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Abstract: Quantum mechanics is central to our understanding of chemistry both qualitatively and quantita-
tively. Modern electronic structure calculations can yield energies and structures of small to medium size
molecules to chemical accuracy, thereby providing a computational model for chemistry. A potential energy
surface describes the energy of a molecule as a function of its geometric parameters. The features of potential
energy surfaces provide the connections between quantum mechanics and the traditional chemical concepts
such as structure, bonding and reactivity. This brief perspective presents an overview of tools for exploring
potential energy surfaces such as optimizing equilibrium geometries, finding transition states, following reaction
paths and simulating molecular dynamics.

Keywords:Geometry optimization; molecular dynamics; potential energy surface; quantum chemistry; quantum
science and technology; reaction path; transition state.

A century ago, a paradigm shift in physics initiated the era of quantum science. Many disciplines have benefited
from quantum theory, perhaps none more than chemistry (see quote by Dirac1). In the past 100 years, quantum
mechanics has grown from a novelmathematical theory of interest primarily to physicists to a practical everyday
world view for chemists. Quantum theory is vital for the description of electrons and hence the behavior of
molecules and ultimately the understanding of chemistry. Through advances in theoretical approaches, nu-
merical methodology, user-friendly software and especially computational resources, quantum chemistry has
joined the mainstream of research in chemistry and related disciplines. The intent of this short perspective is to
look at potential energy surfaces as the link between the quantum nature of the electronic structure of molecules
and traditional chemical concepts such as molecular structure, reactivity, dynamics and reaction mechanisms.

The experimental study of the structure and energetics of molecules has a long history. However, most of the
experimental methods are limited to molecules close to their equilibrium geometry. These methods give us
snapshots of molecules rather than movies of molecules undergoing reactions. By contrast, modern quantum
mechanical methods can calculate a molecule in any geometry. Methods such as density functional theory2–4 can
reliably model the behavior of molecules and materials with hundreds to thousands of atoms. For small to
medium size molecules quantum chemistry can calculate energies, structures and properties to near chemical
accuracy by using various compound and extrapolation methods (see ref. 5 and references therein). In essence,
quantum theory provides us with a model chemistry (see Pople’s Nobel lecture6) that we can use to explore the
actions of molecules in ways that are not readily accessible by experimental methods. Several of the articles in
this issue demonstrate the power of computational methods based on quantum theory in exploring a variety of
topics in chemistry.

Potential energy surfaces are central to the application of quantum theory to chemistry. A potential energy
surface describes the energy of a molecular system as a function of the coordinates of the atoms that make up the
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system.7 Figure 1 shows a model potential energy surface with some of its features.8 In this simple three-
dimensional model, the energy is plotted vertically, and two geometric coordinates are plotted horizontally.
Polyatomic molecular systems have many more than two geometric coordinates. However, two coordinates are
sufficient to illustrate the key features of potential energy surfaces.

It is helpful to think of a potential energy surface as a hilly landscape and this analogy is used to describe the
features illustrated in Fig. 1. The valleys in this landscape are related to molecules. In particular, the geometric
coordinates of the bottom of a valley correspond to the equilibrium structure of a molecule. Movements close to
the bottom of the valley describemolecular vibrations. An elementary reaction corresponds to traveling from the
valley for the reactants to a neighboring valley for the products. The difference in the heights of the valley floors is
the reaction energy, and the height of the mountain pass between the valleys is the barrier for this elementary
reaction. The lowest energy route from reactants to products is the reaction path. The highest point along the
lowest energy reaction path is the transition structure (TS) for the reaction. The steepest-descent path in mass-
weighted coordinates down from the TS to the reactants and products is termed the intrinsic reaction coordinate
(IRC).9 The tangent to the IRC at the TS is the transition vector. In some cases, the reaction path can descent from a
transition structure and branch into two different valleys. A valley-ridge inflection (VRI) point is where the
curvature perpendicular to the path changes from positive to negative and is associated with branching on
symmetric surfaces. The TS is a first order saddle point on the Born-Oppenheimer surface with maximum in one
and only one direction, and aminimum in all other directions. Transition structure and transition state are often
used interchangeably, but technically the latter would include zero-point vibration and thermal corrections for
the highest energy point on the reaction path. Figure 1 also shows a number of second order saddle points. These
are maxima in two directions andminima in all other directions. If there is a second or higher order saddle point
along the ridge separating reactants and products, there is always a lower energy transition structure and
reaction path. Since the forces on the atoms are zero at minima, first order saddle points and higher order saddle
points, they are also known as stationary points.

The concept of a potential energy surface is the result of the Born-Oppenheimer approximation.10 In solving
the Schrödinger equation, this approximation assumes that thewavefunction for the electrons and the nuclei can
be treated separately. In particular, the electronic wavefunction and energy can be calculated as a function of the
positions of stationary nuclei. Using the lowest energy wavefunction, the Born-Oppenheimer approximation
yields a potential energy surface for the ground state. Higher energy solutions of the Schrödinger equation
produce potential energy surfaces for excited states. The Born-Oppenheimer approximation is good if these
surfaces remain well separated but breaks down if the surfaces get too close, touch or intersect. In such cases, the
quantum behavior of electrons and nuclei must be treated together without invoking the Born-Oppenheimer
approximation.

Fig. 1: Model potential energy
surface showing minima,
transition structures, second
order saddle points, reaction
paths and a valley ridge
inflection point (reprinted with
permission from ref. 8.
Copyright 2011 John Wiley &
Sons).
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A potential energy surface can be constructed by calculating the energy for many different geometries and
fitting a functional form to the data.11–18 This is a costly and tedious process that is suitable only for small systems.
Numerous potential energy surfaces have been developed for gas-phase reactions since the 1970s.19 In recent
years, potential energy surfaces have been constructed with machine learning in the form of neural
networks.20–23 This approach has largely replaced fitting potential energy surfaces with an explicit functional
forms. Needless to say, constructing full potential energy surfaces is a costly way to findminima, transition states
and reaction path. If derivatives of the potential energy with respect to geometric parameters are available, these
features can be located directly without explicitly constructing a potential energy surface.

While total energies have been a goal of quantum calculations from the beginning, efficient analytic methods
for calculating first derivatives of the energy with respect to geometric parameters (also known as force or
gradients) were not developed until the late 1960s. One of the landmarks is Pulay’s 1969 paper24 for practical first
derivatives of the Hartree–Fock energy with respect to geometrical parameters (i.e. forces on the atoms). Instead
of using theHellmann-Feynman theorem, Pulay’smethod involves derivatives of all of the integrals, including the
two-electron Coulomb and exchange integrals. For Hartree–Fock (HF) and density functional theory (DFT), the
first derivativeswith respect to geometric parameters or gradients can be calculated in about the same time as the
energy, giving the forces on all of the atoms in the molecular system. As new, more accurate levels of theory that
included electron correlation have been developed, analytic energy derivative methods followed within a few
years (see refs. 25–31 for examples).

The implementation of analytic first derivatives was soon followed by the development of practical methods
for analytic second derivatives (also called the Hessian or force constant matrix).30,31 Analytic second derivatives
of the Hartree–Fock energy25 cost about N times that of the gradients for an N atom system. Analytic Hessians are
also available for a number of higher levels of wavefunction theory that include electron correlation.32–36

Together with energy derivatives with respect to the electric field, these calculations provide a straight-forward
way to calculate harmonic vibrational spectra and infrared and Raman intensities at an affordable cost.30,31

Analytic third and fourth derivatives are also available for some levels of theory.30,31,37

Exploring potential energy surfaces includes finding equilibrium geometries, calculating relative energies,
locating transition structures and following reaction paths to map out reaction mechanisms.7 With the aid of
energy derivatives these tasks can be carried out directly without needing to fit a potential energy surface.
Calculating an equilibrium geometry corresponds to finding a point on the potential energy surface that is a
minimum. This can be achieved by using thefirst derivative to follow the surface downhill until all of the forces on
the atoms are zero and the curvature in all directions is positive. Locating a transition structure is not as easy,
since this requires a stationary point on the potential energy surface that is a maximum in one direction and a
minimum in all other directions. Part of the difficulty is that the direction for maximization is not known in
advance and that the region around transition states that has the correct curvature (i.e.maximum in one and only
one direction) is much smaller than around minima. Specialized algorithms have been developed for transition
structure optimization and are discussed below. Once a putative transition structure has been found, it must be
checked using a second derivative or vibrational frequency calculation to make sure that it has one and only one
negative eigenvalue or imaginary vibrational frequency. It is also necessary to confirm that the transition
structure is appropriate for the reaction of interest by checking the transition vector or by following the reaction
path downhill to the reactants and products. This brief perspective highlights some of the successful approaches
to exploring potential energy surfaces. Details of numerical methods and associated equations for exploring
potential energy surfaces can be found in a number of reviews and original papers cited therein.7,8,38–40

Exploring a potential energy surface requires a choice of coordinates to represent the structure of the
molecule. Cartesian coordinates are the simplest and most general. Electronic structure codes use Cartesian
coordinates to compute the necessary integrals and calculate the wavefunctions, energies, derivatives and
properties. Cartesian coordinates and fractional coordinates in a unit cell are quite suitable for the geometries of
surfaces and solids. By contrast, Cartesian coordinates are a poor choice for molecules. Internal coordinates such
as bond lengths, valence angles and dihedral angles41–43 are better for molecules since they reflect the structure
and bonding of a molecule and are not affected by the overall translation and rotation of the molecule. The
number of internal coordinates need for a molecule with N atoms is 3 N – 6 (or 3 N – 5 if it is linear). However,
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molecules often havemore than 3N – 6 internal coordinates, especially for cyclic systems. The conversion of these
redundant internal coordinates to Cartesian coordinates for electronic structure calculations involves a gener-
alized inverse or singular value decomposition to remove the degrees of freedom that cannot be represented in
Cartesian coordinates. Primitive redundant coordinates involve all bond lengths, valence angles and dihedral
angles.41,43 Natural internal coordinates employ coordinates used to describe vibrational motions, such as rock,
umbrella bend, ring breathing etc.41,42 Generalized internal coordinates allow for linear combinations and
various functions of coordinates and may be helpful for highly symmetrical molecules.44 The choice of a good
coordinates system can significantly accelerate tasks such as geometry optimization by reducing the coupling
between coordinates.

One of the first tasks in exploring potential energy surfaces is to find the minima that represent the equi-
librium structures relevant to the system under investigation. The closest local minimum can be found by
following the potential energy surface downhill. This is relatively easy using analyticfirst derivatives. By contrast,
finding the global minimum of a potential energy surface can be a very difficult problem. Some rigorous and
deterministic algorithms are available, but a general discussion of global optimization7 is beyond the scope of this
brief perspective.

Conjugate gradient algorithms are some of the older methods for minimization and require relatively little
memory.45,46 Given a search direction, a minimum is found by a line search using just the energy. The gradient is
calculated at theminimumof the line search. Using the gradient, the next search is in a conjugate direction (rather
than in a perpendicular direction) in order to maintain the minimum in the previous search direction. This is
repeated until the gradient is below a threshold.

If the Hessian or second derivatives are available, the potentials energy surface can be modelled locally by a
quadratic expression. In the local quadratic approximation, the energy is E(Δx) = E0 + g0TΔx + 1/2ΔxTH0Δx, in
terms of the displacement Δx, current energy E0, gradient g0 and HessianH0. The corresponding gradient is given
by g(Δx) = g0 + H0Δx. Setting the gradient to zero and solving for the displacement Δx = −H0

−1Δx yields the
minimum on this local quadratic surface. This is called a Newton or Newton Raphson step.47,48 Because actual
potential surfaces are not quadratic, this may need to be repeated several times to reach the minimum.

Second derivatives aremore costly to calculate than first derivatives (up toN times, whereN is the number of
degrees of freedom). By starting with an approximate second derivative matrix or Hessian, an updating method
can be used to improve the approximate Hessian during the course of the optimization. This is the quasi-Newton
method for optimization.47,48 Some of the updating methods are SR1, BFGS and BSP, and they are chosen so that
updated Hessian fits the gradient at the current and previous step. For minimization, the update should be
positive definite and symmetric; BFGS49–52 is one of the best. Similar formulas are available for updating the
inverse of the Hessian, thereby avoiding the need for a matrix inverse at each step. A line search is not necessary
for quasi-Newton methods so long as the step satisfies theWolfe conditions53 for reducing the function value and
magnitude of the gradient. For very large dimensional systems, storage of the Hessian may be a problem. The
L-BFGS algorithm,54 the limited memory version of BFGS, avoids storage of the full Hessian by starting with a
diagonal inverse Hessian and updating it using a fixed number of recent optimization steps.

Another effective approach for geometry optimization is the direct inversion of the iterative subspace
(GDIIS),55,56 An error matrix is constructed for each linearly independent step of the optimization using the
energies and gradients of the current and previous points. A linear combination of the previous steps is chosen to
minimize the error and provide the best step to the next point in the optimization. As in the quasi-Newtonmethod
the Hessian is updated each step. Going beyond the quadratic model that is the basis of quasi-Newton methods,
machine learning methods such as Gaussian process regression, gradient-enhanced Kriging and Bayesian
methods have also been used for geometry optimization.57–60

The Newton, quasi-Newton and GDIIS methods are based on a local quadratic approximation to the potential
energy surface. If any of the eigenvalues of the Hessian are too small, these methods can step beyond the
quadratic region or even in the wrong direction if any of the eigenvalues are negative. One approach for
controlling the step size is the trust radiusmethod.47,48 If a step is larger than the current trust radius, the step size
is reduced by scaling the step or by finding the minimum energy for a step with the current trust radius. The
energy and gradient are used to update trust radius so that it is a good estimate for the size of the quadratic region
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around the current point. Rational function optimization61–63 (RFO) is an alternate approach for controlling the
step size and direction. The energy is written as a quadratic function divided by another quadratic function, with
the latter used to scale the step. Minimizing the energy of the RFO expression leads to a step of Δx = −(H0 − λI)−1 g0.
For minimization, the constant λ is chosen so that (H0 − λI) has no negative eigenvalues and yields a step of the
desired length.

The algorithms for finding minimum energy geometries are very robust. This has led to very large data sets
with up to 100,000,000 optimized molecular structures (OMol25,64 ANI-165,66 and PubChemQC67). These can be
used for benchmark studies of newelectronic structure and density functionalmethods, and for trainingmachine
learning and artificial intelligence. By using the energies at equilibrium geometries and systematic displacements
along vibrational modes, these data sets have also been used to train neural networks to reproduce energies and
optimized structures.64–66,68 The results are better than semi-empirical quantummethods and rival ab initio and
density functional quantum methods for molecules within the scope of the training set.

Finding transition structures (TS) is more difficult than optimizing equilibrium structures because the
direction for maximization is often not known in advance and because the quadratic region around the TS that
has the correct curvature (i.e. amaximum in only one direction) is much smaller than region where optimization
lead tominimum. If the initial guess for the TS geometry is within the quadratic region (i.e.where the Hessian has
only one negative eigenvalue) and the full Hessian has been calculated, then the TS can be found using a series of
Newton steps with suitable step size control. Minimizing the norm of the gradient is an alternative,69 but the
quadratic region for the gradient norm is even smaller and some of the minima of the gradient norm are
inflection points rather than TS’s. More often than not, it is difficult to obtain a good start structure for a TS
optimization. The key task of most TS searching methods is to get close enough to the TS so that quasi-Newton
methods can be used to optimize the TS. These can be classified into double-endmethods that use structures in the
reactant and product valleys to bracket and localize the TS and single-ended methods that start in one valley and
climb toward the TS.7

Examples of single-ended strategies for getting close to the transition state include walking up valleys,
coordinate driving, Newton trajectories, reduced gradient following, gradient extremals and artificial force
induced reaction methods. Walking up the shallowest ascent70 can be accomplished in a number of ways. Quasi-
Newton approaches based on Lagrangian multipliers, RFO or partitioned RFO61–63,70–72 are similar methods for
walking up valleys, and each uses a step of the general form Δx = −(H0 − λ)1 g0 with the λ’s chosen so that (H0 − λ)
has one negative eigenvalue and the step has the desired direction and length. Gentlest ascent dynamics73 is the
trajectory version of walking up valleys to transition states, analogous to steepest descent dynamics for finding
minima. In the dimer method,74–76 two test structures are separated by a short, fixed distance and this dimer is
rotated to find the lowest energy. In this orientation, the dimer points along the valley floor and can be moved
uphill toward the TS. However, these methods may not lead to the desired transition state if the reaction path is
not along the shallowest valley. Coordinate driving is an alternative:77,78 a step is taken toward the TS along the
chosen coordinate and the energy is minimized with respect to the remaining coordinates; the chosen coordinate
is incremented and the process is repeated. Newton trajectory and reduced gradient following methods79–82 are
closely related to coordinate driving: a gradient direction is chosen and the energy is minimized perpendicular to
this direction; a step is taken uphill toward the TS and the process is repeated. These can work well if a single
coordinate or direction dominates the reaction path but can fail if the path is strongly curved and the direction
changes as the TS is approached. Anothermethod is to follow a gradient extremal path,83–86 defined as the path for
which the gradient is an eigenvector of the Hessian. Gradient extremals pass through TS’s andminima; however,
they tend to wander about the potential energy surface making them less practical. For bimolecular systems, the
artificial force induced reaction39 (AFIR) method works by applying a force to pull reactants together until the TS
is reached.

One of the simplest double-ended approaches is to start with a structure in the reactant valley and a structure
in the product valley and search for a maximum along a linear or quadratic path connecting these structures, e.g.
linear synchronous transit, LST, or quadratic synchronous transit,87 QST. In the QST2/QST3method,88 amaximum
is found along a path in redundant internal coordinates and then the TS is fully optimized using Newton or quasi-
Newton methods (QST3 adds a third structure to provide a guess for the TS and the curvature of the path). The
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Hessian updating method for TS optimization must be able to maintain a negative eigenvalue. BFGS is not
suitable, but Bofill has devised a combination of SR1 and PSB Hessian updates that works well.89 It is beneficial to
use a smaller trust radius than forminimization. The RFOmethod provides a goodway to control the step size and
direction.61–63 The constant λ in the RFO step Δx = −(H0 − λI)−1 g0 needs to be chosen so that (H0 − λI) has one and
only one negative eigenvalue and the step length equal to or smaller than the trust radius. This can be applied to
the full Hessian or the Hessian can be partitioned into one or a few eigenvectors that dominate the TS and the
remainder for minimization.61–63,90,91

The double-ended chain-of-states approaches such as nudged elastic band92–95 (NEB) and stringmethods96–100

(SM) are more robust than single-ended walking up valleys and coordinate driving methods. The calculation
starts with a series of equally spaced structures along an initial estimate of the path connecting reactants and
products. For NEB, spring forces are added between the structures to keep them equally spaced (sometimes
additional springs are needed to keep the path frombending too sharply). For stringmethods, reparameterization
of the positions maintains equal spacing between the structures. The forces perpendicular to the path are
minimized to relax the structures toward the minimum energy path. This is illustrated in Fig. 2. The structures
closest to the TS can then be fully optimized using a Newton or quasi-Newton method. These approaches are also
suitable for reaction paths with multiple transition states and intermediates. Numerous energy and gradient
calculationsmay be needed for each of the points along the path because their optimizations are strongly coupled.
Constrained quasi-Newton optimization and Gaussian process regression are alternative approaches for relaxing
the structures toward the reaction path.101–103 Growing string (GSM) and freezing string (FSM) methods99,100

reduce the amount of computation by starting with the two end structures of the path and adding and optimizing
one structures at a time to build up the full path and reach the TS.

Once a TS has been optimized, a second derivative calculation or frequency calculation is required to confirm
that it is indeed a transition statewith only one negative eigenvalue or imaginary frequency. The transition vector
is the normal mode with the imaginary frequency and should correspond to motion between the desired
reactants and products. Often it is also necessary to follow the steepest descent path from the TS to the reactants
and to the products to be sure that it is the correct TS for the intended reaction. A steepest descent path or
minimum energy path in mass-weighted coordinates is the intrinsic reaction coordinate (IRC).9

A steepest descent path or minimum energy path is defined such that the gradient is tangent to the path at
every point. In principle, the reaction path can be found by starting at the TS and stepping downhill in the
direction of forces on the atoms. However, very small steps are needed to prevent the path from zigzagging as it

Fig. 2: An example of a double-ended reaction path optimi-
zation on the Muller-Brown surface. The path optimization
with 11 points starts with the linear synchronous transit path
(black); the few intermediate iterations of the path optimi-
zation are shown in blue and green. The final path in red can
be compared with the steepest descent path in light blue
(reprinted with permission from ref. 8. Copyright 2011 John
Wiley & Sons).
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descends the valley. Several methods have been developed to follow the reaction path accurately and efficiently
with larger step sizes.104–113 In particular, implicit methods for differential equations and predictor-corrector
methods with updated Hessians are efficient and stable methods following the path.109–113 Approximate reaction
paths can also be obtained from chain-of-states approaches such as NEB92–95 and stringmethods.96–100 In addition
to connecting the TS to reactants and products, a steepest descent path can be used to construct a reaction path
Hamiltonian to to investigate aspects reaction dynamics.114,115 The reaction path can also be used to obtain
information about the sequence of different elements of a reaction (such as bond making/breaking, conforma-
tional changes, electronic reorganization) using the unified reaction valley analysis115–117 (URVA) approach.

In some cases, the valley descending from a TS toward products can bifurcate yielding two different products
from a single transition state. Recently there has been considerable experimental interest in bifurcating or
ambimodal reactions (for some recent examples, see refs. 118–131) For a symmetric potential energy surface,
bifurcation is characterized by a valley-ridge inflection (VRI) point (see Fig. 1). These can be found by following the
IRC and monitoring the second derivatives perpendicular to the reaction path. The VRI point is where the lowest
eigenvalue of the second derivatives perpendicular to the steepest descent path changes from positive (valley) to
negative (ridge).132,133 For a more general case of bifurcation on an asymmetric potential, the IRC does not pass
through a VRI point and stay on the ridge, but descends into one of the two valleys.118,119 The branching ratio
between the two valleys can be found by classical trajectory calculations on the surface.134 Methods that sys-
tematically explore potential energy surfaces can also locate bifurcations of valleys and characterize ambimodal
reactions.133,135,136 Approximate methods have also been devised to estimate the branching ratio.126,127

A reaction mechanism on ground state potential energy surfaces may consist of multiple elementary steps,
various intermediates and numerous transition structures. For a complicated reaction, this may be intractable to
carry out manually. Automated workflows are being developed to explore reaction networks (for some reviews
see refs. 40, 137, 138). Some of the interestingmethods are briefly summarized here. Maeda and co-workers39 have
automated the use of AFIR and ADDF (anharmonic downward distortion following) to map multistep reactions
and to find all of the transition structures and intermediates. Zimmerman and co-workers40 have developed
ZStruct to explore the reaction space of molecular systems. Connectivity graphs are used to determine potential
intermediates and the growing string method (GSM) is used to find the connecting transition states. Haber-
shon139,140 has developed an automated approach for finding reaction mechanisms using connectivity-based
sampling, NEB for exploring potential energy surfaces and kinetic simulations of reaction networks. The Reaction
Mechanism Generator (RMG) of Green et al.141 constructs kinetic models using thermochemistry and estimated
rates from a database of reaction templates. Subsequently, they used automated energy surface exploration to
generate 12,000 organic reactions involving H, C, N and O.142 In the “nanoreactor” approach developed by
Martinez and coworkers,143 amixture of reactants is place in a container and lengthymolecular dynamics runs at
high temperature and high pressure are used to see what reactions occur. Successful chemical transformations
then are refined to obtain intermediates and transition states. Crystal, the software package developed by Poirier
and co-workers,136 systematically traverses the potential energy surface for selected degrees of freedom using a
grid-based search strategy. The grid is expanded in a series of increments until amaximum energy is reached and
all of the relevant features of the potential energy surface have been located. Reiher and coworkers136 have
developed the Chemotron software package to explore reaction networks. Based on first principles heuristic rules
derived from electronic wavefunctions, reactive sites are detected, reaction networks are generated and
elementary reactions in the network are refined by quantum chemical methods. Meuwly144 has reviewed
machine learning for chemical reactions, including rates and reaction networks. Clearly, this is a hot area and
more progress can be expected in coming years.

Photochemical reactions involve potential energy surfaces for excited states and transition rates between
them. Transitions between surfaces are most probable near seams of intersection and conical intersections.145,146

Surfaces for states of different spin or spatial symmetry can cross at seams of intersection. For a surface with N
degrees of freedom, the seamhasN−1 degrees of freedomand transitions between the surfaces aremost probable
near the minimum energy point along the N−1 dimensional seam of intersection. States with the same spin and
spatial symmetry can interact resulting in an avoided crossing rather than a seam of intersection. However, the
surfaces can intersect where the interaction matrix element goes to zero, forming a seam with N−2 degrees of
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freedom. The lowest point on this N−2 dimensional seam is the minimum energy conical intersection. Figure 3
shows the potential energy surfaces for the ground state andfirst excited state of C2H4 and the conical intersection
connecting these two surfaces. To properly locate conical intersections, the two energy surfaces must be calcu-
lated with comparably accurate electronic structure methods.147 This usually requires complete active space
self-consistent field (CASSCF) calculations, complete active space second order perturbation theory (CASPT2) or
multi-reference configuration interaction (MRCI). Optimizing the structure of a minimum energy seam crossing
or conical intersection involves moving across the potential energy surfaces to reach the seam where the two
surfaces have the same energy and then following the N−1 or N−2 dimensional seam to find the minimum. A
number of algorithms have been developed to find minimum energy seam crossing and conical
intersections.147–162 The penalty functionmethod149,150 minimizes the average of the two energies (EI + EJ)/2 plus a
function of the difference in the energy of the surfaces, ΔEIJ = EI – EJ. In the projection approach,151–154 the
gradients of ΔEIJ andHIJ (the interactionmatrix element between the surfaces) are used to define a 2 dimensional
space where the square of the energy difference is minimized. In the remaining N−2 dimensional space, the
energy of the upper surface is minimized. In the Lagrangian multiplier method,155–161 L = EI + λ1ΔEIJ + λ2HIJ is
minimized with respect to the geometry and the Lagrangian multipliers λ1 and λ2. Algorithms have also been
developed to follow seams of intersection.151 Similar to finding all of the minima and transition states for a
reaction mechanism, it can be challenging to finding all of the relevant conical intersection for a photochemical
process. Maeda and coworkers have adapted the AFIRmethod to automaticallyfind all of the conical intersections
between two states.154 The Crystal program has been enhanced to systematically search for the conical inter-
section between multiple surfaces.162 The nanoreactor approach of Martinez and co-workers has been extended
to non-adiabatic reactions and locates all of the relevant conical intersections.163

Molecular motions during reactions explore larger regions of potential energy surfaces than just stationary
points and steepest descent paths. While electron dynamics must be treated by quantum mechanics, molecular
dynamics can most often be treated by classical mechanics because nuclei are much heavier than electrons.
A number of decades ago calculating classical trajectory on potential energy surfaces165–167 required fitting a
functional form to the potential energy surface.11–18 With the increase in computational power in recent decades,
classical trajectories can be calculated directly by using electronic structuremethods to compute the forces on the

Fig. 3: Two views of the ground and first excited electronic states of C2H4 and the conical intersection between these two surfaces
(reproduced with permission from ref. 164. Copyright American Chemical Society 2000).
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atoms in the molecule on-the-fly, every time they are needed for integrating the classical equations of mo-
tion.168,169 Symplectic integrators such as velocity Verlet170 and higher order versions171,172 ensure conservation of
energy. If second derivatives are available, Hessian-based predictor corrector algorithms with Hessian updating
can be used to take larger steps,173–175 reducing the number of electronic structure calculationswhilemaintaining
good energy conservation. The cost of the electronic structure calculations can be reduced by propagating the
wavefunction or the electron density along with propagating the nuclei using an extended Lagrangian.176 This
approach is used in Car-Parrinello dynamics177–179 (e.g. CP2K) for the condensed phase and density matrix
propagation180–182 (ADMP) for molecular systems. To obtain reliable statistics in molecular dynamics studies,
hundreds to thousands of trajectoriesmay be needed. The GROWprocedure of Collins and coworkers183 builds up
an interpolated potential energy surface from trajectories calculated on-the-fly, thereby reducing the number of
electronic structure calculations for the additional trajectories needed to obtain statistically significant results.
Highly accurate electronic structure methods may be too costly for on-the-fly direct dynamics. In this case, fitting
a functional form to a large number of high-level electronic structure calculations is the preferred approach.11–18

This is facilitated by the use of permutationally invariant polynomials.15–17 Increasingly, neural networks are
being used to fit a large set of electronic structure calculations to provide a potential energy surface formolecular
dynamics calculations.21,184–186

Some cases, such as hydrogen atom tunneling through a barrier, require a quantummechanical treatment of
a few atoms in a molecular system. Ring polymer and centroid dynamics187 can be used to calculate quantum
trajectories. These can be calculated on-the-fly using energy and gradients calculated by electronic structure
methods at each step in the trajectories.188–193 Nuclear wavepackets for selected light atoms can be propagated on
a local grid that travels with the molecule.194–198 Alternatively, selected nuclei can be included in the wave-
function in the nuclear-electron orbital (NEO) method199,200 using Hartree–Fock, density functional and corre-
lated methods to calculate both the nuclear and electronic wavefunctions and their interactions.

The investigation of dynamics of photochemical reactions147,201–208 is more challenging than ground state
thermal reactions. Photochemical dynamics typically involve numerous surfaces and transitions between them.
These surfaces and interactions between them are much more difficult to fit than for the ground state where
structure, bonding and reactivity are well understood. Thus, computing dynamics directly from electronic
structure calculations is even more important for photochemical reactions. This is a rapidly expanding area of
method development and several excellent reviews are available.201–208 Only a very brief overview is provided
here. Electronic structure calculations need to be able to represent the relevant excited states on an equal footing.
Like searches for conical intersections, this may involve CASSCF, CASPT2, MRCI, equation of motion coupled
cluster (EOM-CC) and related methods. On-the-fly classical trajectories provide a description of dynamics on an
individual excited state surface. Non-adiabatic transitions to lower energy surfaces can be modelled with fewest
switching and related surface hopping methods.209–211 Ab initio multiple spawning (AIMS) methods204 represent
the nuclear wavefunction by Gaussian wavepackets guided by classical trajectories calculated on-the-fly. The
wavepackets can split (spawn) into separate wavepackets at surface crossings and conical intersections. In
Ehrenfest dynamics, a Gaussian wavepacket is propagated in the mean field of the electronic states.209,212 When a
decoherence correction is added, Ehrenfest dynamics yields the correct collapse to the final states.213 Multi-
configuration Ehrenfest (MCE) dynamics214 propagates a set of interacting wavepackets to obtain correct
quantum dynamics and decoherence. In the variational multiconfigurational Gaussian (vMCG) method,215 the
Gaussian wavepackets follow coupled quantum trajectories. There are still many challenges for non-adiabatic
dynamics on excited state potential energy surfaces. This will continue to be a very active area of research.

Summary

A potential energy surface represents the energy of a molecule as a function of its geometric parameters. It
provides an easily visualized connection between quantum chemical calculations of the electronic structure of a
molecule and chemical concepts such as geometry, bonding and reactivity. A potential energy surface can be
thought of as a hilly landscape, with valleys corresponding to reactants and products. Connections between
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different valleys are reaction paths and transition states aremountain passes along reaction paths. These features
can be found directly without constructing a full potential energy surface by using methods that employ energy
derivatives. This article provides an overview of tools for exploring potential energy surfaces and briefly dis-
cusses methods for optimizing equilibrium geometries, finding transition states, following reaction paths and
simulating molecular dynamics. Two active and challenging areas of research in the exploration of potential
energy surfaces are the automated workflows for the exploration of reaction networks and the development of
methods for non-adiabatic dynamics of photochemical reactions.
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