Home Quantum chemistry of molecules in solution. A brief historical perspective
Article
Licensed
Unlicensed Requires Authentication

Quantum chemistry of molecules in solution. A brief historical perspective

  • Manuel F. Ruiz-López ORCID logo EMAIL logo
Published/Copyright: May 23, 2025

Abstract

Calculating the wave function and the properties of a molecule in solution is a common procedure today that can be performed with a variety of methods. However, the study of solvated systems did not begin with the establishment of the Schrodinger equation in 1926 and the development of the first methods in computational chemistry. In fact, it took until 1973 to see the first self-consistent field equations that included the electrostatic potential of the solvent. It took another two decades for computational methods and solvent models to become consolidated, with an explosion of applications in the 1990s. This article briefly describes that fascinating story.


Corresponding author: Manuel F. Ruiz-López, Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, University of Lorraine, CNRS, BP 70239, 54506 Vandoeuvre-lès-Nancy, France, e-mail:
Article note: A collection of invited papers to celebrate the UN’s proclamation of 2025 as the International Year of Quantum Science and Technology.

Acknowledgments

The author is grateful to the University of Lorraine and the French CNRS for their continuous support.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The author states no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Camilleri, K. How Quantum Mechanics Emerged in a Few Revolutionary Months 100 Years ago. Nature 2025, 637, 269–271; https://doi.org/10.1038/d41586-024-04217-0.Search in Google Scholar PubMed

2. Heisenberg, W. Über Quantentheoretische Umdeutung Kinematischer und Mechanischer Beziehungen. Z. Phys. 1925, 33, 879–893; https://doi.org/10.1007/bf01328377.Search in Google Scholar

3. Schrödinger, E. Quantisierung als Eigenwertproblem (Erste Mitteilung). Ann. Phys. 1926, 79, 361–376.10.1002/andp.19263840404Search in Google Scholar

4. Schrödinger, E. Quantisierung als Eigenwertproblem. (Zweite Mitteilung). Ann. Phys. 1926, 79, 489–527.10.1002/andp.19263840602Search in Google Scholar

5. Boyd, R. J. The Nobel History of Computational Chemistry. A Personal Perspective. J. Comput. Chem. 2024, 45, 1921–1935; https://doi.org/10.1002/jcc.27383.Search in Google Scholar PubMed

6. Moore, T. S.; Winmill, T. F. CLXXVII.—The State of Amines in Aqueous Solution. J. Chem. Soc. Trans. 1912, 101, 1635–1676; https://doi.org/10.1039/ct9120101635.Search in Google Scholar

7. Latimer, W. M.; Rodebush, W. H. Polarity and Ionization from the Standpoint of the Lewis Theory of Valence. J. Am. Chem. Soc. 1920, 42, 1419–1433; https://doi.org/10.1021/ja01452a015.Search in Google Scholar

8. Smith, D. A. A Brief-history of the Hydrogen-bond. In Modeling the Hydrogen Bond; Smith, D. A., Ed.; American Chemical Society: Washington DC, Vol. 569, 1994; pp 1–5.10.1021/bk-1994-0569.ch001Search in Google Scholar

9. Bratož, S. Electronic Theories of Hydrogen Bonding. In Advances in Quantum Chemistry; Löwdin, P.-O., Ed.; Academic Press: London, Vol. 3, 1967; pp 209–237.10.1016/S0065-3276(08)60090-8Search in Google Scholar

10. Kollman, P. A.; Allen, L. C. Theory of the Hydrogen Bond. Chem. Rev. 1972, 72, 283–303; https://doi.org/10.1021/cr60277a004.Search in Google Scholar

11. Szalewicz, K. Hydrogen Bond. In Encyclopedia of Physical Science and Technology; Meyers, R. A., Ed.; Academic Press: New York, 2003, 3rd ed.; pp. 505–538.10.1016/B0-12-227410-5/00322-7Search in Google Scholar

12. Pimentel, G. C. The Bonding of Trihalide and Bifluoride Ions by the Molecular Orbital Method. J. Chem. Phys. 1951, 19, 446–448; https://doi.org/10.1063/1.1748245.Search in Google Scholar

13. Nukasawa, K.; Tanaka, J.; Nagakura, S. A Note on the Hydrogen Bond. J. Phys. Soc. Jpn. 1953, 8, 792–793; https://doi.org/10.1143/jpsj.8.792.Search in Google Scholar

14. Lennard-Jones, J. E.; Pople, J. A. Molecular Association in Liquids I. Molecular Association Due to Lone-pair Electrons. Proc. R. Soc. Lond. A: Math. Phys. Sci. 1951, 205, 155–162.10.1098/rspa.1951.0023Search in Google Scholar

15. Pople, J. A. Molecular Association in Liquids. 2. A Theory of the Structure of Water. Proc. R. Soc. Lond. A: Math. Phys. Sci. 1951, 205, 163–178.10.1098/rspa.1951.0024Search in Google Scholar

16. Coulson, C. The Hydrogen Bond: A Review of the Present Interpretations and an Introduction to the Theoretical Papers Presented at the Congress. In Hydrogen Bonding; Hadzi, D.; Thompson, H. W., Eds.; Pergamon Pres: London, 1959; pp. 339–360.10.1016/B978-0-08-009140-2.50041-5Search in Google Scholar

17. Clementi, E. Study of the Electronic Structure of Molecules. II. Wavefunctions for the NH3+ HCl→ NH4Cl Reaction. J. Chem. Phys. 1967, 46, 3851–3880; https://doi.org/10.1063/1.1840458.Search in Google Scholar

18. Morokuma, K.; Pedersen, L. Molecular-orbital Studies of Hydrogen Bonds. An Ab Initio Calculation for Dimeric H2O. J. Chem. Phys. 1968, 48, 3275–3282; https://doi.org/10.1063/1.1669604.Search in Google Scholar

19. Del Bene, J. E. Molecular Orbital Theory of the Hydrogen Bond. II. Dimers Containing H2O2 and H2O. J. Chem. Phys. 1972, 56, 4923–4929; https://doi.org/10.1063/1.1676970.Search in Google Scholar

20. Alagona, G.; Pullman, A.; Scrocco, E.; Tomasi, J. Quantum-mechanical Studies of Environmental Effects on Biomolecules. I. Hydration of Formamide. Int. J. Pept. Protein Res. 1973, 5, 251–259; https://doi.org/10.1111/j.1399-3011.1973.tb03459.x.Search in Google Scholar PubMed

21. Pimentel, G. C.; McClellan, A. L. The Hydrogen Bond; W.H. Freeman and Co.: San Francisco and London, 1960.Search in Google Scholar

22. Pullman, B.; Pullman, A. The Electronic Structure of the Purine-pyrimidine Pairs of DNA. Biochim. Biophys. Acta 1959, 36, 343–350; https://doi.org/10.1016/0006-3002(59)90176-3.Search in Google Scholar PubMed

23. Pullman, B.; Pullman, A. Some Electronic Aspects of Biochemistry. Rev. Mod. Phys. 1960, 32, 428–436; https://doi.org/10.1103/revmodphys.32.428.Search in Google Scholar

24. Pullman, A. The Supermolecule Approach to the Solvation Problem. In Quantum Theory of Chemical Reactions: II: Solvent Effect, Reaction Mechanisms, Photochemical Processes; Daudel, R.; Pullman, A.; Salem, L.; Veillard, A., Eds.; Springer Netherlands: Dordrecht, 1981; pp. 1–24.10.1007/978-94-010-9716-1_1Search in Google Scholar

25. Pullman, A.; Pullman, B. New Paths in the Molecular Orbital Approach to Solvation of Biological Molecules. Q. Rev. Biophys. 1974, 7, 505–566; https://doi.org/10.1017/s0033583500001529.Search in Google Scholar PubMed

26. Pullman, A. The Solvent Effect: Recent Developments. In The New World of Quantum Chemistry; Pullman, B.; Parr, R., Eds.; Springer Netherlands: Dordrecht, 1976; pp. 149–187.10.1007/978-94-010-1523-3_9Search in Google Scholar

27. Lewis, T. CNDO/2 Calculations on the Acidities of Alkanes and Saturated Alcohols and the Basicities of Methylamines. Tetrahedron 1969, 25, 4117–4126; https://doi.org/10.1016/s0040-4020(01)82944-6.Search in Google Scholar PubMed

28. Graffeuil, M.; Labarre, J.-F.; Leibovici, C. Interprétation Quantique des Propriétés Physicochimiques des Alkylamines. J. Mol. Struct. 1974, 22, 97–108; https://doi.org/10.1016/0022-2860(74)80070-0.Search in Google Scholar

29. Hehre, W.; Pople, J. The Methyl Inductive Effect on Acid-base Strengths. Tetrahedron Lett. 1970, 11, 2959–2962; https://doi.org/10.1016/s0040-4039(01)98385-6.Search in Google Scholar

30. Tollenaere, J. P.; Moereels, H. All-valence Electron Calculations and Proton Affinity of Amines. Tetrahedron Lett. 1978, 19, 1347–1350; https://doi.org/10.1016/0040-4039(78)80125-7.Search in Google Scholar

31. Pullman, A.; Brochen, P. On the Origin of the Reverse Order of Intrinsic Affinities Towards H+ and Li+ in the Series NH3 to N(CH3)3. Chem. Phys. Lett. 1975, 34, 7–10; https://doi.org/10.1016/0009-2614(75)80189-8.Search in Google Scholar

32. Umeyama, H.; Morokuma, K. Origin of Alkyl Substituent Effect in the Proton Affinity of Amines, Alcohols, and Ethers. J. Am. Chem. Soc. 1976, 98, 4400–4404; https://doi.org/10.1021/ja00431a011.Search in Google Scholar

33. Pullman, A.; Armbruster, A.-M. Ab Initio Investigation of the Energy and Electronic Evolution Upon Progressive Solvation of Ammonium Ions. Chem. Phys. Lett. 1975, 36, 558–563; https://doi.org/10.1016/0009-2614(75)85337-1.Search in Google Scholar

34. Claverie, P.; Daudey, J. P.; Langlet, J.; Pullman, B.; Piazzola, D.; Huron, M. J. Studies of Solvent Effects. 1. Discrete, Continuum, and Discrete-continuum Models and their Comparison for Some Simple Cases : NH4+, CH3OH, and Substituted NH4+. J. Phys. Chem. 1978, 82, 405–418; https://doi.org/10.1021/j100493a008.Search in Google Scholar

35. Ruiz, M.; Oliva, A.; Fernandez-Alonso, J. I.; Bertrán, J. Estudio Teórico del Efecto de Solvatación Sobre la Basicidad del Amoniaco y de las Metilaminas. Anal. Quím. 1982, 78, 202–205.Search in Google Scholar

36. Ruiz-López, M. F. Estudio teórico del efecto de la solvatación sobre la basicidad del amoniaco y de las metilaminas. Master Thesis, Autonomous University of Madrid: Madrid, 1980.Search in Google Scholar

37. Frisch, M. J; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Rev. C.01; Gaussian Inc.: Wallingford, CT, 2016.Search in Google Scholar

38. Barca, G. M. J.; Bertoni, C.; Carrington, L.; Datta, D.; De Silva, N.; Deustua, J. E.; Fedorov, D. G.; Gour, J. R.; Gunina, A. O.; Guidez, E.; Harville, T.; Irle, S.; Ivanic, J.; Kowalski, K.; Leang, S. S.; Li, H.; Li, W.; Lutz, J. J.; Magoulas, I.; Mato, J.; Mironov, V.; Nakata, H.; Pham, B. Q.; Piecuch, P.; Poole, D.; Pruitt, S. R.; Rendell, A. P.; Roskop, L. B.; Ruedenberg, K.; Sattasathuchana, T.; Schmidt, M. W.; Shen, J.; Slipchenko, L.; Sosonkina, M.; Sundriyal, V.; Tiwari, A.; Galvez Vallejo, J. L.; Westheimer, B.; Włoch, M.; Xu, P.; Zahariev, F.; Gordon, M. S. Recent Developments in the General Atomic and Molecular Electronic Structure System. J. Chem. Phys. 2020, 152, 152. https://doi.org/10.1063/5.0005188.Search in Google Scholar PubMed

39. Epifanovsky, E.; Gilbert, A. T. B.; Feng, X.; Lee, J.; Mao, Y.; Mardirossian, N.; Pokhilko, P.; White, A. F.; Coons, M. P.; Dempwolff, A. L.; Gan, Z.; Hait, D.; Horn, P. R.; Jacobson, L. D.; Kaliman, I.; Kussmann, J.; Lange, A. W.; Lao, K. U.; Levine, D. S.; Liu, J.; McKenzie, S. C.; Morrison, A. F.; Nanda, K. D.; Plasser, F.; Rehn, D. R.; Vidal, M. L.; You, Z.-Q.; Zhu, Y.; Alam, B.; Albrecht, B. J.; Aldossary, A.; Alguire, E.; Andersen, J. H.; Athavale, V.; Barton, D.; Begam, K.; Behn, A.; Bellonzi, N.; Bernard, Y. A.; Berquist, E. J.; Burton, H. G. A.; Carreras, A.; Carter-Fenk, K.; Chakraborty, R.; Chien, A. D.; Closser, K. D.; Cofer-Shabica, V.; Dasgupta, S.; de Wergifosse, M.; Deng, J.; Diedenhofen, M.; Do, H.; Ehlert, S.; Fang, P.-T.; Fatehi, S.; Feng, Q.; Friedhoff, T.; Gayvert, J.; Ge, Q.; Gidofalvi, G.; Goldey, M.; Gomes, J.; González-Espinoza, C. E.; Gulania, S.; Gunina, A. O.; Hanson-Heine, M. W. D.; Harbach, P. H. P.; Hauser, A.; Herbst, M. F.; Hernández Vera, M.; Hodecker, M.; Holden, Z. C.; Houck, S.; Huang, X.; Hui, K.; Huynh, B. C.; Ivanov, M.; Jász, Á.; Ji, H.; Jiang, H.; Kaduk, B.; Kähler, S.; Khistyaev, K.; Kim, J.; Kis, G.; Klunzinger, P.; Koczor-Benda, Z.; Koh, J. H.; Kosenkov, D.; Koulias, L.; Kowalczyk, T.; Krauter, C. M.; Kue, K.; Kunitsa, A.; Kus, T.; Ladjánszki, I.; Landau, A.; Lawler, K. V.; Lefrancois, D.; Lehtola, S.; Li, R. R.; Li, Y.-P.; Liang, J.; Liebenthal, M.; Lin, H.-H.; Lin, Y.-S.; Liu, F.; Liu, K.-Y.; Loipersberger, M.; Luenser, A.; Manjanath, A.; Manohar, P.; Mansoor, E.; Manzer, S. F.; Mao, S.-P.; Marenich, A. V.; Markovich, T.; Mason, S.; Maurer, S. A.; McLaughlin, P. F.; Menger, M. F. S. J.; Mewes, J.-M.; Mewes, S. A.; Morgante, P.; Mullinax, J. W.; Oosterbaan, K. J.; Paran, G.; Paul, A. C.; Paul, S. K.; Pavošević, F.; Pei, Z.; Prager, S.; Proynov, E. I.; Rák, Á.; Ramos-Cordoba, E.; Rana, B.; Rask, A. E.; Rettig, A.; Richard, R. M.; Rob, F.; Rossomme, E.; Scheele, T.; Scheurer, M.; Schneider, M.; Sergueev, N.; Sharada, S. M.; Skomorowski, W.; Small, D. W.; Stein, C. J.; Su, Y.-C.; Sundstrom, E. J.; Tao, Z.; Thirman, J.; Tornai, G. J.; Tsuchimochi, T.; Tubman, N. M.; Veccham, S. P.; Vydrov, O.; Wenzel, J.; Witte, J.; Yamada, A.; Yao, K.; Yeganeh, S.; Yost, S. R.; Zech, A.; Zhang, I. Y.; Zhang, X.; Zhang, Y.; Zuev, D.; Aspuru-Guzik, A.; Bell, A. T.; Besley, N. A.; Bravaya, K. B.; Brooks, B. R.; Casanova, D.; Chai, J.-D.; Coriani, S.; Cramer, C. J.; Cserey, G.; DePrince, A. E.III; DiStasio, R. A.Jr.; Dreuw, A.; Dunietz, B. D.; Furlani, T. R.; Goddard, W. A.III; Hammes-Schiffer, S.; Head-Gordon, T.; Hehre, W. J.; Hsu, C.-P.; Jagau, T.-C.; Jung, Y.; Klamt, A.; Kong, J.; Lambrecht, D. S.; Liang, W.; Mayhall, N. J.; McCurdy, C. W.; Neaton, J. B.; Ochsenfeld, C.; Parkhill, J. A.; Peverati, R.; Rassolov, V. A.; Shao, Y.; Slipchenko, L. V.; Stauch, T.; Steele, R. P.; Subotnik, J. E.; Thom, A. J. W.; Tkatchenko, A.; Truhlar, D. G.; Van Voorhis, T.; Wesolowski, T. A.; Whaley, K. B.; Woodcock, H. L.III; Zimmerman, P. M.; Faraji, S.; Gill, P. M. W.; Head-Gordon, M.; Herbert, J. M.; Krylov, A. I. Software for the Frontiers of Quantum Chemistry: An Overview of Developments in the Q-Chem 5 Package. J. Chem. Phys. 2021, 155, 154102. https://doi.org/10.1063/5.0055522.Search in Google Scholar PubMed PubMed Central

40. Aquilante, F.; Autschbach, J.; Carlson, R. K.; Chibotaru, L. F.; Delcey, M. G.; De Vico, L.; Fdez. Galván, I.; Ferré, N.; Frutos, L. M.; Gagliardi, L.; Garavelli, M.; Giussani, A.; Hoyer, C. E.; Li Manni, G.; Lischka, H.; Ma, D.; Malmqvist, P. Å.; Müller, T.; Nenov, A.; Olivucci, M.; Pedersen, T. B.; Peng, D.; Plasser, F.; Pritchard, B.; Reiher, M.; Rivalta, I.; Schapiro, I.; Segarra-Martí, J.; Stenrup, M.; Truhlar, D. G.; Ungur, L.; Valentini, A.; Vancoillie, S.; Veryazov, V.; Vysotskiy, V. P.; Weingart, O.; Zapata, F.; Lindh, R. Molcas 8: New Capabilities for Multiconfigurational Quantum Chemical Calculations Across the Periodic Table. J. Comput. Chem. 2016, 37, 506–541. https://doi.org/10.1002/jcc.24221.Search in Google Scholar PubMed

41. Mossotti, O. F. Memorie di matematica e fisica in Modena, Vol. 24 II, 1850; p. 49.Search in Google Scholar

42. Clausius, R. J. Die mechanische Wärmetheorie: Die mechanische Behandlung der Electricität; Druck und Verlag von Friedrich Vieweg und Sohn: Braunschweig, Vol. 2, 1879.10.1007/978-3-663-20232-5Search in Google Scholar

43. Debye, P. Einige Resultate Einer Kinetischen Theorie der Isolatoren. Physik Z. 1912, 13, 97.Search in Google Scholar

44. Born, M. Volumen und Hydratationswärme der Ionen. Z. Phys. 1920, 1, 45–48; https://doi.org/10.1007/bf01881023.Search in Google Scholar

45. Kirkwood, J. G. Theory of Solutions of Molecules Containing Widely Separated Charges with Special Application to Zwitterions. J. Chem. Phys. 1934, 2, 351–361; https://doi.org/10.1063/1.1749489.Search in Google Scholar

46. Onsager, L. Electric Moments of Molecules in Liquids. J. Am. Chem. Soc. 1936, 58, 1486–1493; https://doi.org/10.1021/ja01299a050.Search in Google Scholar

47. Böttcher, C. J. F. Theory of Electric Polarization, 2nd ed.; Elsevier: Amsterdam, 1973.10.1016/B978-0-444-41019-1.50009-2Search in Google Scholar

48. Blondel-Mégrelis, M. Between Disciplines: Jean Barriol and the Theoretical Chemistry Laboratory in Nancy. In Chemical Sciences in the 20th Century; Reinhardt, C., Ed.; Wiley VCH: Weinheim, 2001; pp. 105–118.10.1002/9783527612734.ch05Search in Google Scholar

49. Barriol, J. Les Moments Dipolaires; Gauthier-Villars: Paris, 1957.Search in Google Scholar

50. Barriol, J.; Weisbecker, A. Contribution à la Théorie de la Constante Dielectrique des Solutions. CR Acad. Sci. Paris 1964, 259, 2831–2833.Search in Google Scholar

51. Thiébaut, J.; Rivail, J.; Barriol, J. Dielectric Studies of Non‐electrolytic Solutions. J. Chem. Soc., Faraday Trans. II 1972, 68, 1253–1264.10.1039/F29726801253Search in Google Scholar

52. Rinaldi, D. GEOMO, Program N° 290, Quantum Chemistry Program Exchange (QCPE); Indiana University: Bloomington, IN, 1972.Search in Google Scholar

53. Rinaldi, D. Versatile Techniques for Semi-empirical SCF-LCAO Calculations Including Minimization of Energy. Comput. Chem. 1977, 1, 109–114; https://doi.org/10.1016/0097-8485(77)80009-0.Search in Google Scholar

54. Pople, J. A.; Segal, G. A. Approximate Self‐Consistent Molecular Orbital Theory. III. CNDO Results for AB2 and AB3 Systems. J. Chem. Phys. 1966, 44, 3289–3296; https://doi.org/10.1063/1.1727227.Search in Google Scholar

55. Pople, J. A.; Beveridge, D. L.; Dobosh, P. A. Approximate Self‐Consistent Molecular‐Orbital Theory. V. Intermediate Neglect of Differential Overlap. J. Chem. Phys. 1967, 47, 2026–2033; https://doi.org/10.1063/1.1712233.Search in Google Scholar

56. Bingham, R. C.; Dewar, M. J. S.; Lo, D. H. Ground States of Molecules. XXV. MINDO/3. Improved Version of the MINDO Semiempirical SCF-MO Method. J. Am. Chem. Soc. 1975, 97, 1285–1293; https://doi.org/10.1021/ja00839a001.Search in Google Scholar

57. Rinaldi, D.; Rivail, J. L. Recherche Rapide de la Géométrie d’une Molécule à l’aide des Méthodes LCAO Semi-empiriques ne Faisant Intervenir que des Intégrales Mono et Bicentriques. C.R. Acad. Sci. Paris 1972, 274, 1664–1667.Search in Google Scholar

58. Ruiz-López, M. F.; Rivail, J.-L. Quantum Chemistry in Solution: Fiftieth Anniversary. ChemPhysChem 2023, 24, e202300176; https://doi.org/10.1002/cphc.202300176.Search in Google Scholar PubMed

59. Granger, P.; University of Nancy. unpublished results, 1972.Search in Google Scholar

60. Botskor, I.; Rudolph, H. D.; Roussy, G. The Microwave Spectrum of One N-gauche Rotamer of Allylamine. J. Mol. Spectrosc. 1974, 53, 15–36; https://doi.org/10.1016/0022-2852(74)90257-4.Search in Google Scholar

61. Reichardt, C. Solvents and Solvent Effects in Organic Chemistry, 3rd ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2003.Search in Google Scholar

62. Rinaldi, D.; Rivail, J. L. Polarisabilités Moléculaires et Effet Diélectrique de Milieu à l’état Liquide. Étude Théorique de la Molécule d’eau et de ses Dimères. Theor. Chim. Acta 1973, 32, 57–70; https://doi.org/10.1007/bf01209416.Search in Google Scholar

63. Rivail, J. L.; Rinaldi, D. A Quantum Chemical Approach to Dielectric Solvent Effects in Molecular Liquids. Chem. Phys. 1976, 18, 233–242; https://doi.org/10.1016/0301-0104(76)87050-4.Search in Google Scholar

64. Yomosa, S. Nonlinear Schrödinger Equation on the Molecular Complex in Solution–Towards a Biophysics. J. Phys. Soc. Jpn. 1973, 35, 1738–1746; https://doi.org/10.1143/jpsj.35.1738.Search in Google Scholar

65. Johnston, M. D.Jr.; Barfield, M. Theoretical Studies of Solvent Effects on Nuclear Spin–Spin Coupling Constants. I. The Reaction Field Model. J. Chem. Phys. 1971, 54, 3083–3096; https://doi.org/10.1063/1.1675296.Search in Google Scholar

66. Huron, M. J.; Claverie, P. Calculation of the Interaction Energy of One Molecule with its Whole Surrounding. I. Method and Application to Pure Nonpolar Compounds. J. Phys. Chem. 1972, 76, 2123–2133; https://doi.org/10.1021/j100659a011.Search in Google Scholar

67. Langlet, J.; Claverie, P.; Caillet, J.; Pullman, A. Improvements of the Continuum Model. 1. Application to the Calculation of the Vaporization Thermodynamic Quantities of Nonassociated Liquids. J. Phys. Chem. 1988, 92, 1617–1631; https://doi.org/10.1021/j100317a048.Search in Google Scholar

68. Tapia, O.; Goscinski, O. Self-consistent Reaction Field Theory of Solvent Effects. Mol. Phys. 1975, 29, 1653–1661; https://doi.org/10.1080/00268977500101461.Search in Google Scholar

69. Constanciel, R.; Tapia, O. On the Theory of Solvent Effects: The Virtual Charge Model to Represent the Solvent Polarization. Theor. Chim. Acta 1978, 48, 75–86; https://doi.org/10.1007/bf00550242.Search in Google Scholar

70. Newton, M. D. Ab Initio Hartree‐Fock Calculations with Inclusion of a Polarized Dielectric; Formalism and Application to the Ground State Hydrated Electron. J. Chem. Phys. 1973, 58, 5833–5835; https://doi.org/10.1063/1.1679211.Search in Google Scholar

71. McCreery, J. H.; Christoffersen, R. E.; Hall, G. G. The Development of Quantum Mechanical Solvent Effect Models. Macroscopic Electrostatic Contributions. J. Am. Chem. Soc. 1976, 98, 7191–7197; https://doi.org/10.1021/ja00439a015.Search in Google Scholar

72. Felder, C. E.; Applequist, J. Energies of Solute Molecules from an Atom Charge–dipole Interaction Model with a Surrounding Dielectric: Application to Gibbs Energies of Proton Transfer Between Carboxylic Acids in Water. J. Chem. Phys. 1981, 75, 2390–2398; https://doi.org/10.1063/1.442302.Search in Google Scholar

73. Brown, R. D.; Coulson, C. A. In Calcul des Fonctions d’Onde Moléculaires; Colloques Internationaux du Centre Nationale de la Recherche Scientifique: Paris, 1958; pp. 311–327.Search in Google Scholar

74. Coulson, C. A. Theoretical Considerations of the Effects of the Medium Upon Molecular Energy Levels. Proc. R. Soc. Lond. A: Math. Phys. Sci. 1960, 255, 69–72.10.1098/rspa.1960.0051Search in Google Scholar

75. Jortner, J.; Coulson, C. Environmental Effects on Atomic Energy Levels. Mol. Phys. 1961, 4, 451–464; https://doi.org/10.1080/00268976100100611.Search in Google Scholar

76. Bertran, J.; Oliva, A.; Rinaldi, D.; Rivail, J. L. Investigations on the Role of Electrostatic Interactions on Frontier Orbitals and Chemical-reactivity in the Liquid-state. Nouv. J. Chim. 1980, 4, 209–217.Search in Google Scholar

77. Binkley, J. S.; Whiteside, R. A.; Hariharan, P. C.; Seeger, R.; Pople, J. A.; Hehre, W. J.; Newton, M. D. Gaussian 76; Carnegie-Mellon University: Pittsburgh, PA, 1976.Search in Google Scholar

78. Ruiz-Lopez, M. F.; Rinaldi, D.; Rivail, J. L. Electrostatic Solvent Effect and Molecular Conformation in Liquids. An Ab Initio Approach Using a Deformable Ellipsoidal Cavity. In 4th International Congress of Quantum Chemistry: Uppsala, Sweden, 1982.Search in Google Scholar

79. Rinaldi, D.; Ruiz-Lopez, M. F.; Rivail, J. L. Ab Initio SCF Calculations on Electrostatically Solvated Molecules Using a Deformable 3-axes Ellipsoidal Cavity. J. Chem. Phys. 1983, 78, 834–838; https://doi.org/10.1063/1.444783.Search in Google Scholar

80. Ruiz-López, M. F. Contribution à l’étude théorique des effets électrostatiques de solvant en spectroscopies moléculaires. Thesis. Université de Nancy I: Vandoeuvre-lès-Nancy, 1985.Search in Google Scholar

81. Ruiz-Lopez, M.; Rinaldi, D.; Rivail, J. L.; Oliva, A. Electrostatic Solvent Effect on Spin-spin Nuclear Coupling-constants. J. Chem. Res.-S 1982, 329.Search in Google Scholar

82. Ruiz-López, M. F.; Rinaldi, D.; Rivail, J. L. Computation of Nuclear Quadrupole Coupling Constants by Semiempirical Quantum Chemical Techniques. J. Mol. Struct.: THEOCHEM 1983, 91, 373–385; https://doi.org/10.1016/0166-1280(83)80081-5.Search in Google Scholar

83. Ruiz-López, M. F.; Rinaldi, D. Electrostatic Solvent Effect on the Circular Dichroism of the Carbonyl np* Transition. J. Mol. Struct.: THEOCHEM 1983, 93, 277–281.10.1016/0166-1280(83)80113-4Search in Google Scholar

84. Ruiz-Lopez, M. F.; Rinaldi, D. Modifications of Circular-dichroism by Electrostatic Influence of the Solvent – A Theoretical Approach in the Random Phase Approximation. Chem. Phys. 1984, 86, 367–373; https://doi.org/10.1016/0301-0104(84)80025-7.Search in Google Scholar

85. Flament, J. P.; Gervais, H. P. Perturbative Solution of the RPA Equation – An Application to the Calculation of Rotational Strengths. Theor. Chim. Acta 1982, 61, 149–162; https://doi.org/10.1007/bf00549140.Search in Google Scholar

86. Ruiz-Lopez, M. F.; Rinaldi, D.; Rivail, J. L. Circular-dichroism of (1S,4R)-norcamphor and its Methyl-derivatives – Theoretical Calculation of Solvent Effects and Vibronic Coupling Perturbations. Chem. Phys. 1986, 110, 403–414; https://doi.org/10.1016/0301-0104(86)87095-1.Search in Google Scholar

87. Bertrán, J.; Rinaldi, D.; Rivail, J. L. Effet de Solvant Dans la Substitutionnucléophile du Fluorure de Méthyle par les Ions Hydroxyle et Cyanure. C. R. Acad. Sci. Paris 1979, 289, 195–198.Search in Google Scholar

88. Bertrán, J.; Oliva, A.; Rinaldi, D.; Rivail, J. L. Investigations on the Role of Electrostatic Interactions on Frontier Orbitals and Chemical-reactivity in the Liquid-state. Nouv. J. Chim. 1980, 4, 209–217.Search in Google Scholar

89. Pappalardo, R. R.; Sánchez-Marcos, E.; Ruiz-López, M. F.; Rinaldi, D.; Rivail, J.-L. Theoretical Study of Simple Push-pull Ethylenes in Solution. J. Phys. Org. Chem. 1991, 4, 141–148.10.1002/poc.610040304Search in Google Scholar

90. Rinaldi, D.; Rivail, J.-L.; Rguini, N. Fast Geometry Optimization in Self-cosistent Reaction Field Computations on Solvated Molecules. J. Comput. Chem. 1992, 13, 675–680; https://doi.org/10.1002/jcc.540130602.Search in Google Scholar

91. Sanchez Marcos, E.; Pappalardo, R. R.; Rinaldi, D. Effects of the Solvent Reaction Field on the Geometrical Structures of Hexahydrate Metallic Cations. J. Phys. Chem. 1991, 95, 8928–8932; https://doi.org/10.1021/j100175a091.Search in Google Scholar

92. Rinaldi, D.; Pappalardo, R. R. SCRFPAC, Program No. 622 Quantum Chemistry Program Exchange; Indiana University: Bloomington, IN, 1992.Search in Google Scholar

93. Bertrán, J.; Ruiz-López, M. F.; Rinaldi, D.; Rivail, J. L. Water Dimer in Liquid Water. Theoret. Chim. Acta 1992, 84, 181–194; https://doi.org/10.1007/bf01113207.Search in Google Scholar

94. Pappalardo, R. R.; Sánchez-Marcos, E.; Ruiz-López, M. F.; Rinaldi, D.; Rivail, J. L. Solvent Effects on Molecular Geometries and Isomerization Processes: A Study of Push-pull Ethylenes in Solution. J. Am. Chem. Soc. 1993, 115, 3722–3730; https://doi.org/10.1021/ja00062a043.Search in Google Scholar

95. Ruiz-López, M. F.; Assfeld, X.; García, J. I.; Mayoral, J. A.; Salvatella, L. Solvent Effects on the Mechanism and Selectivities of Asymmetric Diels-Alder Reactions. J. Am. Chem. Soc. 1993, 115, 8780–8787; https://doi.org/10.1021/ja00072a035.Search in Google Scholar

96. Antonczak, S.; Ruiz-López, M. F.; Rivail, J. L. Ab Initio Analysis of Water-assisted Reaction Mechanisms in Amide Hydrolysis. J. Am. Chem. Soc. 1994, 116, 3912–3921; https://doi.org/10.1021/ja00088a030.Search in Google Scholar

97. Ruiz-López, M. F.; Bohr, F.; Martins-Costa, M. T. C.; Rinaldi, D. Studies of Solvent Effects Using Density Functional Theory. Co-operative Interactions in H3N…HBr Proton Transfer. Chem. Phys. Lett. 1994, 221, 109–116; https://doi.org/10.1016/0009-2614(94)87025-x.Search in Google Scholar

98. Dillet, V.; Ángyán, J. G.; Rinaldi, D.; Rivail, J. L. Reaction Field Factors for a Multipole Distribution in a Cavity Surrounded by a Continuum. Chem. Phys. Lett. 1993, 202, 18–22.10.1016/0009-2614(93)85344-NSearch in Google Scholar

99. Rinaldi, D.; Bouchy, A.; Rivail, J. L.; Dillet, V. A Self-consistent Reaction Field Model of Solvation Using Distributed Multipoles. I. Energy and Energy Derivatives. J. Chem. Phys. 2004, 120, 2343–2350; https://doi.org/10.1063/1.1635355.Search in Google Scholar PubMed

100. Costa Cabral, B. J.; Rinaldi, D.; Rivail, J. L. On the Calculation of the Dispersion Contribution to the Free-energy of Solvation by Using Cavity Models. CR Acad. Sci. Paris 1984, 298, 675–678.Search in Google Scholar

101. Rinaldi, D.; Costa Cabral, B. J.; Rivail, J.-L. Influence of Dispersion Forces on the Electronic Structure of a Solvated Molecule. Chem. Phys. Lett. 1986, 125, 495–499; https://doi.org/10.1016/0009-2614(86)87087-7.Search in Google Scholar

102. Tuñón, I.; Bertrán, J.; Ruiz-López, M. F.; Rinaldi, D. Computation of Hydration Free Energies Using a Parametrized Continuum Model. Study of Equilibrium Geometries and Reactive Processes in Water Solution. J. Comput. Chem. 1996, 17, 148–155.10.1002/(SICI)1096-987X(19960130)17:2<148::AID-JCC2>3.0.CO;2-WSearch in Google Scholar

103. Costa Cabral, B. J.; Rinaldi, D.; Rivail, J. L. A Monte-Carlo Study of Electrostatic Solvation Energies in Molecular Liquids. Chem. Phys. Lett. 1982, 93, 157–161; https://doi.org/10.1016/0009-2614(82)83684-1.Search in Google Scholar

104. Rivail, J.-L.; Rinaldi, D.; Ruiz-Lopez, M. F. The Self-Consistent Reaction Field Model for Molecular Computations in Solution. In Theoretical and Computational Models for Organic Chemistry; Formosinho, S. J.; Csizmadia, I. G.; Arnaut, L. G., Eds.; Springer Netherlands: Dordrecht, 1991; pp. 79–92.10.1007/978-94-011-3584-9_5Search in Google Scholar

105. Wong, M. W.; Frisch, M. J.; Wiberg, K. B. Solvent Effects. 1. The Mediation of Electrostatic Effects by Solvents. J. Am. Chem. Soc. 1991, 113, 4776–4782; https://doi.org/10.1021/ja00013a010.Search in Google Scholar

106. Marcos, E. S.; Maraver, J.; Ruiz-López, M. F.; Bertrán, J. Electrostatic Interactions as a Factor in the Determination of the HOMO in the Liquid State. Can. J. Chem. 1986, 64, 2353–2358; https://doi.org/10.1139/v86-388.Search in Google Scholar

107. Ruiz-López, M. F.; Oliva, A.; Tuñón, I.; Bertrán, J. Self-consistent Reaction Field Calculations of Nonequilibrium Solvent Effects on Proton Transfer Processes Through Low-barrier Hydrogen Bonds. J. Phys. Chem. A 1998, 102, 10728–10735; https://doi.org/10.1021/jp983288b.Search in Google Scholar

108. Sánchez-Marcos, E.; Terryn, B.; Rivail, J. L. Protonation of Nitrogen-containing Bases in Solution: Continuum vs. Discrete-continuum Models for Aqueous Solutions. J. Phys. Chem. 1985, 89, 4695–4700; https://doi.org/10.1021/j100268a010.Search in Google Scholar

109. Pappalardo, R. R.; Martínez, J. M.; Sánchez Marcos, E. Geometrical Structure of the Cis- and Trans-isomers of 1,2-dihaloethylenes and the Energetics of their Chemical Equilibrium in Solution. Chem. Phys. Lett. 1994, 225, 202–207.10.1016/0009-2614(94)00601-6Search in Google Scholar

110. Assfeld, X.; Sordo, J. A.; González, J.; Ruiz-López, M. F.; Sordo, T. L. Electrostatic Solvent Effect on the Ketene-imine Cycloaddition Reaction. J. Mol. Struct.: THEOCHEM 1993, 287, 193–199.10.1016/0166-1280(93)87222-YSearch in Google Scholar

111. Assfeld, X.; Ruiz-López, M. F.; Gonzalez, J.; López, R.; Sordo, J. A.; Sordo, T. L. Theoretical Analysis of the Role of the Solvent on the Reaction Mechanisms: One-step Versus Two-step Ketene-imine Cycloaddition. J. Comput. Chem. 1994, 15, 479–487; https://doi.org/10.1002/jcc.540150502.Search in Google Scholar

112. López, R.; Suárez, D.; Ruiz-López, M. F.; González, J.; Sordo, J. A.; Sordo, T. L. Solvent Effects on the Stereoselectivity of Ketene-imine Cycloaddition Reactions. J. Chem. Soc. Chem. Comm. 1995, 1677–1678; https://doi.org/10.1039/c39950001677.Search in Google Scholar

113. López, R.; Ruiz-López, M. F.; Rinaldi, D.; Sordo, J. A.; Sordo, T. L. Synthesis of b-Lactams from Fluoroketenes and Imines: Ab Initio Potential Energy Surfaces in Gas Phase and in Solution. J. Phys. Chem. 1996, 100, 10600–10608; https://doi.org/10.1021/jp960691e.Search in Google Scholar

114. Del Río, E.; López, R.; Menéndez, M. I.; Sordo, T. L.; Ruiz-López, M. F. Theoretical Study of Ester Enolate-imine Condensation Route to b-Lactams. J. Comput. Chem. 1998, 19, 1826–1833; https://doi.org/10.1002/(sici)1096-987x(199812)19:16<1826::aid-jcc4>3.0.co;2-n.10.1002/(SICI)1096-987X(199812)19:16<1826::AID-JCC4>3.0.CO;2-NSearch in Google Scholar

115. López, R.; Suarez, D.; Sordo, T. L.; Ruiz-López, M. F. Theoretical Study of the [2+2] Cycloaddition of Thioketenes with Imines to form b-Thiolactams. Chem. Eur. J. 1998, 4, 328–334; https://doi.org/10.1002/(sici)1521-3765(19980210)4:2<328::aid-chem328>3.0.co;2-q.10.1002/(SICI)1521-3765(19980210)4:2<328::AID-CHEM328>3.0.CO;2-QSearch in Google Scholar

116. Cativiela, C.; García, J. I.; Mayoral, J. A.; Royo, A. J.; Salvatella, L.; Assfeld, X.; Ruiz-López, M. F. Experimental and Theoretical Study of the Influence of the Solvent on Asymmetric Diels-Alder Reactions. J. Phys. Org. Chem. 1992, 5, 230–238.10.1002/poc.610050503Search in Google Scholar

117. Assfeld, X.; Ruiz-López, M. F.; García, J. I.; Mayoral, J. A.; Salvatella, L. Importance of Electronic and Nuclear Polarization Energy on Diastereofacial Selectivity of Diels-Alder Reactions in Aqueous Solution. J. Chem. Soc., Chem. Commun. 1995, 0, 1371–1372; https://doi.org/10.1039/c39950001371.Search in Google Scholar

118. Cativiela, C.; Dillet, V.; Garcia, J.; Mayoral, J.; Ruiz-López, M. F.; Salvatella, L. Solvent Effects on Diels-Alder Reactions. A Semi-empirical Study. J. Mol. Struct.: THEOCHEM 1995, 331, 37–50; https://doi.org/10.1016/0166-1280(94)03795-m.Search in Google Scholar

119. Assfeld, X.; García, J.; García, J. I.; Mayoral, J. A.; Proietti, M. G.; Ruiz-López, M. F.; Sánchez, M. C. Investigation of Dienophile-TiCl4 Complexation by Means of X-ray Absorption and 13C-NMR Spectroscopies. J. Org. Chem. 1996, 61, 1636–1642; https://doi.org/10.1021/jo950945c.Search in Google Scholar PubMed

120. García, J.; Mayoral, J.; Salvatella, L.; Assfeld, X.; Ruiz-López, M. F. On the Conformational Preferences of a,b-Unsaturated Carbonyl Compounds. An Ab Initio Study. J. Mol. Struct.: THEOCHEM 1996, 362, 187–197.10.1016/0166-1280(95)04391-8Search in Google Scholar

121. Cancès, E.; Mennucci, B. The Escaped Charge Problem in Solvation Continuum Models. J. Chem. Phys. 2001, 115, 6130–6135; https://doi.org/10.1063/1.1401157.Search in Google Scholar

122. Ruiz-López, M. F. The Multipole Moment Expansion Solvent Continuum Model: A Brief Review. In Solvation Effects on Molecules and Biomolecules: Computational Methods and Applications; Canuto, S., Ed.; Springer: Dordrecht, Vol. 6, 2008; pp. 23–38.10.1007/978-1-4020-8270-2_2Search in Google Scholar

123. Miertus, S.; Scrocco, E.; Tomasi, J. Electrostatic Interaction of a Solute with a Continuum. A Direct Utilization of Ab Initio Molecular Potentials for the Prevision of Solvent Effects. Chem. Phys. 1981, 55, 117–129.10.1016/0301-0104(81)85090-2Search in Google Scholar

124. Bonaccorsi, R.; Petrongolo, C.; Scrocco, E.; Tomasi, J. Theoretical Investigations on the Solvation Process. Theor. Chim. Acta 1971, 20, 331–342; https://doi.org/10.1007/bf00527188.Search in Google Scholar

125. Floris, F.; Tomasi, J. Evaluation of the Dispersion Contribution to the Solvation Energy. A Simple Computational Model in the Continuum Approximation. J. Comput. Chem. 1989, 10, 616–627; https://doi.org/10.1002/jcc.540100504.Search in Google Scholar

126. Floris, F. M.; Tomasi, J.; Pascual-Ahuir, J. L. Dispersion and Repulsion Contributions to the Solvation Energy : Refinements to a Simple Computational Model in the Continuum Approximation. J. Comp. Chem. 1991, 12, 784–791; https://doi.org/10.1002/jcc.540120703.Search in Google Scholar

127. Bianco, R.; Miertus, S.; Persico, M.; Tomasi, J. Molecular Reactivity in Solution. Modelling of the Effects of the Solvent and of its Stochastic Fluctuation on an SN2 Reaction. Chem. Phys. 1992, 168, 281–292.10.1016/0301-0104(92)87162-3Search in Google Scholar

128. Cossi, M.; Persico, M.; Tomasi, J. A Simple Solvent Model for Electron Transfer Reactions. J. Mol. Liquids 1994, 60, 87–105; https://doi.org/10.1016/0167-7322(94)00741-1.Search in Google Scholar

129. Frisch, M. J.; T, G. W.; Schegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheseman, J. R.; Keith, T. A.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzeski, V. G.; Ortiz, J. V.; Foresman, J. B.; Ciolowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andrés, J. L.; Reploge, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94; Gaussian, Inc.: Pittsburgh, PA, 1995.Search in Google Scholar

130. Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Ab Initio Study of Solvated Molecules: A New Implementation of the Polarizable Continuum Model. Chem. Phys. Lett. 1996, 255, 327–335; https://doi.org/10.1016/0009-2614(96)00349-1.Search in Google Scholar

131. Pomelli, C. S.; Tomasi, J. Ab Initio Study of the SN2 Reaction CH3Cl+ Cl-→ Cl-+ CH3Cl in Supercritical Water with the Polarizable Continuum Model. J. Phys. Chem. A 1997, 101, 3561–3568; https://doi.org/10.1021/jp962358g.Search in Google Scholar

132. Cancès, E.; Mennucci, B.; Tomasi, J. A New Integral Equation Formalism for the Polarizable Continuum Model: Theoretical Background and Applications to Isotropic and Anisotropic Dielectrics. J. Chem. Phys. 1997, 107, 3032–3041; https://doi.org/10.1063/1.474659.Search in Google Scholar

133. Tomasi, J.; Mennucci, B.; Cancès, E. The IEF Version of the PCM Solvation Method: An Overview of a New Method Addressed to Study Molecular Solutes at the QM Ab Initio Level. J. Mol. Struct.: THEOCHEM 1999, 464, 211–226.10.1016/S0166-1280(98)00553-3Search in Google Scholar

134. Cancès, E.; Mennucci, B. New Applications of Integral Equations Methods for Solvation Continuum Models: Ionic Solutions and Liquid Crystals. J. Math. Chem. 1998, 23, 309–326.10.1023/A:1019133611148Search in Google Scholar

135. Barone, V.; Cossi, M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. J. Phys. Chem. A 1998, 102, 1995–2001; https://doi.org/10.1021/jp9716997.Search in Google Scholar

136. Klamt, A.; Schüürmann, G. COSMO: A New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and its Gradient. J. Chem. Soc. Perkin Trans. 1993, 2, 799–805.10.1039/P29930000799Search in Google Scholar

137. Cancès, E.; Mennucci, B.; Tomasi, J. Analytical Derivatives for Geometry Optimization in Solvation Continuum Models. II. Numerical Applications. J. Chem. Phys. 1998, 109, 260–266; https://doi.org/10.1063/1.476559.Search in Google Scholar

138. Mennucci, B.; Cammi, R.; Tomasi, J. Analytical Free Energy Second Derivatives with Respect to Nuclear Coordinates: Complete Formulation for Electrostatic Continuum Solvation Models. J. Chem. Phys. 1999, 110, 6858–6870; https://doi.org/10.1063/1.478591.Search in Google Scholar

139. Olivares del Valle, F. J.; Tomasi, J. A Simple Model for Molecular Vibrations in Solution: Application to Hydrogen Fluoride and its Dimer in Polar and Non-polar Solvents. Chem. Phys. 1987, 114, 231–239.10.1016/0301-0104(87)80112-XSearch in Google Scholar

140. Aguilar, M. A.; Bianco, R.; Miertus, S.; Persico, M.; Tomasi, J. Chemical Reactions in Solution : Modelling of the Delay of Solvent Synchronism (dielectric Friction) Along the Reaction Path of an SN2 Reaction. Chem. Phys. 1993, 174, 397–407; https://doi.org/10.1016/0301-0104(93)80006-u.Search in Google Scholar

141. Aguilar, M. A.; Olivares del Valle, F. J.; Tomasi, J. Non-equilibrium Solvation: An Ab Initio Quantum-mechanical Method the Continuum Cavity Model Approximation. J. Chem. Phys. 1993, 98, 7375–7384; https://doi.org/10.1063/1.464728.Search in Google Scholar

142. Pascual‐Ahuir, J.; Silla, E.; Tomasi, J.; Bonaccorsi, R. Electrostatic Interaction of a Solute with a Continuum. Improved Description of the Cavity and of the Surface Cavity Bound Charge Distribution. J. Comput. Chem. 1987, 8, 778–787; https://doi.org/10.1002/jcc.540080605.Search in Google Scholar

143. Pascual-Ahuir, J. L.; Silla, E. GEPOL – An Improved Description of Molecular-surfaces 1. Building the Spherical Surface Set. J. Comput. Chem. 1990, 11, 1047–1060; https://doi.org/10.1002/jcc.540110907.Search in Google Scholar

144. Silla, E.; Tuñón, I.; Pascual-Ahuir, J. L. GEPOL – An Improved Description of Molecular-surfaces 2. Computing the Molecular Area and Volume. J. Comput. Chem. 1991, 12, 1077–1088.10.1002/jcc.540120905Search in Google Scholar

145. Pascual-Ahuir, J. L.; Silla, E.; Tuñón, I. GEPOL – an Improved Description of Molecular-surfaces 3. A New Algorithm for the Computation of a Solvent-excluding Surface. J. Comput. Chem. 1994, 15, 1127–1138; https://doi.org/10.1002/jcc.540151009.Search in Google Scholar

146. Orozco, M.; Jorgensen, W. L.; Luque, F. J. Comparison of 6-31G*-based MST/SCRF and FEP Evaluations of the Free Energies of Hydration for Small Neutral Molecules. J. Comp. Chem. 1993, 14, 1498–1503; https://doi.org/10.1002/jcc.540141212.Search in Google Scholar

147. Bachs, M.; Luque, F. J.; Orozco, M. Optimization of Solute Cavities and Van Der Waals Parameters in Ab Initio MST-SCRF Calculations of Neutral Molecules. J. Comp. Chem. 1994, 15, 446–454; https://doi.org/10.1002/jcc.540150408.Search in Google Scholar

148. Orozco, M.; Bachs, M.; Luque, F. J. Development of Optimized MST/SCRF Methods for Semiempirical Calculations – The MNDO and PM3 Hamiltonians. J. Comput. Chem. 1995, 16, 563–575; https://doi.org/10.1002/jcc.540160505.Search in Google Scholar

149. Luque, F. J.; Bachs, M.; Alemán, C.; Orozco, M. Extension of MST/SCRF Method to Organic Solvents: Ab Initio and Semiempirical Parametrization for Neutral Solutes in CCl4. J. Comp. Chem. 1996, 17, 806–820; https://doi.org/10.1002/(sici)1096-987x(199605)17:7<806::aid-jcc5>3.0.co;2-w.10.1002/(SICI)1096-987X(199605)17:7<806::AID-JCC5>3.0.CO;2-WSearch in Google Scholar

150. Orozco, M.; Luque, F. J. Theretical Methods for the Description of the Solvent Effect in Biomolecular Systems. Chem. Rev. 2000, 100, 4187–4225.10.1021/cr990052aSearch in Google Scholar

151. Tomasi, J. Selected Features of the Polarizable Continuum Model for the Representation of Solvation. WIRes Comput. Mol. Sci. 2011, 1, 855–867; https://doi.org/10.1002/wcms.54.Search in Google Scholar

152. Mennucci, B. Polarizable Continuum Model. WIRes Comput. Mol. Sci. 2012, 2, 386–404; https://doi.org/10.1002/wcms.1086.Search in Google Scholar

153. Tomasi, J. PCM: A Short History of the Method (1981–2001). https://www.dcci.unipi.it/images/varie/PCM_A_short_history.pdf (accessed 2025-03-04).Search in Google Scholar

154. Karelson, M. M.; Katritzky, A. R.; Zerner, M. C. Reaction Field Effects on the Electron Distribution and Chemical Reactivity of Molecules. Int. J. Quantum Chem. 1986, 30, 521–527; https://doi.org/10.1002/qua.560300745.Search in Google Scholar

155. Mikkelsen, K. V.; Dalgaard, E.; Swanstroem, P. Electron-transfer Reactions in Solution: An Ab Initio Approach. J. Phys. Chem. 1987, 91, 3081–3092; https://doi.org/10.1021/j100295a088.Search in Google Scholar

156. Karlström, G. New Approach to the Modeling of Dielectric Media Effects in Ab Initio Quantum Chemical Calculations. J. Phys. Chem. 1988, 92, 1315–1318; https://doi.org/10.1021/j100316a060.Search in Google Scholar

157. van Duijnen, P. T.; Juffer, A. H.; Dijkman, H. P. Quantum Chemistry in the Condensed Phase: An Extended Direct Reaction Field Approach. J. Mol. Struct.: THEOCHEM 1992, 260, 195–205; https://doi.org/10.1016/0166-1280(92)87043-y.Search in Google Scholar

158. Chipman, D. M. Reaction Field Treatment of Charge Penetration. J. Chem. Phys. 2000, 112, 5558–5565; https://doi.org/10.1063/1.481133.Search in Google Scholar

159. Cramer, C. J.; Truhlar, D. G. General Parameterized SCF Model for Free Energies of Solvation in Aqueous Solution. J. Am. Chem. Soc. 1991, 113, 8305–8311; https://doi.org/10.1021/ja00022a017.Search in Google Scholar

160. Klamt, A. The COSMO and COSMO-RS Solvation Models. WIRes Comput. Mol. Sci. 2011, 1, 699–709; https://doi.org/10.1002/wcms.56.Search in Google Scholar

161. Klamt, A. COSMO-RS for Aqueous Solvation and Interfaces. Fluid Phase Equilib. 2016, 407, 152–158; https://doi.org/10.1016/j.fluid.2015.05.027.Search in Google Scholar

162. Cramer, C. J.; Truhlar, D. G. A Universal Approach to Solvation Modeling. Acc. Chem. Res. 2008, 41, 760–768; https://doi.org/10.1021/ar800019z.Search in Google Scholar PubMed

163. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396; https://doi.org/10.1021/jp810292n.Search in Google Scholar PubMed

164. Martínez, J. M.; Pappalardo, R. R.; Sánchez Marcos, E.; Mennucci, B.; Tomasi, J. Analysis of the Opposite Solvent Effects Caused by Different Solute Cavities on the Metal−Water Distance of Monoatomic Cation Hydrates. J. Phys. Chem. B 2002, 106, 1118–1123; https://doi.org/10.1021/jp012404z.Search in Google Scholar

165. Curutchet, C.; Cramer, C. J.; Truhlar, D. G.; Ruiz-López, M. F.; Rinaldi, D.; Orozco, M.; Luque, F. J. Electrostatic Component of Solvation: Comparison of SCRF Continuum Models. J. Comput. Chem. 2003, 24, 284–297; https://doi.org/10.1002/jcc.10143.Search in Google Scholar PubMed

166. Terryn, B.; Barriol, J. Calcul des Grandeurs et Coefficients Liés à la Forme d’une Molécule Définie à Partir des Rayons de van der Waals des Atomes. Cas Particulier du Volume Moléculaire. J. Chim. Phys. 1981, 78, 207–212; https://doi.org/10.1051/jcp/1981780207.Search in Google Scholar

167. Curutchet, C.; Orozco, M.; Luque, F. J. Solvation in Octanol: Parametrization of the Continuum MST Model. J. Comput. Chem. 2001, 22, 1180–1193; https://doi.org/10.1002/jcc.1076.abs.Search in Google Scholar

168. Barone, V.; Cossi, M.; Tomasi, J. A New Definition of Cavities for the Computation of Solvation Free Energies by the Polarizable Continuum Model. J. Chem. Phys. 1997, 107, 3210–3221; https://doi.org/10.1063/1.474671.Search in Google Scholar

169. Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999–3093; https://doi.org/10.1021/cr9904009.Search in Google Scholar PubMed

170. Tomasi, J. Thirty Years of Continuum Solvation Chemistry: A Review, and Prospects for the Near Future. Theoret. Chem. Acc. 2004, 112, 184–203; https://doi.org/10.1007/s00214-004-0582-3.Search in Google Scholar

171. Tomasi, J.; Persico, M. Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent. Chem. Rev. 1994, 94, 2027–2094; https://doi.org/10.1021/cr00031a013.Search in Google Scholar

172. Tomasi, J.; Cancès, E.; Pomelli, C. S.; Caricato, M.; Scalmani, G.; Frisch, M. J.; Cammi, R.; Basilevsky, M. V.; Chuev, G. N.; Mennucci, B. Modern Theories of Continuum Models. In Continuum Solvation Models in Chemical Physics; John Wiley & Sons Ltd: Chichester, 2007; pp 1–123.10.1002/9780470515235.ch1Search in Google Scholar

173. Cramer, C. J.; Truhlar, D. G. Continuum Solvation Models: Classical and Quantum Implementations. In Reviews in Computational Chemistry; Lipkowitz, K. B.; Boyd, D. B., Eds.; VCH Publishers Inc.: New York, Vol. 6, 1995; pp. 1–72.10.1002/9780470125830.ch1Search in Google Scholar

174. Cramer, C. J.; Truhlar, D. G. Implicit Solvation Models: Equilibria, Structure, Spectra, and Dynamics. Chem. Rev. 1999, 99, 2161–2200; https://doi.org/10.1021/cr960149m.Search in Google Scholar PubMed

175. Cramer, C. J.; Truhlar, D. G. Continuum Solvation Models. In Solvent Effects and Chemical Reactivity; Tapia, O.; Bertrán, J., Eds.; Springer Netherlands: Dordrecht, 2002; pp. 1–80.10.1007/0-306-46931-6_1Search in Google Scholar

176. Mennucci, B. Continuum Solvation Models: What Else Can We Learn from Them? J. Phys. Chem. Lett. 2010, 1, 1666–1674; https://doi.org/10.1021/jz100506s.Search in Google Scholar

177. Rivail, J. L.; Terryn, B.; Rinaldi, D.; Ruiz-López, M. F. Liquid State Quantum Chemistry : A Cavity Model. J. Mol. Struct.: THEOCHEM 1985, 120, 387–400; https://doi.org/10.1016/0166-1280(85)85133-2.Search in Google Scholar

178. Sánchez Marcos, E.; Pappalardo, R. R.; Rinaldi, D. Effects of the Solvent Reaction Field on the Geometrical Structures of Hexahydrate Metallic Cations. J. Phys. Chem. 1991, 95, 8928–8932; https://doi.org/10.1021/j100175a091.Search in Google Scholar

179. Martínez, J. M.; Pappalardo, R. R.; Sánchez Marcos, E. First-Principles Ion−Water Interaction Potentials for Highly Charged Monatomic Cations. Computer Simulations of Al3+, Mg2+, and Be2+ in Water. J. Am. Chem. Soc. 1999, 121, 3175–3184; https://doi.org/10.1021/ja9830748.Search in Google Scholar

180. Alemán, C.; Maseras, F.; Lledós, A.; Duran, M.; Bertrán, J. Analysis of Solvent Effect on SN2 Reactions by Different Theoretical Models. J. Phys. Org. Chem. 1989, 2, 611–622; https://doi.org/10.1002/poc.610020804.Search in Google Scholar

181. Tuñón, I.; Silla, E.; Bertrán, J. Proton Solvation in Liquid Water: An Ab Initio Study Using the Continuum Model. J. Phys. Chem. 1993, 97, 5547–5552; https://doi.org/10.1021/j100123a016.Search in Google Scholar

182. Tuñón, I.; Rinaldi, D.; Ruiz-López, M. F.; Rivail, J. L. Hydroxide Ion in Liquid Water: Structure, Energetics, and Proton Transfer Using a Mixed Discrete-continuum Ab Initio Model. J. Phys. Chem. 1995, 99, 3798–3805; https://doi.org/10.1021/j100011a056.Search in Google Scholar

183. Floris, F.; Persico, M.; Tani, A.; Tomasi, J. Free Energies and Structures of Hydrated Cations, Based on Effective Pair Potentials. Chem. Phys. 1995, 195, 207–220; https://doi.org/10.1016/0301-0104(95)00094-5.Search in Google Scholar

184. Grimm, A. R.; Bacskay, G. B.; Haymet, A. D. J. Quantum Chemical Studies of the Solvation of the Hydroxide Ion. Mol. Phys. 1995, 86, 369–384; https://doi.org/10.1080/00268979500102081.Search in Google Scholar

185. Pliego, J. R.; Riveros, J. M. The Cluster-continuum Model for the Calculation of the Solvation Free Energy of Ionic Species. J. Phys. Chem. A 2001, 105, 7241–7247; https://doi.org/10.1021/jp004192w.Search in Google Scholar

186. Pliego, J. R.; Riveros, J. M. Theoretical Calculation of pKa Using the Cluster−Continuum Model. J. Phys. Chem. A 2002, 106, 7434–7439; https://doi.org/10.1021/jp025928n.Search in Google Scholar

187. Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. Adding Explicit Solvent Molecules to Continuum Solvent Calculations for the Calculation of Aqueous Acid Dissociation Constants. J. Phys. Chem. A 2006, 110, 2493–2499; https://doi.org/10.1021/jp055336f.Search in Google Scholar PubMed PubMed Central

188. Warshel, A.; Karplus, M. Calculation of Ground and Excited State Potential Surfaces of Conjugated Molecules. I. Formulation and Parametrization. J. Am. Chem. Soc. 1972, 94, 5612–5625; https://doi.org/10.1021/ja00771a014.Search in Google Scholar

189. Warshel, A.; Levitt, M. Theoretical Studies of Enzymic Reactions : Dielectric, Electrostatic and Steric Stabilization of the Carbonium Ion in the Reaction of Lysozyme. J. Mol. Biol. 1976, 103, 227–249; https://doi.org/10.1016/0022-2836(76)90311-9.Search in Google Scholar PubMed

190. Warshel, A. Calculations of Chemical Processes in Solutions. J. Phys. Chem. 1979, 83, 1640–1652; https://doi.org/10.1021/j100475a014.Search in Google Scholar

191. Warshel, A.; King, G. Polarization Constraints in Molecular Dynamics Simulation of Aqueous Solutions: The Surface Constraint All Atom Solvent (SCAAS) Model. Chem. Phys. Lett. 1985, 121, 124–129; https://doi.org/10.1016/0009-2614(85)87168-2.Search in Google Scholar

192. Warshel, A.; Weiss, R. M. An Empirical Valence Bond Approach for Comparing Reactions in Solutions and in Enzymes. J. Am. Chem. Soc. 1980, 102, 6218–6226; https://doi.org/10.1021/ja00540a008.Search in Google Scholar

193. Kamerlin, S. C. L.; Warshel, A. The Empirical Valence Bond Model: Theory and Applications. WIRes Comput. Mol. Sci. 2011, 1, 30–45; https://doi.org/10.1002/wcms.10.Search in Google Scholar

194. Warshel, A. Dynamics of Reactions in Polar Solvents. Semiclassical Trajectory Studies of Electron-transfer and Proton-transfer Reactions. J. Phys. Chem. 1982, 86, 2218–2224; https://doi.org/10.1021/j100209a016.Search in Google Scholar

195. Åqvist, J.; Warshel, A. Simulation of Enzyme Reactions Using Valence Bond Force Fields and Other Hybrid Quantum/classical Approaches. Chem. Rev. 1993, 93, 2523–2544; https://doi.org/10.1021/cr00023a010.Search in Google Scholar

196. Warshel, A. Nobel Lecture: Multiscale Modeling of Biological Functions: From Enzymes to Molecular Machines. https://www.nobelprize.org/uploads/2018/06/warshel-lecture.pdf (accessed 2025-03-17).Search in Google Scholar

197. Jorgensen, W. L. Energy Profiles for Organic Reactions in Solution. Adv. Chem. Phys. 2009, 70, 469–488; https://doi.org/10.1002/9780470122693.ch10.Search in Google Scholar

198. Jorgensen, W. L. Free Energy Calculations: A Breakthrough for Modeling Organic Chemistry in Solution. Acc. Chem. Res. 1989, 22, 184–189; https://doi.org/10.1021/ar00161a004.Search in Google Scholar

199. Jorgensen, W. L.; Chandrashekar, J.; Madura, J. D.; Impey, W. R.; Klein, M. L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935.10.1063/1.445869Search in Google Scholar

200. Jorgensen, W. L.; Madura, J. D.; Swenson, C. J. Optimized Intermolecular Potential Functions for Liquid Hydrocarbons. J. Am. Chem. Soc. 1984, 106, 6638–6646; https://doi.org/10.1021/ja00334a030.Search in Google Scholar

201. Jorgensen, W. L. Optimized Intermolecular Potential Functions for Liquid Alcohols. J. Phys. Chem. 1986, 90, 1276–1284; https://doi.org/10.1021/j100398a015.Search in Google Scholar

202. Jorgensen, W. L.; Tirado-Rives, J. The OPLS Potential Functions for Proteins, Energy Minimizations for Crystals of Cyclic Peptides and Crambin. J. Am. Chem. Soc. 1988, 110, 1657–1666; https://doi.org/10.1021/ja00214a001.Search in Google Scholar PubMed

203. Chandrasekhar, J.; Smith, S. F.; Jorgensen, W. L. SN2 Reaction Profiles in the Gas Phase and Aqueous Solution. J. Am. Chem. Soc. 1984, 106, 3049–3050; https://doi.org/10.1021/ja00322a059.Search in Google Scholar

204. Solà, M.; Lledós, A.; Duran, M.; Bertrán, J.; Abboud, J.-L. M. Analysis of Solvent Effects on the Menshutkin Reaction. J. Am. Chem. Soc. 1991, 113, 2873–2879; https://doi.org/10.1021/ja00008a013.Search in Google Scholar

205. Blake, J. F.; Jorgensen, W. L. Solvent Effects on a Diels-Alder Reaction from Computer-simulations. J. Am. Chem. Soc. 1991, 113, 7430–7432; https://doi.org/10.1021/ja00019a055.Search in Google Scholar

206. Severance, D. L.; Jorgensen, W. L. Effects of Hydration on the Claisen Rearrangement of Allyl Vinyl Ether from Computer-simulations. J. Am. Chem. Soc. 1992, 114, 10966–10968; https://doi.org/10.1021/ja00053a046.Search in Google Scholar

207. Hynes, J. T. Chemical-reaction Dynamics in Solution. Annu. Rev. Phys. Chem. 1985, 36, 573–597; https://doi.org/10.1146/annurev.pc.36.100185.003041.Search in Google Scholar

208. Northrup, S. H.; Hynes, J. T. The Stable States Picture of Chemical Reactions. I. Formulation for Rate Constants and Initial Condition Effects. J. Chem. Phys. 1980, 73, 2700–2714; https://doi.org/10.1063/1.440484.Search in Google Scholar

209. Grote, R. F.; Hynes, J. T. The Stable States Picture of Chemical Reactions. II. Rate Constants for Condensed and Gas-phase Reaction Models. J. Chem. Phys. 1980, 73, 2715–2732; https://doi.org/10.1063/1.440485.Search in Google Scholar

210. Bergsma, J. P.; Gertner, B. J.; Wilson, K. R.; Hynes, J. T. Molecular Dynamics of a Model SN2 Reaction in Water. J. Chem. Phys. 1987, 86, 1356–1376; https://doi.org/10.1063/1.452224.Search in Google Scholar

211. Gertner, B. J.; Wilson, K. R.; Zichi, D. A.; Lee, S.; Hynes, J. T. Non-equilibrium Solvation in SN1 and SN2 Reactions in Polar-solvents. Faraday Discuss. 1988, 85, 297–308; https://doi.org/10.1039/dc9888500297.Search in Google Scholar

212. Gertner, B. J.; Wilson, K. R.; Hynes, J. T. Nonequilibrium Solvation Effects on Reaction-rates for Model SN2 Reactions in Water. J. Chem. Phys. 1989, 90, 3537–3558; https://doi.org/10.1063/1.455864.Search in Google Scholar

213. Hynes, J. T. Molecules in Motion: Chemical Reaction and Allied Dynamics in Solution and Elsewhere. Annu. Rev. Phys. Chem. 2015, 66, 1–20; https://doi.org/10.1146/annurev-physchem-040214-121833.Search in Google Scholar PubMed

214. Berkowitz, M.; Karim, O. A.; McCammon, J. A.; Rossky, P. J. Sodium Chloride Ion Pair Interaction in Water: Computer Simulation. Chem. Phys. Lett. 1984, 105, 577–580; https://doi.org/10.1016/0009-2614(84)85660-2.Search in Google Scholar

215. Karim, O. A.; McCammon, J. A. Dynamics of a Sodium Chloride Ion Pair in Water. J. Am. Chem. Soc. 1986, 108, 1762–1766; https://doi.org/10.1021/ja00268a008.Search in Google Scholar

216. Ciccotti, G.; Ferrario, M.; Hynes, J. T.; Kapral, R. Molecular Dynamics Simulation of Ion Association Reactions in a Polar Solvent. J. Chim. Phys. 1988, 85, 925–929; https://doi.org/10.1051/jcp/1988850925.Search in Google Scholar

217. Hwang, J. K.; King, G.; Creighton, S.; Warshel, A. Simulation of Free Energy Relationships and Dynamics of SN2 Reactions in Aqueous Solution. J. Am. Chem. Soc. 1988, 110, 5297–5311; https://doi.org/10.1021/ja00224a011.Search in Google Scholar

218. Gertner, B. J.; Whitnell, R. M.; Wilson, K. R.; Hynes, J. T. Activation to the Transition State: Reactant and Solvent Energy Flow for a Model SN2 Reaction in Water. J. Am. Chem. Soc. 1991, 113, 74–87; https://doi.org/10.1021/ja00001a014.Search in Google Scholar PubMed

219. Borgis, D. C.; Lee, S.; Hynes, J. T. A Dynamical Theory of Nonadiabatic Proton and Hydrogen Atom Transfer Reaction Rates in Solution. Chem. Phys. Lett. 1989, 162, 19–26; https://doi.org/10.1016/0009-2614(89)85059-6.Search in Google Scholar

220. Warshel, A.; Chu, Z. Quantum Corrections for Rate Constants of Diabatic and Adiabatic Reactions in Solutions. J. Chem. Phys. 1990, 93, 4003–4015; https://doi.org/10.1063/1.458785.Search in Google Scholar

221. Nagaoka, M.; Okuno, Y.; Yamabe, T. The Chemical Reaction Molecular Dynamics Method and the Dynamic Transition State: Proton Transfer Reaction in Formamidine and Water Solvent System. J. Am. Chem. Soc. 1991, 113, 769–778; https://doi.org/10.1021/ja00003a007.Search in Google Scholar

222. Borgis, D.; Tarjus, G.; Azzouz, H. An Adiabatic Dynamical Simulation Study of the Zundel Polarization of Strongly H-bonded Complexes in Solution. J. Chem. Phys. 1992, 97, 1390–1400; https://doi.org/10.1063/1.463265.Search in Google Scholar

223. Borgis, D.; Tarjus, G.; Azzouz, H. Solvent-induced Proton Transfer in Strongly H-bonded Complexes: An Adiabatic Dynamical Simulation Study. J. Phys. Chem. 1992, 96, 3188–3191; https://doi.org/10.1021/j100187a003.Search in Google Scholar

224. Whitnell, R. M.; Wilson, K. R. Computational Molecular Dynamics of Chemical Reactions in Solution. In Reviews in Computational Chemistry; Lipkowitz, K. B.; Boyd, D. B., Eds.; VCH Publishers, Inc.: New York, Vol. 4, 1993; pp. 67–148; https://doi.org/10.1002/9780470125816.ch3.Search in Google Scholar

225. Car, R.; Parrinello, M. Unified Approach for Molecular Dynamics and Density-functional Theory. Phys. Rev. Lett. 1985, 55, 2471–2474; https://doi.org/10.1103/physrevlett.55.2471.Search in Google Scholar PubMed

226. Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P. Optimization by Simulated Annealing. Science 1983, 220, 671–680; https://doi.org/10.1126/science.220.4598.671.Search in Google Scholar PubMed

227. Marx, D. An Introduction to Ab Initio Molecular Dynamics Simulations. In Computational Nanoscience: Do It Yourself; Grotendorst, J.; Marx, S. B. D., Eds.; John von Neumann Institute for Computing: Jülich, Vol. 31, 2006; pp. 195–244.Search in Google Scholar

228. Marx, D.; Parrinello, M. Ab Initio Path-integral Molecular Dynamics. Z. Phys. B: Condens. Matter 1994, 95, 143–144; https://doi.org/10.1007/bf01312185.Search in Google Scholar

229. Marx, D.; Parrinello, M. Ab Initio Path Integral Molecular Dynamics: Basic Ideas. J. Chem. Phys. 1996, 104, 4077–4082; https://doi.org/10.1063/1.471221.Search in Google Scholar

230. Tuckerman, M. E.; Marx, D.; Klein, M. L.; Parrinello, M. Efficient and General Algorithms for Path Integral Car–Parrinello Molecular Dynamics. J. Chem. Phys. 1996, 104, 5579–5588; https://doi.org/10.1063/1.471771.Search in Google Scholar

231. Rothlisberger, U. 15 Years of Car-Parrinello Simulations in Physics, Chemistry and Biology. In Computational Chemistry: Reviews of Current Trends; Leszczynski, J., Ed.; World Scientific Publishing Co Pte Ltd: Singapour, Vol. 6, 2001; pp. 33–68; https://doi.org/10.1142/9789812799937_0002.Search in Google Scholar

232. Laasonen, K.; Sprik, M.; Parrinello, M.; Car, R. Ab Initio Liquid Water. J. Chem. Phys. 1993, 99, 9080–9089; https://doi.org/10.1063/1.465574.Search in Google Scholar

233. Tuckerman, M.; Laasonen, K.; Sprik, M.; Parrinello, M. Ab Initio Molecular Dynamics Simulation of the Solvation and Transport of Hydronium and Hydroxyl Ions in Water. J. Chem. Phys. 1995, 103, 150–161; https://doi.org/10.1063/1.469654.Search in Google Scholar

234. Sprik, M.; Hutter, J.; Parrinello, M. Ab Initio Molecular Dynamics Simulation of Liquid Water: Comparison of Three Gradient-corrected Density Functionals. J. Chem. Phys. 1996, 105, 1142–1152; https://doi.org/10.1063/1.471957.Search in Google Scholar

235. Silvestrelli, P. L.; Bernasconi, M.; Parrinello, M. Ab Initio Infrared Spectrum of Liquid Water. Chem. Phys. Lett. 1997, 277, 478–482; https://doi.org/10.1016/s0009-2614(97)00930-5.Search in Google Scholar

236. Trout, B. L.; Parrinello, M. The Dissociation Mechanism of H2O in Water Studied by First-principles Molecular Dynamics. Chem. Phys. Lett. 1998, 288, 343–347; https://doi.org/10.1016/s0009-2614(98)00286-3.Search in Google Scholar

237. Silvestrelli, P. L.; Parrinello, M. Water Molecule Dipole in the gas and in the Liquid Phase. Phys. Rev. Lett. 1999, 82, 3308–3311; https://doi.org/10.1103/physrevlett.82.3308.Search in Google Scholar

238. Silvestrelli, P. L.; Parrinello, M. Structural, Electronic, and Bonding Properties of Liquid Water from First Principles. J. Chem. Phys. 1999, 111, 3572–3580; https://doi.org/10.1063/1.479638.Search in Google Scholar

239. Tuckerman, M. E.; Marx, D.; Klein, M. L.; Parrinello, M. On the Quantum Nature of the Shared Proton in Hydrogen Bonds. Science 1997, 275, 817–820; https://doi.org/10.1126/science.275.5301.817.Search in Google Scholar PubMed

240. Marx, D.; Tuckerman, M. E.; Hutter, J.; Parrinello, M. The Nature of the Hydrated Excess Proton in Water. Nature 1999, 397, 601–604; https://doi.org/10.1038/17579.Search in Google Scholar

241. Marx, D.; Tuckerman, M. E.; Parrinello, M. Solvated Excess Protons in Water: Quantum Effects on the Hydration Structure. J. Phys.: Condens. Matt. 2000, 12, A153–A159; https://doi.org/10.1088/0953-8984/12/8a/317.Search in Google Scholar

242. Sprik, M. Ab Initio Molecular Dynamics Simulation of Liquids and Solutions. J. Phys.: Condens. Matt. 1996, 8, 9405–9409; https://doi.org/10.1088/0953-8984/8/47/036.Search in Google Scholar

243. Curioni, A.; Andreoni, W.; Hutter, J.; Schiffer, H.; Parrinello, M. Density-functional-theory-based Molecular Dynamics Study of 1, 3, 5-trioxane and 1, 3-dioxolane Protolysis. J. Am. Chem. Soc. 1994, 116, 11251–11255; https://doi.org/10.1021/ja00104a006.Search in Google Scholar

244. Curioni, A.; Sprik, M.; Andreoni, W.; Schiffer, H.; Hutter, J.; Parrinello, M. Density Functional Theory-based Molecular Dynamics Simulation of Acid-catalyzed Chemical Reactions in Liquid Trioxane. J. Am. Chem. Soc. 1997, 119, 7218–7229; https://doi.org/10.1021/ja970935o.Search in Google Scholar

245. Meijer, E. J.; Sprik, M. A Density Functional Study of the Addition of Water to SO3 in the Gas Phase and in Aqueous Solution. J. Phys. Chem. A 1998, 102, 2893–2898; https://doi.org/10.1021/jp972146z.Search in Google Scholar

246. Liu, Z.; Siu, C.; John, S. T. Ab Initio Molecular Dynamics Study on the Hydrolysis of Molecular Chlorine. Chem. Phys. Lett. 1999, 311, 93–101.10.1016/S0009-2614(99)00809-XSearch in Google Scholar

247. Doclo, K.; Rothlisberger, U. Conformational Equilibria of Peroxynitrous Acid in Water: A First-Principles Molecular Dynamics Study. J. Phys. Chem. A 2000, 104, 6464–6469; https://doi.org/10.1021/jp0012193.Search in Google Scholar

248. Meijer, E. J.; Sprik, M. Ab Initio Molecular Dynamics Study of the Reaction of Water with Formaldehyde in Sulfuric Acid Solution. J. Am. Chem. Soc. 1998, 120, 6345–6355; https://doi.org/10.1021/ja972935u.Search in Google Scholar

249. Lindan, P.; Harrison, N.; Holender, J.; Gillan, M. First-principles Molecular Dynamics Simulation of Water Dissociation on TiO2 (110). Chem. Phys. Lett. 1996, 261, 246–252; https://doi.org/10.1016/0009-2614(96)00934-7.Search in Google Scholar

250. Boero, M.; Parrinello, M.; Terakura, K. First Principles Molecular Dynamics Study of Ziegler-Natta Heterogeneous Catalysis. J. Am. Chem. Soc. 1998, 120, 2746–2752; https://doi.org/10.1021/ja972367i.Search in Google Scholar

251. Coussens, B. B.; Buda, F.; Oevering, H.; Meier, R. J. Simulations of Ethylene Insertion in the PtII−H Bond of (H)Pt(PX3)2+ Species. Organometallics 1998, 17, 795–801; https://doi.org/10.1021/om970080o.Search in Google Scholar

252. Hass, K. C.; Schneider, W. F.; Curioni, A.; Andreoni, W. The Chemistry of Water on Alumina Surfaces: Reaction Dynamics from First Principles. Science 1998, 282, 265–268; https://doi.org/10.1126/science.282.5387.265.Search in Google Scholar PubMed

253. Zhang, C.; Hu, P.; Alavi, A. A Density Functional Theory Study of CO Oxidation on Ru (0001) at Low Coverage. J. Chem. Phys. 2000, 112, 10564–10570; https://doi.org/10.1063/1.481690.Search in Google Scholar

254. Carloni, P.; Bloechl, P. E.; Parrinello, M. Electronic Structure of the Cu, Zn Superoxide Dismutase Active Site and its Interactions with the Substrate. J. Phys. Chem. 1995, 99, 1338–1348; https://doi.org/10.1021/j100004a039.Search in Google Scholar

255. Rothlisberger, U.; Carloni, P.; Doclo, K.; Parrinello, M. A Comparative Study of Galactose Oxidase and Active Site Analogs Based on QM/MM Car-Parrinello Simulations. J. Biol. Inorg. Chem. 2000, 5, 236–250; https://doi.org/10.1007/s007750050368.Search in Google Scholar PubMed

256. VandeVondele, J.; Rothlisberger, U. Efficient Multidimensional Free Energy Calculations for Ab Initio Molecular Dynamics Using Classical Bias Potentials. J. Chem. Phys. 2000, 113, 4863–4868; https://doi.org/10.1063/1.1289527.Search in Google Scholar

257. Röthlisberger, U.; Sprik, M.; Hutter, J. Time and Length Scales in Ab Initio Molecular Dynamics. In Bridging Time Scales: Molecular Simulations for the Next Decade; Nielaba, P.; Mareschal, M.; Ciccotti, G., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2002; pp. 413–442.10.1007/3-540-45837-9_15Search in Google Scholar

258. Iannuzzi, M.; Laio, A.; Parrinello, M. Efficient Exploration of Reactive Potential Energy Surfaces Using Car-Parrinello Molecular Dynamics. Phys. Rev. Lett. 2003, 90, 238302; https://doi.org/10.1103/physrevlett.90.238302.Search in Google Scholar PubMed

259. Kühne, T. D.; Krack, M.; Mohamed, F. R.; Parrinello, M. Efficient and Accurate Car-Parrinello-like Approach to Born-Oppenheimer Molecular Dynamics. Phys. Rev. Lett. 2007, 98, 066401; https://doi.org/10.1103/physrevlett.98.066401.Search in Google Scholar

260. Lippert, G.; Hutter, J.; Parrinello, M. The Gaussian and Augmented-plane-wave Density Functional Method for Ab Initio Molecular Dynamics Simulations. Theoret. Chem. Acc. 1999, 103, 124–140; https://doi.org/10.1007/s002140050523.Search in Google Scholar

261. Lippert, G.; Hutter, J.; Parrinello, M. A Hybrid Gaussian and Plane Wave Density Functional Scheme. Mol. Phys. 1997, 92, 477–488; https://doi.org/10.1080/00268979709482119.Search in Google Scholar

262. Tuckerman, M. E. Ab Initio Molecular Dynamics: Basic Concepts, Current Trends and Novel Applications. J. Phys.: Condens. Matt. 2002, 14, R1297–R1355; https://doi.org/10.1088/0953-8984/14/50/202.Search in Google Scholar

263. Liu, Y.; Yarne, D. A.; Tuckerman, M. E. Ab Initio Molecular Dynamics Calculations with Simple, Localized, Orthonormal Real-space Basis Sets. Phys. Rev. B 2003, 68, 125110; https://doi.org/10.1103/physrevb.68.125110.Search in Google Scholar

264. Maupin, C. M.; Aradi, B.; Voth, G. A. The Self-consistent Charge Density Functional Tight Binding Method Applied to Liquid Water and the Hydrated Excess Proton: Benchmark Simulations. J. Phys. Chem. B 2010, 114, 6922–6931; https://doi.org/10.1021/jp1010555.Search in Google Scholar PubMed

265. Goyal, P.; Elstner, M.; Cui, Q. Application of the SCC-DFTB Method to Neutral and Protonated Water Clusters and Bulk Water. J. Phys. Chem. B 2011, 115, 6790–6805; https://doi.org/10.1021/jp202259c.Search in Google Scholar PubMed PubMed Central

266. Cuny, J.; Cerda Calatayud, J.; Ansari, N.; Hassanali, A. A.; Rapacioli, M.; Simon, A. Simulation of Liquids with the Tight-Binding Density-Functional Approach and Improved Atomic Charges. J. Phys. Chem. B 2020, 124, 7421–7432; https://doi.org/10.1021/acs.jpcb.0c04167.Search in Google Scholar PubMed

267. Gao, J.; Rossky, P. J. The Age of Direct Chemical Dynamics. Acc. Chem. Res. 2022, 55, 471–472; https://doi.org/10.1021/acs.accounts.2c00021.Search in Google Scholar PubMed

268. Wang, I. S. Y.; Karplus, M. Dyanmics of Organic Reactions. J. Am. Chem. Soc. 1973, 95, 8160–8164; https://doi.org/10.1021/ja00805a033.Search in Google Scholar

269. Leforestier, C. Classical Trajectories Using the Full Ab Initio Potential Energy Surface H-+CH4→CH4+H-. J. Chem. Phys. 1978, 68, 4406–4410; https://doi.org/10.1063/1.435520.Search in Google Scholar

270. Tuckerman, M. E.; Ungar, P. J.; Von Rosenvinge, T.; Klein, M. L. Ab Initio Molecular Dynamics Simulations. J. Phys. Chem. 1996, 100, 12878–12887; https://doi.org/10.1021/jp960480+.10.1021/jp960480+Search in Google Scholar

271. Krack, M.; Parrinello, M. All-electron ab-initio Molecular Dynamics. Phys. Chem. Chem. Phys. 2000, 2, 2105–2112; https://doi.org/10.1039/b001167n.Search in Google Scholar

272. Tse, J. S. Ab Initio Molecular Dynamics with Density Functional Theory. Annu. Rev. Phys. Chem. 2002, 53, 249–290; https://doi.org/10.1146/annurev.physchem.53.090401.105737.Search in Google Scholar PubMed

273. Iftimie, R.; Minary, P.; Tuckerman, M. E. Ab Initio Molecular Dynamics: Concepts, Recent Developments, and Future Trends. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 6654–6659; https://doi.org/10.1073/pnas.0500193102.Search in Google Scholar PubMed PubMed Central

274. Marx, D.; Hutter, J. Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods; Cambridge University Press: Cambridge, 2009.10.1017/CBO9780511609633Search in Google Scholar

275. Paquet, E.; Viktor, H. L. Computational Methods for Ab Initio Molecular Dynamics. Adv. Chem. 2018, 2018, 9839641–14; https://doi.org/10.1155/2018/9839641.Search in Google Scholar

276. Schlegel, H. B. Ab Initio Direct Dynamics. Acc. Chem. Res. 2021, 54, 3749–3759; https://doi.org/10.1021/acs.accounts.1c00390.Search in Google Scholar PubMed

277. Mouvet, F.; Villard, J.; Bolnykh, V.; Rothlisberger, U. Recent Advances in First-Principles Based Molecular Dynamics. Acc. Chem. Res. 2022, 55, 221–230; https://doi.org/10.1021/acs.accounts.1c00503.Search in Google Scholar PubMed

278. Wesolowski, T. A.; Warshel, A. Frozen Density-functional Approach for ab-initio Calculations of Solvated Molecules. J. Phys. Chem. 1993, 97, 8050–8053; https://doi.org/10.1021/j100132a040.Search in Google Scholar

279. Wesolowski, T.; Warshel, A. Ab Initio Free Energy Perturbation Calculations of Solvation Free Energy Using the Frozen Density Functional Approach. J. Phys. Chem. 1994, 98, 5183–5187; https://doi.org/10.1021/j100071a003.Search in Google Scholar

280. Wesolowski, T. A.; Chermette, H.; Weber, J. Accuracy of Approximate Kinetic Energy Functionals in the Model of Kohn-Sham Equations with Constrained Electron Density: The FH Center Dot Center Dot Center Dot NCH Complex as a Test Case. J. Chem. Phys. 1996, 105, 9182–9190; https://doi.org/10.1063/1.472823.Search in Google Scholar

281. Wesolowski, T. A.; Weber, J. Kohn-Sham Equations with Constrained Electron Density: An Iterative Evaluation of the Ground-state Electron Density of Interacting Molecules. Chem. Phys. Lett. 1996, 248, 71–76; https://doi.org/10.1016/0009-2614(95)01281-8.Search in Google Scholar

282. Wesolowski, T. A.; Weber, J. Kohn-Sham Equations with Constrained Electron Density: The Effect of Various Kinetic Energy Functional Parametrizations on the Ground-state Molecular Properties. Int. J. Quantum Chem. 1997, 61, 303–311; https://doi.org/10.1002/(sici)1097-461x(1997)61:2<303::aid-qua13>3.0.co;2-c.10.1002/(SICI)1097-461X(1997)61:2<303::AID-QUA13>3.0.CO;2-CSearch in Google Scholar

283. Yang, W. Direct Calculation of Electron Density in Density-functional Theory: Implementation for Benzene and a Tetrapeptide. Phys. Rev. A 1991, 44, 7823–7826; https://doi.org/10.1103/physreva.44.7823.Search in Google Scholar PubMed

284. Yang, W.; Lee, T.-S. A Density-matrix Divide-and-conquer Approach for Electronic Structure Calculations of Large Molecules. J. Chem. Phys. 1995, 103, 5674–5678; https://doi.org/10.1063/1.470549.Search in Google Scholar

285. York, D. M.; Lee, T.-S.; Yang, W. Parameterization and Efficient Implementation of a Solvent Model for Linear-scaling Semiempirical Quantum Mechanical Calculations of Biological Macromolecules. Chem. Phys. Lett. 1996, 263, 297–304; https://doi.org/10.1016/s0009-2614(96)01198-0.Search in Google Scholar

286. Lee, T. S.; York, D. M.; Yang, W. Linear‐scaling Semiempirical Quantum Calculations for Macromolecules. J. Chem. Phys. 1996, 105, 2744–2750; https://doi.org/10.1063/1.472136.Search in Google Scholar

287. Dixon, S. L.; Merz, Jr, K. M. Semiempirical Molecular Orbital Calculations with Linear System Size Scaling. J. Chem. Phys. 1996, 104, 6643–6649; https://doi.org/10.1063/1.471382.Search in Google Scholar

288. Dixon, S. L.; Merz, K. M. J. The Divide and Conquer Methodology Applied to Emiempirical SCF MO Calculations. In Encyclopedia of Computational Chemistry; Schleyer, P. V. R., Ed.; Wiley: Baffins Lane: Chichester, UK, Vol. 1, 1998; pp. 762–776.Search in Google Scholar

289. Gogonea, V.; Westerhoff, L. M.; Merz, K. M.Jr Quantum Mechanical/quantum Mechanical Methods. I. A Divide and Conquer Strategy for Solving the Schrödinger Equation for Large Molecular Systems Using a Composite Density Functional–semiempirical Hamiltonian. J. Chem. Phys. 2000, 113, 5604–5613; https://doi.org/10.1063/1.1290608.Search in Google Scholar

290. Monard, G.; Bernal-Uruchurtu, M. I.; Van Der Vaart, A.; Merz Jr, K. M.; Ruiz-López, M. F. Simulation of Liquid Water Using Semiempirical Hamiltonians and the Divide and Conquer Approach. J. Phys. Chem. A 2005, 109, 3425–3432; https://doi.org/10.1021/jp0459099.Search in Google Scholar PubMed

291. Gadre, S. R.; Shirsat, R. N.; Limaye, A. C. Molecular Tailoring Approach for Simulation of Electrostatic Properties. J. Phys. Chem. 1994, 98, 9165–9169; https://doi.org/10.1021/j100088a013.Search in Google Scholar

292. Sahu, N.; Gadre, S. R. Molecular Tailoring Approach: A Route for Ab Initio Treatment of Large Clusters. Acc. Chem. Res. 2014, 47, 2739–2747; https://doi.org/10.1021/ar500079b.Search in Google Scholar PubMed

293. Kitaura, K.; Ikeo, E.; Asada, T.; Nakano, T.; Uebayasi, M. Fragment Molecular Orbital Method: An Approximate Computational Method for Large Molecules. Chem. Phys. Lett. 1999, 313, 701–706; https://doi.org/10.1016/s0009-2614(99)00874-x.Search in Google Scholar

294. Komeiji, Y.; Nakano, T.; Fukuzawa, K.; Ueno, Y.; Inadomi, Y.; Nemoto, T.; Uebayasi, M.; Fedorov, D. G.; Kitaura, K. Fragment Molecular Orbital Method: Application to Molecular Dynamics Simulation, ‘Ab Initio FMO-MD’. Chem. Phys. Lett. 2003, 372, 342–347; https://doi.org/10.1016/s0009-2614(03)00430-5.Search in Google Scholar

295. Komeiji, Y.; Ishikawa, T.; Mochizuki, Y.; Yamataka, H.; Nakano, T. Fragment Molecular Orbital Method-Based Molecular Dynamics (FMO-MD) as a Simulator for Chemical Reactions in Explicit Solvation. J. Comput. Chem. 2009, 30, 40–50; https://doi.org/10.1002/jcc.21025.Search in Google Scholar PubMed

296. Walker, P. D.; Mezey, P. G. Molecular Electron Density Lego Approach to Molecule Building. J. Am. Chem. Soc. 1993, 115, 12423–12430; https://doi.org/10.1021/ja00079a025.Search in Google Scholar

297. Exner, T. E.; Mezey, P. G. Ab Initio Quality Properties for Macromolecules Using the ADMA Approach. J. Comput. Chem. 2003, 24, 1980–1986; https://doi.org/10.1002/jcc.10340.Search in Google Scholar PubMed

298. Macetti, G.; Wieduwilt, E. K.; Assfeld, X.; Genoni, A. Localized Molecular Orbital-Based Embedding Scheme for Correlated Methods. J. Chem. Theor. Comput. 2020, 16, 3578–3596; https://doi.org/10.1021/acs.jctc.0c00084.Search in Google Scholar PubMed

299. Meyer, B.; Guillot, B.; Ruiz-López, M. F.; Genoni, A. Libraries of Extremely Localized Molecular Orbitals. 1. Model Molecules Approximation and Molecular Orbitals Transferability. J. Chem. Theor. Comput. 2016, 12, 1052–1067.10.1021/acs.jctc.5b01007Search in Google Scholar

300. Singh, U. C.; Kollman, P. A. A Combined Ab Initio Quantum Mechanical and Molecular Mechanical Method for Carrying Out Simulations on Complex Molecular Systems : Applications to the CH3Cl + Cl- Exchange Reaction and Gas Phase Protonation and Polyethers. J. Comput. Chem. 1986, 7, 718–730; https://doi.org/10.1002/jcc.540070604.Search in Google Scholar

301. Bash, P. A.; Field, M. J.; Karplus, M. Free Energy Perturbation Method for Chemical Reactions in the Condensed Phase: A Dynamic Approach Based on a Combined Quantum and Molecular Mechanics Potential. J. Am. Chem. Soc. 1987, 109, 8092–8094; https://doi.org/10.1021/ja00260a028.Search in Google Scholar

302. Field, M. J.; Bash, P. A.; Karplus, M. A Combined Quantum Mechanical and Molecular Mechanical Potential for Molecular Dynamics Simulations. J. Comput. Chem. 1990, 11, 700–733; https://doi.org/10.1002/jcc.540110605.Search in Google Scholar

303. Ford, G. P.; Wang, B. New Approach to the Rapid Semiempirical Calculation of Molecular Electrostatic Potentials Based on the am1 Wave Function: Comparison with Ab Initio HF/6-31g* Results. J. Comput. Chem. 1993, 14, 1101–1111; https://doi.org/10.1002/jcc.540140911.Search in Google Scholar

304. Luque, F.; Orozco, M. Reliability of the AM1 Wavefunction to Compute Molecular Electrostatic Potentials. Chem. Phys. Lett. 1990, 168, 269–275; https://doi.org/10.1016/0009-2614(90)85609-g.Search in Google Scholar

305. Bakowies, D.; Thiel, W. Semiempirical Treatment of Electrostatic Potentials and Partial Charges in Combined Quantum Mechanical and Molecular Mechanical Approaches. J. Comp. Chem. 1996, 17, 87–108; https://doi.org/10.1002/(sici)1096-987x(19960115)17:1<87::aid-jcc8>3.3.co;2-t.10.1002/(SICI)1096-987X(19960115)17:1<87::AID-JCC8>3.3.CO;2-TSearch in Google Scholar

306. Luque, F. J.; Reuter, N.; Cartier, A.; Ruiz-López, M. F. Calibration of the Quantum/classical Hamiltonian in Semiempirical QM/MM AM1 and PM3 Methods. J. Phys. Chem. A 2000, 104, 10923–10931; https://doi.org/10.1021/jp001974g.Search in Google Scholar

307. Tapia, O.; Colonna, F.; Angyan, J. Generalized Self-consistent Reaction Field Theory in a Multicenter-multipole ab-initio LCGO Framework. I. Electronic Properties of the Water Molecule in a Monte Carlo Sample of Liquid Water Molecules Studied with Standard Basis Sets. J. Chim. Phys. 1990, 87, 875–903; https://doi.org/10.1051/jcp/1990870875.Search in Google Scholar

308. Gao, J.; Xia, X. A Priori Evaluation of Aqueous Polarization Effects Through Monte Carlo QM-MM Simulations. Science 1992, 258, 631–635; https://doi.org/10.1126/science.1411573.Search in Google Scholar PubMed

309. Gao, J. Potential of Mean Force for the Isomerization of DMF in Aqueous Solution: A Monte Carlo QM/MM Simulation Study. J. Am. Chem. Soc. 1993, 115, 2930–2935; https://doi.org/10.1021/ja00060a047.Search in Google Scholar

310. Gao, J. Absolute Free Energy of Solvation from Monte Carlo Simulations Using Combined Quantum and Molecular Mechanical Potentials. J. Phys. Chem. 1992, 96, 537–540; https://doi.org/10.1021/j100181a009.Search in Google Scholar

311. Gao, J.; Xia, X. A Two-dimensional Energy Surface fr a Type II SN2 Reaction in Aqueous Solution. J. Am. Chem. Soc. 1993, 115, 9667–9675; https://doi.org/10.1021/ja00074a036.Search in Google Scholar

312. Vasilyev, V. V.; Bliznyuk, A. A.; Voityuk, A. A. A Combined Quantum Chemical/molecular Mechanical Study of Hydrogen-bonded Systems. Int. J. Quantum Chem. 1992, 44, 897–930; https://doi.org/10.1002/qua.560440517.Search in Google Scholar

313. Bash, P. A.; Ho, L. L.; MacKerell, A. D.; Levine, D.; Hallstrom, P. Progress Toward Chemical Accuracy in the Computer Simulation of Condensed Phase Reactions. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 3698–3703; https://doi.org/10.1073/pnas.93.8.3698.Search in Google Scholar PubMed PubMed Central

314. Bakowies, D.; Thiel, W. Hybrid Models for Combined Quantum Mechanical and Molecular Mechanical Approaches. J. Phys. Chem. 1996, 100, 10580–10594; https://doi.org/10.1021/jp9536514.Search in Google Scholar

315. Thompson, M. A. QM/MMpol: A Consistent Model for Solute/solvent Polarization. Application to the Aqueous Solvation and Spectroscopy of Formaldehyde, Acetaldehyde, and Acetone. J. Phys. Chem. 1996, 100, 14492–14507; https://doi.org/10.1021/jp960690m.Search in Google Scholar

316. Field, M. J. Hybrid Quantum Mechanical/molecular Mechanical Fluctuating Charge Models for Condensed Phase Simulations. Mol. Phys. 1997, 91, 835–845; https://doi.org/10.1080/00268979709482774.Search in Google Scholar

317. Cummins, P. L.; Gready, J. E. Coupled Semiempirical Molecular Orbital and Molecular Mechanics Model (QM/MM) for Organic Molecules in Aqueous Solution. J. Comp. Chem. 1997, 18, 1496–1512; https://doi.org/10.1002/(sici)1096-987x(199709)18:12<1496::aid-jcc7>3.0.co;2-e.10.1002/(SICI)1096-987X(199709)18:12<1496::AID-JCC7>3.0.CO;2-ESearch in Google Scholar

318. Li, G. S.; Martins-Costa, M. T. C.; Millot, C.; Ruiz-Lopez, M. F. AM1/TIP3P Molecular Dynamics Simulation of Imidazole Proton-relay Processes in Aqueous Solution. Chem. Phys. Lett. 1998, 297, 38–44; https://doi.org/10.1016/s0009-2614(98)01128-2.Search in Google Scholar

319. Muller, R. P.; Warshel, A. Ab Initio Calculations of Free Energy Barriers for Chemical Reactions in Solution. J. Phys. Chem. 1995, 99, 17516–17254; https://doi.org/10.1021/j100049a009.Search in Google Scholar

320. Stanton, R. V.; Hartsough, D. S.; Merz, K. M. Calculation of Solvation Free Energies Using a Density Functional/molecular Dynamics Coupled Potential. J. Phys. Chem. 1993, 97, 11868–11870; https://doi.org/10.1021/j100148a005.Search in Google Scholar

321. Stanton, R. V.; Hartsough, D. S.; Merz, K. M. An Examination of a Density Functional/molecular Mechanical Coupled Potential. J. Comp. Chem. 1995, 16, 113–128; https://doi.org/10.1002/jcc.540160110.Search in Google Scholar

322. Stanton, R. V.; Little, L. R.; Merz, K. M. An Examination of a Hartree-Fock/molecular Mechanical Coupled Potential. J. Phys. Chem. 1995, 99, 17344–17348; https://doi.org/10.1021/j100048a006.Search in Google Scholar

323. Tuñón, I.; Martins-Costa, M. T. C.; Millot, C.; Ruiz-López, M. F. A Hybrid Density Functional-Classical Molecular Dynamics Simulation of a Water Molecule in Liquid Water. J. Mol. Mod. 1995, 1, 196–201; https://doi.org/10.1007/s008940050016.Search in Google Scholar

324. Tuñón, I.; Martins-Costa, M. T. C.; Millot, C.; Ruiz-López, M. F. Coupled Density Functional/molecular Mechanics Monte Carlo Simulations of Ions in Water. The Bromide Ion. Chem. Phys. Lett. 1995, 241, 450–456; https://doi.org/10.1016/0009-2614(95)00615-b.Search in Google Scholar

325. Tuñón, I.; Martins-Costa, M. T. C.; Millot, C.; Ruiz-López, M. F.; Rivail, J. L. A Coupled Density Functional-molecular Mechanics Monte Carlo Simulation Method: The Water Molecule in Liquid Water. J. Comp. Chem. 1996, 17, 19–29; https://doi.org/10.1002/(sici)1096-987x(19960115)17:1<19::aid-jcc2>3.0.co;2-3.10.1002/(SICI)1096-987X(19960115)17:1<19::AID-JCC2>3.3.CO;2-BSearch in Google Scholar

326. Tuñón, I.; Martins-Costa, M. T. C.; Millot, C.; Ruiz-López, M. F. Molecular Dynamics Simulations of Elementary Chemical Processes in Liquid Water Using Combined Density Functional and Molecular Mechanics Potentials. I. Proton Transfer in Strongly H-bonded Complexes. J. Chem. Phys. 1997, 106, 3633–3642; https://doi.org/10.1063/1.473457.Search in Google Scholar

327. Strnad, M.; Martins-Costa, M. T. C.; Millot, C.; Tuñón, I.; Ruiz-López, M. F.; Rivail, J. L. Molecular Dynamics Simulations of Elementary Chemical Processes in Liquid Water Using Combined Density Functional and Molecular Mechanics Potentials. II. Charge Separation Processes. J. Chem. Phys. 1997, 106, 3643–3657; https://doi.org/10.1063/1.473458.Search in Google Scholar

328. Freindorf, M.; Gao, J. Optimization of the Lennard-Jones Parameters for a Combined Ab Initio Quantum Mechanical and Molecular Mechanical Potential Using the 3-21G Basis Set. J. Comp. Chem. 1996, 17, 386–395; https://doi.org/10.1002/(sici)1096-987x(199603)17:4<386::aid-jcc1>3.0.co;2-q.10.1002/(SICI)1096-987X(199603)17:4<386::AID-JCC1>3.0.CO;2-QSearch in Google Scholar

329. Lyne, P. D.; Hodoscek, M.; Karplus, M. A Hybrid QM-MM Potential Employing Hartree-Fock or Density Functional Methods in the Quantum Region. J. Phys. Chem. A 1999, 103, 3462–3471; https://doi.org/10.1021/jp982115j.Search in Google Scholar

330. Amara, P.; Volbeda, A.; Fontecilla-Camps, J. C.; Field, M. J. A Hybrid Density Functional Theory/Molecular Mechanics Study of Nickel−Iron Hydrogenase: Investigation of the Active Site Redox States. J. Am. Chem. Soc. 1999, 121, 4468–4477; https://doi.org/10.1021/ja983971b.Search in Google Scholar

331. Wei, D.; Salahub, D. R. A Combined Density Functional and Molecular Dynamics Simulation of a Quantum Water Molecule in Aqueous Solution. Chem. Phys. Lett. 1994, 224, 291–296; https://doi.org/10.1016/0009-2614(94)00540-0.Search in Google Scholar

332. Anderson, J. B. Predicting Rare Events in Molecular Dynamics. Adv. Chem. Phys. 1995, 91, 381–431; https://doi.org/10.1002/9780470141502.ch5.Search in Google Scholar

333. Martin, M. E.; Aguilar, M. A.; Chalmet, S.; Ruiz-López, M. F. An Iterative Procedure to Determine Lennard-Jones Parameters for their Use in Quantum Mechanics/Molecular Mechanics Liquid State Simulations. Chem. Phys. 2002, 284, 607–614; https://doi.org/10.1016/s0301-0104(02)00785-1.Search in Google Scholar

334. Surján, P.; Ángyán, J. G. The Reliability of the Point Charge Model Representing Intermolecular Effects in Ab Initio Calculations. Chem. Phys. Lett. 1994, 225, 258–264; https://doi.org/10.1016/0009-2614(94)00636-9.Search in Google Scholar

335. Chalmet, S.; Ruiz-López, M. F. New Approaches to the Description of Short-range Repulsion Interactions in Hybrid Quantum/classical Systems. Chem. Phys. Lett. 2000, 329, 154–159.10.1016/S0009-2614(00)00992-1Search in Google Scholar

336. Théry, V.; Rinaldi, D.; Rivail, J.-L.; Maigret, B.; Ferenczy, G. G. Quantum Mechanical Computations on Very Large Molecular Systems: The Local Self-consistent Field Method. J. Comp. Chem. 1994, 15, 269–282; https://doi.org/10.1002/jcc.540150303.Search in Google Scholar

337. Assfeld, X.; Rivail, J.-L. Quantum Chemical Computations on Parts of Large Molecules: The Ab Initio Local Self Consistent Field Method. Chem. Phys. Lett. 1996, 263, 100–106; https://doi.org/10.1016/s0009-2614(96)01165-7.Search in Google Scholar

338. Gao, J.; Amara, P.; Alhambra, C.; Field, M. J. A Generalized Hybrid Orbital (GHO) Method for the Treatment of Boundary Atoms in Combined QM/MM Calculations. J. Phys. Chem. A 1998, 102, 4714–4721; https://doi.org/10.1021/jp9809890.Search in Google Scholar

339. Amara, P.; Field, M. J.; Alhambra, C.; Gao, J. The Generalized Hybrid Orbital Method for Combined Quantum Mechanical/molecular Mechanical Calculations: Formulation and Tests of the Analytical Derivatives. Theoret. Chem. Acc. 2000, 104, 336–343; https://doi.org/10.1007/s002140000153.Search in Google Scholar

340. Ruiz-López, M. F.; Rivail, J. L. Combined Quantum Mechanics and Molecular Mechanics Approaches to Chemical and Biochemical Reactivity. In Encyclopedia of Computational Chemistry; Schleyer, P. V. R., Ed.; Wiley: New York, Vol. 1, 1998; pp 437–448.10.1002/0470845015.cca028Search in Google Scholar

341. Thole, B. T.; van Duijnen, P. T. On the Quantum Mechanical Treatment of Solvent Effects. Theor. Chim. Acta 1980, 55, 307–318; https://doi.org/10.1007/bf00549429.Search in Google Scholar

342. De Vries, A. H.; Van Duijnen, P. T.; Juffer, A. H.; Rullmann, J. A. C.; Dijkman, J. P.; Merenga, H.; Thole, B. T. Implementation of Reaction Field Methods in Quantum Chemistry Computer Codes. J. Comp. Chem. 1995, 16, 37–55; https://doi.org/10.1002/jcc.540161113.Search in Google Scholar

343. Van Duijnen, P. T.; de Vries, A. H. Direct Reaction Field Force Field: A Consistent Way to Connect and Combine Quantum-chemical and Classical Descriptions of Molecules. Int. J. Quantum Chem. 1996, 60, 1111–1132; https://doi.org/10.1002/(sici)1097-461x(1996)60:6<1111::aid-qua2>3.0.co;2-2.10.1002/(SICI)1097-461X(1996)60:6<1111::AID-QUA2>3.0.CO;2-2Search in Google Scholar

344. Martins-Costa, M. T. C.; Ruiz-López, M. F. Reaching Multi-Nanosecond Timescales in Combined QM/MM Molecular Dynamics Simulations Through Parallel Horsetail Sampling. J. Comput. Chem. 2017, 38, 659–668; https://doi.org/10.1002/jcc.24723.Search in Google Scholar PubMed

345. Martins-Costa, M. T. C.; Ruiz-López, M. F. Highly Accurate Computation of Free Energies in Complex Systems Through Horsetail QM/MM Molecular Dynamics Combined with Free-energy Perturbation Theory. Theoret. Chem. Acc. 2017, 136, 50.10.1007/s00214-017-2078-ySearch in Google Scholar

346. Chandler, D.; Andersen, H. C. Optimized Cluster Expansions for Classical Fluids. II. Theory of Molecular Liquids. J. Chem. Phys. 1972, 57, 1930–1937; https://doi.org/10.1063/1.1678513.Search in Google Scholar

347. Ten-no, S.; Hirata, F.; Kato, S. A Hybrid Approach for the Solvent Effect on the Electronic Structure of a Solute Based on the RISM and Hartree-Fock Equations. Chem. Phys. Lett. 1993, 214, 391–396; https://doi.org/10.1016/0009-2614(93)85655-8.Search in Google Scholar

348. Maw, S.; Sato, H.; Ten-no, S.; Hirata, F. Ab Initio Study of Water: Self-consistent Determination of Electronic Structure and Liquid State Properties. Chem. Phys. Lett. 1997, 276, 20–25; https://doi.org/10.1016/s0009-2614(97)88029-3.Search in Google Scholar

349. Naka, K.; Sato, H.; Morita, A.; Hirata, F.; Kato, S. RISM-SCF Study of the Free-energy Profile of the Menshutkin-type Reaction NH3+CH3Cl→NH3CH3++Cl− in Aqueous Solution. Theoret. Chem. Acc. 1999, 102, 165–169; https://doi.org/10.1007/s002140050487.Search in Google Scholar

350. Sato, H. A Modern Solvation Theory: Quantum Chemistry and Statistical Chemistry. Phys. Chem. Chem. Phys. 2013, 15, 7450–7465; https://doi.org/10.1039/c3cp50247c.Search in Google Scholar PubMed

351. Sánchez, M. L.; Aguilar, M. A.; Olivares del Valle, F. J. Study of Solvent Effects by Means of Averaged Solvent Electrostatic Potentials Obtained from Molecular Dynamics Data. J. Comput. Chem. 1997, 18, 313–322; https://doi.org/10.1002/(sici)1096-987x(199702)18:3<313::aid-jcc2>3.0.co;2-x.10.1002/(SICI)1096-987X(199702)18:3<313::AID-JCC2>3.3.CO;2-0Search in Google Scholar

352. Sánchez, M. L.; Martín, M. E.; Aguilar, M. A.; Olivares del Valle, F. J. Solvent Effects on the 1(n,p*) Transition of Formaldehyde in Liquid Water. A QM/MM Study Using the Mean Field Approximation. Chem. Phys. Lett. 1999, 310, 195–200.10.1016/S0009-2614(99)00735-6Search in Google Scholar

353. Muñoz-Losa, A.; Fdez-Galván, I.; Martín, M. E.; Aguilar, M. A. Theoretical Study of Liquid Hydrogen Fluoride. Application of the Averaged Solvent Electrostatic Potential/Molecular Dynamics Method. J. Phys. Chem. B 2003, 107, 5043–5047; https://doi.org/10.1021/jp022422w.Search in Google Scholar

354. Coutinho, K.; Georg, H. C.; Fonseca, T. L.; Ludwig, V.; Canuto, S. An Efficient Statistically Converged Average Configuration for Solvent Effects. Chem. Phys. Lett. 2007, 437, 148–152; https://doi.org/10.1016/j.cplett.2007.02.012.Search in Google Scholar

355. Coutinho, K.; Rivelino, R.; Georg, H. C.; Canuto, S. The Sequential QM/MM Method and its Applications to Solvent Effects in Electronic and Structural Properties of Solutes. In Solvation Effects on Molecules and Biomolecules; Canuto, S., Ed.; Springer: Dordrecht, 2008; pp. 159–189.10.1007/978-1-4020-8270-2_7Search in Google Scholar

356. Fdez Galván, I.; Martín, M. E.; Aguilar, M. A. A New Method to Locate Saddle Points for Reactions in Solution by Using the Free‐energy Gradient Method and the Mean Field Approximation. J. Comput. Chem. 2004, 25, 1227–1233; https://doi.org/10.1002/jcc.20048.Search in Google Scholar PubMed

357. Georg, H. C.; Canuto, S. Electronic Properties of Water in Liquid Environment. A Sequential QM/MM Study Using the Free Energy Gradient Method. J. Phys. Chem. B 2012, 116, 11247–11254; https://doi.org/10.1021/jp304201b.Search in Google Scholar PubMed

358. Okuyama‐Yoshida, N.; Nagaoka, M.; Yamabe, T. Transition‐state Optimization on Free Energy Surface: Toward Solution Chemical Reaction Ergodography. Int. J. Quantum Chem. 1998, 70, 95–103; https://doi.org/10.1002/(sici)1097-461x(1998)70:1<95::aid-qua7>3.0.co;2-0.10.1002/(SICI)1097-461X(1998)70:1<95::AID-QUA7>3.0.CO;2-0Search in Google Scholar

359. Okuyama-Yoshida, N.; Kataoka, K.; Nagaoka, M.; Yamabe, T. Structure Optimization Via Free Energy Gradient Method: Application to Glycine Zwitterion in Aqueous Solution. J. Chem. Phys. 2000, 113, 3519–3524; https://doi.org/10.1063/1.1287785.Search in Google Scholar

360. Kitamura, Y.; Takenaka, N.; Koyano, Y.; Nagaoka, M. Free Energy Gradient Method and its Recent Related Developments: Free Energy Optimization and Vibrational Frequency Analysis in Solution. In Quantum Modeling of Complex Molecular Systems; Rivail, J.-L.; Ruiz-López, M.; Assfeld, X., Eds.; Springer: Cham Heidelberg New York Dordrecht London, Vol. 21, 2015; pp. 219–252; https://doi.org/10.1007/978-3-319-21626-3_8.Search in Google Scholar

361. Bistafa, C.; Kitamura, Y.; Martins-Costa, M. T. C.; Nagaoka, M.; Ruiz-López, M. F. A Cost-Effective Method for Free-Energy Minimization in Complex Systems with Elaborated Ab Initio Potentials. J. Chem. Theor. Comp. 2018, 14, 3262–3271; https://doi.org/10.1021/acs.jctc.8b00271.Search in Google Scholar PubMed

362. Bistafa, C.; Kitamura, Y.; Martins-Costa, M. T. C.; Nagaoka, M.; Ruiz-López, M. F. Vibrational Spectroscopy in Solution Through Perturbative Ab Initio Molecular Dynamics Simulations. J. Chem. Theor. Comput. 2019, 15, 4615–4622; https://doi.org/10.1021/acs.jctc.9b00362.Search in Google Scholar PubMed

363. Chalmet, S.; Rinaldi, D.; Ruiz-López, M. F. A QM/MM/Continuum Model for Computations in Solution: Comparison with QM/MM Molecular Dynamics Simulations. Int. J. Quantum Chem. 2001, 84, 559–564.10.1002/qua.1410Search in Google Scholar

364. Cui, Q. Combining Implicit Solvation Models with Hybrid Quantum Mechanical/molecular Mechanical Methods: A Critical Test with Glycine. J. Chem. Phys. 2002, 117, 4720–4728; https://doi.org/10.1063/1.1499481.Search in Google Scholar

365. Woo, T. K.; Margl, P. M.; Blöchl, P. E.; Ziegler, T. A Combined Car−Parrinello QM/MM Implementation for Ab Initio Molecular Dynamics Simulations of Extended Systems: Application to Transition Metal Catalysis. J. Phys. Chem. B 1997, 101, 7877–7880; https://doi.org/10.1021/jp9717296.Search in Google Scholar

366. Woo, T. K.; Blöchl, P. E.; Ziegler, T. Towards Solvation Simulations with a Combined Ab Initio Molecular Dynamics and Molecular Mechanics Approach. J. Mol. Struct.: THEOCHEM 2000, 506, 313–334.10.1016/S0166-1280(00)00424-3Search in Google Scholar

367. Eichinger, M.; Tavan, P.; Hutter, J.; Parrinello, M. A Hybrid Method for Solutes in Complex Solvents : Density Functional Theory Combined with Empirical Force Fields. J. Chem. Phys. 1999, 110, 10452–10466; https://doi.org/10.1063/1.479049.Search in Google Scholar

368. Laio, A.; VandeVondele, J.; Rothlisberger, U. A Hamiltonian Electrostatic Coupling Scheme for Hybrid Car–Parrinello Molecular Dynamics Simulations. J. Chem. Phys. 2002, 116, 6941–6947; https://doi.org/10.1063/1.1462041.Search in Google Scholar

369. Laio, A.; VandeVondele, J.; Rothlisberger, U. D-RESP: Dynamically Generated Electrostatic Potential Derived Charges from Quantum Mechanics/molecular Mechanics Simulations. J. Phys. Chem. B 2002, 106, 7300–7307; https://doi.org/10.1021/jp0143138.Search in Google Scholar

370. Colombo, M. C.; Guidoni, L.; Laio, A.; Magistrato, A.; Maurer, P.; Piana, S.; Röhrig, U.; Spiegel, K.; Sulpizi, M.; VandeVondele, J.; Zumstein, M.; Röthlisberger, U. Hybrid QM/MM Car-Parrinello Simulations of Catalytic and Enzymatic Reactions. Chimia 2002, 56, 13–19. https://doi.org/10.2533/000942902777680865.Search in Google Scholar

371. Rothlisberger, U.; Carloni, P.; Doclo, K.; Parrinello, M. A Comparative Study of Galactose Oxidase and Active Site Analogs Based on QM/MM Car Parrinello Simulations. J. Biol. Inorg. Chem. 2000, 5, 236–250; https://doi.org/10.1007/s007750050368.Search in Google Scholar PubMed

372. Guidoni, L.; Maurer, P.; Piana, S.; Rothlisberger, U. Hybrid Car-Parrinello/molecular Mechanics Modelling of Transition Metal Complexes: Structure, Dynamics and Reactivity. Quant. Struct.-Act. Relat. 2002, 21, 119–127; https://doi.org/10.1002/1521-3838(200207)21:2<119::aid-qsar119>3.0.co;2-b.10.1002/1521-3838(200207)21:2<119::AID-QSAR119>3.0.CO;2-BSearch in Google Scholar

373. Moret, M. E.; Tavernelli, I.; Rothlisberger, U. Combined QM/MM and Classical Molecular Dynamics Study of Ru(bpy)32+ in Water. J. Phys. Chem. B 2009, 113, 7737–7744; https://doi.org/10.1021/jp900147r.Search in Google Scholar PubMed

374. Liberatore, E.; Meli, R.; Rothlisberger, U. A Versatile Multiple Time Step Scheme for Efficient Ab Initio Molecular Dynamics Simulations. J. Chem. Theor. Comput. 2018, 14, 2834–2842; https://doi.org/10.1021/acs.jctc.7b01189.Search in Google Scholar PubMed

375. Humbel, S.; Sieber, S.; Morokuma, K. The IMOMO Method: Integration of Different Levels of Molecular Orbital Approximations for Geometry Optimization of Large Systems: Test for n-butane Conformation and SN2 Reaction: RCl+Cl-. J. Chem. Phys. 1996, 105, 1959–1967; https://doi.org/10.1063/1.472065.Search in Google Scholar

376. Matsubara, T.; Maseras, F.; Koga, N.; Morokuma, K. Application of the New ‘‘integrated MO+MM’’ (IMOMM) Method to the Organometallic Reaction Pt(PR3)2+H2 (R=H, Me, t-Bu, and Ph). J. Phys. Chem. 1996, 100, 2573–2580; https://doi.org/10.1021/jp951762x.Search in Google Scholar

377. Matsubara, T.; Sieber, S.; Morokuma, K. A Test of the New ‘‘integrated MO+MM’’ (IMOMM) Method for the Conformational Energy of Ethane and n-butane. Int. J. Quantum Chem. 1996, 60, 1101–1109; https://doi.org/10.1002/(sici)1097-461x(1996)60:6<1101::aid-qua1>3.0.co;2-3.10.1002/(SICI)1097-461X(1996)60:6<1101::AID-QUA1>3.0.CO;2-3Search in Google Scholar

378. Svensson, M.; Humbel, S.; Froese, R. D. J.; Matsubara, T.; Sieber, S.; Morokuma, K. ONIOM: A Multilayered Integrated MO+MM Method for Geometry Optimizations and Single Point Energy Predictions. A Test for Diels-Alder Reactions and Pt(P(t-Bu)3)2+H2 Oxidative Addition. J. Phys. Chem. 1996, 100, 19357–19363; https://doi.org/10.1021/jp962071j.Search in Google Scholar

379. Svensson, M.; Humbel, S.; Morokuma, K. Energetics Using the Single Point IMOMO (integrated Molecular Orbital Plus Molecular Orbital) Calculations: Choices of Computational Levels and Model System. J. Chem. Phys. 1996, 105, 3654–3661; https://doi.org/10.1063/1.472235.Search in Google Scholar

380. Svensson, M.; Matsubara, T.; Morokuma, K. Theoretical Study of Pd(II)- and Ni(II)-catalyzed Alternating Copolymerization of Carbon Monoxide with Ethylene. Organometallics 1996, 15, 5568–5576; https://doi.org/10.1021/om960535u.Search in Google Scholar

381. Maseras, F.; Morokuma, K. IMOMM: A New Integrated Ab Initio + Molecular Mechanics Geometry Optimization Scheme of Equilibrium Structures and Transition States. J. Comp. Chem. 1995, 16, 1170–1179; https://doi.org/10.1002/jcc.540160911.Search in Google Scholar

382. Chung, L. W.; Sameera, W. M. C.; Ramozzi, R.; Page, A. J.; Hatanaka, M.; Petrova, G. P.; Harris, T. V.; Li, X.; Ke, Z.; Liu, F.; Li, H.-B.; Ding, L.; Morokuma, K. The ONIOM Method and Its Applications. Chem. Rev. 2015, 115, 5678–5796. https://doi.org/10.1021/cr5004419.Search in Google Scholar PubMed

383. Woo, T. K.; Cavallo, L.; Ziegler, T. Implementation of the IMOMM Methodology for Performing Combined QM/MM Molecular Dynamics Simulations and Frequency Calculations. Theoret. Chem. Acc. 1998, 100, 307–313; https://doi.org/10.1007/s002140050391.Search in Google Scholar

384. Rega, N.; Iyengar, S. S.; Voth, G. A.; Schlegel, H. B.; Vreven, T.; Frisch, M. J. Hybrid Ab-Initio/Empirical Molecular Dynamics: Combining the ONIOM Scheme with the Atom-Centered Density Matrix Propagation (ADMP) Approach. J. Phys. Chem. B 2004, 108, 4210–4220; https://doi.org/10.1021/jp0370829.Search in Google Scholar

385. Rega, N.; Iyengar, S. S.; Voth, G. A.; Schlegel, H. B.; Vreven, T.; Frisch, M. J. Hybrid ab-initio/empirical Molecular Dynamics: Combining the ONIOM Scheme with the Atom-centered Density Matrix Propagation (ADMP) Approach. J. Phys. Chem. B 2004, 108, 4210–4220; https://doi.org/10.1021/jp0370829.Search in Google Scholar

386. Matsubara, T.; Dupuis, M.; Aida, M. The ONIOM Molecular Dynamics Method for Biochemical Applications: Cytidine Deaminase. Chem. Phys. Lett. 2007, 437, 138–142; https://doi.org/10.1016/j.cplett.2007.01.085.Search in Google Scholar

387. Sumner, I.; Iyengar, S. S. Combining Quantum Wavepacket Ab Initio Molecular Dynamics with QM/MM and QM/QM Techniques: Implementation Blending ONIOM and Empirical Valence Bond Theory. J. Chem. Phys. 2008, 129, 054109; https://doi.org/10.1063/1.2956496.Search in Google Scholar PubMed

388. Gao, J. Hybrid Quantum and Molecular Mechanical Simulations: An Alternative Avenue to Solvent Effects in Organic Chemistry. Acc. Chem. Res. 1996, 29, 298–305; https://doi.org/10.1021/ar950140r.Search in Google Scholar

389. Gao, J.; Thompson, M. A. Combined Quantum Mechanical and Molecular Mechanical Methods, Vol. 712; ACS Publications: Washington, DC, 1998.10.1021/bk-1998-0712Search in Google Scholar

390. Sherwood, P. Hybrid Quantum Mechanics/molecular Mechanics Approaches. In Modern Methods and Algorithms of Quantum Chemistry; Grotendorst, J., Ed.; NIC-Directors: Jülich, Germany, 2000; pp. 285–305.Search in Google Scholar

391. Lin, H.; Truhlar, D. G. QM/MM: What Have we Learned, Where are we, and Where do we go from Here? Theoret. Chem. Acc. 2007, 117, 185–199; https://doi.org/10.1007/s00214-006-0143-z.Search in Google Scholar

392. Liu, M. Y.; Wang, Y. J.; Chen, Y. K.; Field, M. J.; Gao, J. L. QM/MM Through the 1990s: The First Twenty Years of Method Development and Applications. Isr. J. Chem. 2014, 54, 1250–1263; https://doi.org/10.1002/ijch.201400036.Search in Google Scholar PubMed PubMed Central

393. Rivail, J.-L.; Ruiz-López, M. F.; Assfeld, X. Quantum Modeling of Complex Molecular Systems, Vol. 21; Springer: Cham Heidelberg New York Dordrecht London, 2015.10.1007/978-3-319-21626-3Search in Google Scholar

394. van Duin, A. C.; Dasgupta, S.; Lorant, F.; Goddard, W. A. ReaxFF: A Reactive Force Field for Hydrocarbons. J. Phys. Chem. A 2001, 105, 9396–9409; https://doi.org/10.1021/jp004368u.Search in Google Scholar

395. Leven, I.; Hao, H.; Das, A. K.; Head-Gordon, T. A Reactive Force Field with Coarse-grained Electrons for Liquid Water. J. Phys. Chem. Lett. 2020, 11, 9240–9247; https://doi.org/10.1021/acs.jpclett.0c02516.Search in Google Scholar PubMed

396. van Duin, A. Reactive Force Fields: Concepts of ReaxFF. In Computational Methods in Catalysis and Materials Science: An Introduction for Scientists and Engineers; van Santen, R. A., Sautet, P., Eds.; Wiley‐VCH Verlag GmbH & Co. KGaA: Weinheim, 2009; pp 167–181.10.1002/9783527625482.ch9Search in Google Scholar

397. Hariharan, S.; Kinge, S.; Visscher, L. Modeling Heterogeneous Catalysis Using Quantum Computers: An Academic and Industry Perspective. J. Chem. Inf. Model. 2025, 65, 472–511; https://doi.org/10.1021/acs.jcim.4c01212.Search in Google Scholar PubMed PubMed Central

398. Ruiz-López, M. F.; Francisco, J. S.; Martins-Costa, M. T. C.; Anglada, J. M. Molecular Reactions at Aqueous Interfaces. Nat. Rev. Chem. 2020, 4, 459–475; https://doi.org/10.1038/s41570-020-0203-2.Search in Google Scholar PubMed

399. Qiu, L.; Cooks, R. G. Spontaneous Oxidation in Aqueous Microdroplets: Water Radical Cation as Primary Oxidizing Agent. Angew. Chem. Int. Ed. 2024, 136, e202400118; https://doi.org/10.1002/anie.202400118.Search in Google Scholar PubMed

400. Mofidfar, M.; Mehrgardi, M. A.; Zare, R. N. Water Microdroplets Surrounded by Alcohol Vapor Cause Spontaneous Oxidation of Alcohols to Organic Peroxides. J. Am. Chem. Soc. 2024, 146, 18498–18503; https://doi.org/10.1021/jacs.4c04092.Search in Google Scholar PubMed

401. Winterton, N. The Green Solvent: A Critical Perspective. Clean Technol. Environ. Policy 2021, 23, 2499–2522; https://doi.org/10.1007/s10098-021-02188-8.Search in Google Scholar PubMed PubMed Central

402. Comptes Rendus. Chimie. Special Issue “French Network on Solvation (GDR 2035 SolvATE)”; F. Ingrosso, Ed. https://comptes-rendus.academie-sciences.fr/chimie/item/CRCHIM_2024__27_S5/ (accessed 2025-04-02).Search in Google Scholar

403. Kirchner, B. Theory of Complicated Liquids: Investigation of Liquids, Solvents and Solvent Effects with Modern Theoretical Methods. Phys. Rep. 2007, 440, 1–111; https://doi.org/10.1016/j.physrep.2006.11.005.Search in Google Scholar

404. Kirchner, B. Ionic Liquids from Theoretical Investigations. In Ionic Liquids; Kirchner, B., Ed.; Springer: Berlin, Heidelberg, Vol. 290, 2009; pp. 213–262; https://doi.org/10.1007/128_2008_36.Search in Google Scholar PubMed

405. Bernales, V. S.; Marenich, A. V.; Contreras, R.; Cramer, C. J.; Truhlar, D. G. Quantum Mechanical Continuum Solvation Models for Ionic Liquids. J. Phys. Chem. B 2012, 116, 9122–9129; https://doi.org/10.1021/jp304365v.Search in Google Scholar PubMed

406. Zahn, S.; Kirchner, B.; Mollenhauer, D. Charge Spreading in Deep Eutectic Solvents. ChemPhysChem 2016, 17, 3354–3358; https://doi.org/10.1002/cphc.201600348.Search in Google Scholar PubMed

407. Ingrosso, F.; Ruiz-Lopez, M. F. Modeling Solvation in Supercritical CO2. ChemPhysChem 2017, 18, 2560–2572; https://doi.org/10.1002/cphc.201700434.Search in Google Scholar PubMed

408. Perkin, S.; Kirchner, B.; Fayer, M. D. Preface: Special Topic on Chemical Physics of Ionic Liquids. J. Chem. Phys. 2018, 148, 193501; https://doi.org/10.1063/1.5039492.Search in Google Scholar PubMed

409. Glossman-Mitnik, D.; Maciejewska, M. Solvents, Ionic Liquids and Solvent Effects; IntechOpen: London, 2020.10.5772/intechopen.82039Search in Google Scholar

410. Botu, V.; Ramprasad, R. Adaptive Machine Learning Framework to Accelerate Ab Initio Molecular Dynamics. Int. J. Quantum Chem. 2015, 115, 1074–1083; https://doi.org/10.1002/qua.24836.Search in Google Scholar

411. Behler, J.; Parrinello, M. Generalized Neural-network Representation of High-dimensional Potential-energy Surfaces. Phys. Rev. Lett. 2007, 98, 146401; https://doi.org/10.1103/physrevlett.98.146401.Search in Google Scholar PubMed

412. Gastegger, M.; Behler, J.; Marquetand, P. Machine Learning Molecular Dynamics for the Simulation of Infrared Spectra. Chem. Sci. 2017, 8, 6924–6935; https://doi.org/10.1039/c7sc02267k.Search in Google Scholar PubMed PubMed Central

413. Shen, L.; Yang, W. Molecular Dynamics Simulations with Quantum Mechanics/Molecular Mechanics and Adaptive Neural Networks. J. Chem. Theor. Comput. 2018, 14, 1442–1455; https://doi.org/10.1021/acs.jctc.7b01195.Search in Google Scholar PubMed PubMed Central

414. Unke, O. T.; Chmiela, S.; Sauceda, H. E.; Gastegger, M.; Poltavsky, I.; Schutt, K. T.; Tkatchenko, A.; Müller, K.-R. Machine Learning Force Fields. Chem. Rev. 2021, 121, 10142–10186; https://doi.org/10.1021/acs.chemrev.0c01111.Search in Google Scholar PubMed PubMed Central

415. Zeng, J.; Zhang, D.; Lu, D.; Mo, P.; Li, Z.; Chen, Y.; Rynik, M.; Huang, L. a.; Li, Z.; Shi, S.; Wang, Y.; Ye, H.; Tuo, P.; Yang, J.; Ding, Y.; Li, Y.; Tisi, D.; Zeng, Q.; Bao, H.; Xia, Y.; Huang, J.; Muraoka, K.; Wang, Y.; Chang, J.; Yuan, F.; Bore, S. L.; Cai, C.; Lin, Y.; Wang, B.; Xu, J.; Zhu, J.-X.; Luo, C.; Zhang, Y.; Goodall, R. E. A.; Liang, W.; Singh, A. K.; Yao, S.; Zhang, J.; Wentzcovitch, R.; Han, J.; Liu, J.; Jia, W.; York, D. M.; E, W.; Car, R.; Zhang, L.; Wang, H. DeePMD-kit v2: A Software Package for Deep Potential Models. J. Chem. Phys. 2023, 159, 054801. https://doi.org/10.1063/5.0155600.Search in Google Scholar PubMed PubMed Central

416. Gomez, A.; de la Puente, M.; David, R.; Laage, D. Neural Network Potentials for Exploring Condensed Phase Chemical Reactivity. CR Chim. 2024, 27, 1–17. In press; https://doi.org/10.5802/crchim.315.Search in Google Scholar

417. Shao, Y. H.; Gan, Z. T.; Epifanovsky, E.; Gilbert, A. T. B.; Wormit, M.; Kussmann, J.; Lange, A. W.; Behn, A.; Deng, J.; Feng, X. T.; Ghosh, D.; Goldey, M.; Horn, P. R.; Jacobson, L. D.; Kaliman, I.; Khaliullin, R. Z.; Kus, T.; Landau, A.; Liu, J.; Proynov, E. I.; Rhee, Y. M.; Richard, R. M.; Rohrdanz, M. A.; Steele, R. P.; Sundstrom, E. J.; Woodcock, H. L.; Zimmerman, P. M.; Zuev, D.; Albrecht, B.; Alguire, E.; Austin, B.; Beran, G. J. O.; Bernard, Y. A.; Berquist, E.; Brandhorst, K.; Bravaya, K. B.; Brown, S. T.; Casanova, D.; Chang, C. M.; Chen, Y. Q.; Chien, S. H.; Closser, K. D.; Crittenden, D. L.; Diedenhofen, M.; DiStasio, R. A.; Do, H.; Dutoi, A. D.; Edgar, R. G.; Fatehi, S.; Fusti-Molnar, L.; Ghysels, A.; Golubeva-Zadorozhnaya, A.; Gomes, J.; Hanson-Heine, M. W. D.; Harbach, P. H. P.; Hauser, A. W.; Hohenstein, E. G.; Holden, Z. C.; Jagau, T. C.; Ji, H. J.; Kaduk, B.; Khistyaev, K.; Kim, J.; Kim, J.; King, R. A.; Klunzinger, P.; Kosenkov, D.; Kowalczyk, T.; Krauter, C. M.; Lao, K. U.; Laurent, A. D.; Lawler, K. V.; Levchenko, S. V.; Lin, C. Y.; Liu, F.; Livshits, E.; Lochan, R. C.; Luenser, A.; Manohar, P.; Manzer, S. F.; Mao, S. P.; Mardirossian, N.; Marenich, A. V.; Maurer, S. A.; Mayhall, N. J.; Neuscamman, E.; Oana, C. M.; Olivares-Amaya, R.; O’Neill, D. P.; Parkhill, J. A.; Perrine, T. M.; Peverati, R.; Prociuk, A.; Rehn, D. R.; Rosta, E.; Russ, N. J.; Sharada, S. M.; Sharma, S.; Small, D. W.; Sodt, A.; Stein, T.; Stück, D.; Su, Y. C.; Thom, A. J. W.; Tsuchimochi, T.; Vanovschi, V.; Vogt, L.; Vydrov, O.; Wang, T.; Watson, M. A.; Wenzel, J.; White, A.; Williams, C. F.; Yang, J.; Yeganeh, S.; Yost, S. R.; You, Z. Q.; Zhang, I. Y.; Zhang, X.; Zhao, Y.; Brooks, B. R.; Chan, G. K. L.; Chipman, D. M.; Cramer, C. J.; Goddard, W. A.; Gordon, M. S.; Hehre, W. J.; Klamt, A.; Schaefer, H. F.; Schmidt, M. W.; Sherrill, C. D.; Truhlar, D. G.; Warshel, A.; Xu, X.; Aspuru-Guzik, A.; Baer, R.; Bell, A. T.; Besley, N. A.; Chai, J. D.; Dreuw, A.; Dunietz, B. D.; Furlani, T. R.; Gwaltney, S. R.; Hsu, C. P.; Jung, Y. S.; Kong, J.; Lambrecht, D. S.; Liang, W. Z.; Ochsenfeld, C.; Rassolov, V. A.; Slipchenko, L. V.; Subotnik, J. E.; Van Voorhis, T.; Herbert, J. M.; Krylov, A. I.; Gill, P. M. W.; Head-Gordon, M. Advances in Molecular Quantum Chemistry Contained in the Q-Chem 4 Program Package. Mol. Phys. 2015, 113, 184–215. https://doi.org/10.1080/00268976.2014.952696.Search in Google Scholar

418. Cao, Y. D.; Romero, J.; Olson, J. P.; Degroote, M.; Johnson, P. D.; Kieferová, M.; Kivlichan, I. D.; Menke, T.; Peropadre, B.; Sawaya, N. P. D.; Sim, S.; Veis, L.; Aspuru-Guzik, A. Quantum Chemistry in the Age of Quantum Computing. Chem. Rev. 2019, 119, 10856–10915. https://doi.org/10.1021/acs.chemrev.8b00803.Search in Google Scholar PubMed

419. Motta, M.; Rice, J. E. Emerging Quantum Computing Algorithms for Quantum Chemistry. WIRes Comput. Mol. Sci. 2022, 12, e1580; https://doi.org/10.1002/wcms.1580.Search in Google Scholar

420. Kassal, I.; Whitfield, J. D.; Perdomo-Ortiz, A.; Yung, M.-H.; Aspuru-Guzik, A. Simulating Chemistry Using Quantum Computers. Annu. Rev. Phys. Chem. 2011, 62, 185–207; https://doi.org/10.1146/annurev-physchem-032210-103512.Search in Google Scholar PubMed

421. Castaldo, D.; Jahangiri, S.; Delgado, A.; Corni, S. Quantum Simulation of Molecules in Solution. J. Chem. Theor. Comput. 2022, 18, 7457–7469; https://doi.org/10.1021/acs.jctc.2c00974.Search in Google Scholar PubMed PubMed Central

422. Fedorov, D. A.; Otten, M. J.; Gray, S. K.; Alexeev, Y. Ab Initio Molecular Dynamics on Quantum Computers. J. Chem. Phys. 2021, 154, 164103; https://doi.org/10.1063/5.0046930.Search in Google Scholar PubMed

Received: 2025-04-07
Accepted: 2025-05-06
Published Online: 2025-05-23

© 2025 IUPAC & De Gruyter

Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2025-0476/pdf
Scroll to top button