. Gawali ORCID logo and Noormahamad N. Maldar ORCID logo
Published/Copyright: September 4, 2025

Abstract

A novel diacid monomer, 2,3-Bis-[4′-(4″-carboxymethylene)phenoxyphenylene] (BCPPQ), featuring a rigid cardo-type quinoxaline core and flexible ether-methylene linkages, was synthesized via a two-step process from 4,4′-difluorobenzil. Structural confirmation was achieved through FT-IR, 1H and 13C NMR (including DEPT), and HRMS. BCPPQ was then polymerized with various aromatic diamines using triphenyl phosphate in an NMP/pyridine/LiCl system to yield a series of high molecular weight polyamides. These polyamides exhibited excellent solubility in polar aprotic solvents (e.g., DMF, DMAc, NMP) and showed inherent viscosities ranging from 0.16 to 0.25 dL/g. FT-IR analysis confirmed amide bond formation. Thermal studies (TGA/DSC) revealed high thermal stability with decomposition temperatures above 395 °C and glass transition temperatures between 173 and 198 °C. XRD patterns showed broad halos, confirming their amorphous nature. The incorporation of a bulky quinoxaline unit and flexible linkages improved solubility without significantly compromising thermal performance, suggesting their potential for high-performance material applications.


Corresponding author: Shivaji D. Ghodke, Department of Chemistry, Arts, Science and Commerce College, Naldurg, Dist-Dharashiv 413602, Maharashtra, India, e-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Ittal, V. High Performance Polymers and Engineering Plastics; John Wiley & Sons: Hoboken, NJ, 2011.Search in Google Scholar

2. Mark, H. F.; Kroschwitz, J. I. Encyclopedia of Polymer Science and Engineering. [Internet]. 1985. Available from: bcin.ca.Search in Google Scholar

3. Hergenrother, P. M. High Performance Thermoplastics. Angew. Makromol. Chem. 1986, 145, 323–341. https://doi.org/10.1002/apmc.1986.051450116.Search in Google Scholar

4. Akutsu, F.; Kuze, S.; Matsuo, K.; Naruchi, K.; Miura, M.. Makromol. Chem. 1990, 11, 673–677. https://doi.org/10.1002/marc.1990.030111214.Search in Google Scholar

5. Diwate, A.; Ghodake, S.; Tamboli, A.; Patil, K.; Gurame, M.; Maldar, N. Synthesis and Characterization of New Organosoluble and Thermally Stable Aromatic Polyamides Containing Flexible Ether, Ketone, and Methylene Linkages. Macromol. Symp. 2020, 392, 2000162. https://doi.org/10.1002/masy.202000162.Search in Google Scholar

6. Tamboli, A. B.; Ghodke, S. D.; Diwate, A. V.; Joshi, M. D.; Ubale, V. P.; Maldar, N. N. Processable Poly(Ether Ether Ketone Imide)S. High Perform. Polym. 2021. 095400832110550. https://doi.org/10.1177/09540083211055044.Search in Google Scholar

7. Tamboli, A. B.; Kalshetti, B. S.; Ghodke, S. D.; Diwate, A. V.; Maldar, N. N. Synthesis and Characterization of Semi-aromatic Polyamides Containing Heterocyclic 1,3,5 S-triazine and Methylene Spacer Group for Thermally Stable and Colloidal Property. Des. Monomers Polym. 2020, 23, 93–105. https://doi.org/10.1080/15685551.2020.1795435.Search in Google Scholar PubMed PubMed Central

8. Ghodke, S.; Tamboli, A.; Diwate, A.; Ubale, V.; Bhorkade, R.; Maldar, N. Synthesis and Characterization of Aliphatic Aromatic Polyamides Containing Pyridine and Methylene Spacer Group in Polymer Backbone. Int. J. Polym. Anal. Charact. 2021, 26, 342–353. https://doi.org/10.1080/1023666x.2021.1891379.Search in Google Scholar

9. Ghodke, S. D.; Tamboli, A. B.; Diwate, A. V.; Gurame, M. B.; Ubale, V. P.; Bhorkade, R. G.; Maldar, N. N. Synthesis and Characterization of Soluble and heat-resistant Aromatic Polyamides Derived from Diamine N-(3,5-diaminophenyl)-4-(naphthalen-7-loxy) Benzamide and Various Aromatic Diacids. J. Macromol. Sci. Part A Pure Appl. Chem. 2021, 58, 677–685. https://doi.org/10.1080/10601325.2021.1922084.Search in Google Scholar

10. Ghodke, S. D.; Tamboli, A. B.; Diwate, A. V.; Ubale, V. P.; Maldar, N. N. Synthesis, Characterization and Properties of Novel Polyamides Derived from 4,4’ bis(4-carboxy Methylene) Biphenyl and Various Diamines. Des. Monomers Polym. 2020, 23, 177–187. https://doi.org/10.1080/15685551.2020.1826705.Search in Google Scholar PubMed PubMed Central

11. Tamboli, A. B.; Bhorkade, R. G.; Kalshetti, B. S.; Ghodake, S. D.; Maldar, N. N. Soluble Aromatic Polyamides Modified by Incorporation of 1,2,4-triazole and Pentadecyl Units into the Backbone of Polymer. J. Macromol. Sci. Part A Pure Appl. Chem. 2019, 56, 983–993. https://doi.org/10.1080/10601325.2019.1602475.Search in Google Scholar

12. More, A. S.; Pasale, S. K.; Wadgaonkar, P. P. Synthesis and Characterization of Polyamides Containing Pendant Pentadecyl Chains. Eur. Polym. J. 2010, 46, 557–567. https://doi.org/10.1016/j.eurpolymj.2009.11.014.Search in Google Scholar

13. Mehdipour-Ataei, S.; Hatami, M.; Hossein Mosslemin, M. Organosoluble, Thermally Stable Polyamides Containing Sulfone and Sulfide Units. Chin. J. Polym. Sci. 2009, 27, 781–787. https://doi.org/10.1142/s0256767909004497.Search in Google Scholar

14. Mehdipour-Ataei, S.; Sarrafi, Y.; Hatami, M.; Akbarian-Feizi, L. Poly(Sulfone Ether Amide Amide)S as a New Generation of Soluble, Thermally Stable Polymers. Eur. Polym. J. 2005, 41, 491–499. https://doi.org/10.1016/j.eurpolymj.2004.10.009.Search in Google Scholar

15. Hsiao, S-H.; Lin, K-H. Soluble Aromatic Polyamides Bearing Asymmetrical Diaryl Ether Groups. Polymer 2004, 45, 7877–7885. https://doi.org/10.1016/j.polymer.2004.09.030.Search in Google Scholar

16. In, I.; Kim, S. Y. Soluble Wholly Aromatic Polyamides Containing Unsymmetrical Pyridyl Ether Linkages. Polymer 2006, 47, 547–552. https://doi.org/10.1016/j.polymer.2005.11.064.Search in Google Scholar

17. Idage, S. B.; Idage, B. B.; Shinde, B. M.; Vernekar, S. P. Polyamides Containing Arylene Sulfone Ether Linkages. J. Polym. Sci. A Polym. Chem. 1989, 27, 583–594. https://doi.org/10.1002/pola.1989.080270218.Search in Google Scholar

18. Ebadi, H.; Mehdipour-Ataei, S. Heat-Resistant, Pyridine-based Polyamides Containing Ether and Ester Units with Improved Solubility. Chin. J. Polym. Sci. 2009, 28, 29. https://doi.org/10.1007/s10118-010-8212-0.Search in Google Scholar

19. Zhang, G.; Zhou, Y-X.; Kong, Y.; Li, Z-M.; Long, S-R.; Yang, J. Semiaromatic Polyamides Containing Ether and Different Numbers of Methylene (2–10) Units: Synthesis and Properties. RSC Adv. 2014, 4, 63006–63015. https://doi.org/10.1039/c4ra10074c.Search in Google Scholar

20. Ghaemy, M.; Nasab, S. M. A. Synthesis and Identification of Organosoluble Polyamides Bearing a Triaryl Imidazole Pendent: Thermal, Photophysical, Chemiluminescent, and Electrochemical Characterization with a Modified Carbon Nanotube Electrode. React. Funct. Polym. 2010, 70, 306–313.10.1016/j.reactfunctpolym.2010.02.004Search in Google Scholar

21. Ghaemy, M.; Alizadeh, R. Synthesis, Characterization and Photophysical Properties of Organosoluble and Thermally Stable Polyamides Containing Pendent N-carbazole Group. React. Funct. Polym. 2011, 71, 425–432. https://doi.org/10.1016/j.reactfunctpolym.2010.12.015.Search in Google Scholar

22. Liaw, D. J.; Liaw, B. Y.; Yang, C. M. Synthesis and Characterization of New Soluble Cardo Aromatic Polyamides Bearing Diphenylmethylene Linkage and Norbornyl Group. Macromol. Chem. Phys. 2001, 202 (9), 1866–1872. https://doi.org/10.1002/1521-3935(20010601)202:9<1866::AID-MACP1866>3.0.CO;2-Z.10.1002/1521-3935(20010601)202:9<1866::AID-MACP1866>3.0.CO;2-ZSearch in Google Scholar

23. Liaw, D-J.; Liaw, B-Y.; Kang, E-T. Synthesis and Characterization of New Cardo polyamide-imides Containing Ether and tricyclo[5.2.1.02, 6]decane Groups. Macromol. Chem. Phys. 1999, 200, 2402–2406. https://doi.org/10.1002/(sici)1521-3935(19991001)200:10<2402::aid-macp2402>3.3.co;2-3.10.1002/(SICI)1521-3935(19991001)200:10<2402::AID-MACP2402>3.3.CO;2-3Search in Google Scholar

24. Liaw, D. J.; Liaw, B. Y.; Chung, C. Y. Synthesis and Characterization of New Cardo Polyamides and Polyimides Containing Tert‐Butylcyclohexylidene Units. Macromol. Chem. Phys. 2000, 201 (14), 1887–1893. https://doi.org/10.1002/1521-3935(20000901)201:14<1887::AID-MACP1887>3.0.CO;2-A.10.1002/1521-3935(20000901)201:14<1887::AID-MACP1887>3.0.CO;2-ASearch in Google Scholar

25. Liaw, D-J.; Liaw, B-Y.; Chung, C-Y. Synthesis and Characterization of New Cardo Polyamides Derived from 8,8-bis[4-(4-aminophenoxy)phenyl]tricyclo[5.2.1.02, 6]decane. Macromol. Chem. Phys. 1999, 200, 1023–1027. https://doi.org/10.1002/(sici)1521-3935(19990501)200:5<1023::aid-macp1023>3.0.co;2-1.10.1002/(SICI)1521-3935(19990501)200:5<1023::AID-MACP1023>3.0.CO;2-1Search in Google Scholar

26. Hergenrother, P. M. Linear Polyquinoxalines. J. Macromol. Sci. Part A Pure Appl. Chem. 1971, 6, 1–28. https://doi.org/10.1080/15321797108068154.Search in Google Scholar

27. Krongauz, Y. S. The Contemporary State and Perspectives in the Development of Polyphenylene Quinoxalines. Vysokomol. Soedin. Ser. A Ser. B. 1984, 26, 227–241.Search in Google Scholar

28. Hergenrother, P. M.; Levine, H. H. Phenyl-Substituted Polyquinoxalines. J. Polym. Sci. A1. 1967, 5, 1453–1466. https://doi.org/10.1002/pol.1967.150050626.Search in Google Scholar

29. Bailey, G. C.; Swager, T. M. Masked Michael Acceptors in Poly(Phenylene Ethynylene)S for Facile Conjugation. Macromolecules 2006, 39, 2815–2818. https://doi.org/10.1021/ma052111u.Search in Google Scholar

30. Belomoina, N. M.; Rusanov, A. L.; Bruma, M. Modified phenylquinoxaline-containing Polymers and Materials on Their Basis. Polym. Sci. Ser. C: Rev. 2007, 49, 386–406. https://doi.org/10.1134/s1811238207040054.Search in Google Scholar

31. Bruma, M.; Hamciuc, E.; Schulz, B.; Köpnick, T.; Stiller, B.; Mercer, F. Synthesis of Fluorinated poly(phenylquinoxaline-amide)s and Study of Thin Films Made Therefrom. Polymer 1999, 40, 6865–6871. https://doi.org/10.1016/s0032-3861(99)00020-8.Search in Google Scholar

32. Wu, S-C.; Shu, C-F. Synthesis and Properties of Soluble Aromatic Polyamides Derived from 2,2’-bis(4-carboxyphenoxy)-9,9’-spirobifluorene. J. Polym. Sci. A Polym. Chem. 2003, 41, 1160–1166. https://doi.org/10.1002/pola.10657.Search in Google Scholar

33. Rusanov, A. L.; Belomoina, N. M. Aromatic Condensation Monomers and Polymers Containing quinoxal-2,3-diyl Groups. Polym. Sci. Ser. B. 2011, 53, 223–252. https://doi.org/10.1134/s1560090411050071.Search in Google Scholar

34. Akutsu, F.; Inoki, M.; Araki, K.; Kasashima, Y.; Naruchi, K.; Miura, M. Synthesis and Characterization of Novel Aromatic Polyamides and Polyimides Derived from 2,3-di(3-aminophenyl)quinoxaline. Polym. J. 1997, 29 (5), 529–533. https://doi.org/10.1295/polymj.29.529.Search in Google Scholar

35. Huang, W.; Yin, J.; Guo, F.; Zhang, Y.; Xie, M.; He, X. Synthesis and Characterization of New Cardo poly(bisbenzothiazole-ureas) Containing Bulky Pendant Groups. Eur. Polym. J. 2008, 44 (11), 3599–3607. https://doi.org/10.1016/j.eurpolymj.2008.08.042.Search in Google Scholar

36. Ghaemy, M.; Mighani, H.; Ziaei, P. Synthesis and Characterization of Novel Organosoluble Polyesters Based on a Diol with Azaquinoxaline Ring. J. Appl. Polym. Sci. 2009, 114 (6), 3458–3463. https://doi.org/10.1002/app.30726.Search in Google Scholar

37. Mighani, H.; Ghaemy, M. Synthesis and Characterization of Organosoluble Polyamides from Quinoxaline Based Diamine. Chin. J. Polym. Sci. 2010, 28 (2), 147–155. https://doi.org/10.1007/s10118-010-8231-x.Search in Google Scholar

38. Bruma, M.; Schulz, B.; Köpnick, T.; Stiller, B.; Mercer, F. Study of Thin Films Made from Aromatic Polyamides with Silicon and Phenylquinoxaline Rings in the Main Chain. Mater. Sci. Eng. C 1999, 8 (4), 361–371.10.1016/S0928-4931(99)00019-3Search in Google Scholar

39. Hamciuc, E.; Hamciuc, C.; Bruma, M.; Belomoina, N. M. Synthesis and Characterization of New Poly[Phenylquinoxaline(Ether)Imides]. Russ. Chem. Bull. 2004, 53 (8), 2035–2040. https://doi.org/10.1007/s11172-005-0068-z.Search in Google Scholar

40. Patil, V. B.; Medhi, M.; Bhairamadgi, N. S.; Wadgaonkar, P. P.; Maldar, N. N. Synthesis and Characterization of Polyesters from 2,3-bis(4′-hydroxy Phenyl) Quinoxaline and 2,3-bis(2′-hydroxynaphthalene-6′-yl) Quinoxaline. Mater. Sci. Eng. B 2010, 168 (2), 186–192. https://doi.org/10.1016/j.mseb.2009.12.036.Search in Google Scholar

41. Patil, V. B.; Sayyed, M. M.; Mahanwar, P. A.; Wadgaonkar, P. P.; Maldar, N. N. Polyamides Containing Quinoxaline Moiety. J. Polym. Res. 2011, 18 (5), 549–557. https://doi.org/10.1007/s10965-010-9448-7.Search in Google Scholar

Received: 2025-05-05
Accepted: 2025-08-11
Published Online: 2025-09-04

© 2025 IUPAC & De Gruyter

Downloaded on 1.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2025-0516/html?lang=en
Scroll to top button