Home Using topology for understanding your computational results
Article
Licensed
Unlicensed Requires Authentication

Using topology for understanding your computational results

  • Ángel Martín Pendás ORCID logo EMAIL logo and Julia Contreras-García EMAIL logo
Published/Copyright: June 19, 2025

Abstract

The integration of quantum theory (QT) into chemistry has significantly enhanced computational accuracy, yet challenges remain in translating quantum mechanical results into intuitive chemical concepts. Traditional atomic and molecular models, while empirically effective, lack direct representation in Hilbert space, leading to ambiguities in chemical interpretation. Here, we present a summary of topological methods as a bridge between QT and chemical reasoning, focusing on the quantum theory of atoms in molecules (QTAIM) and the electron localization function (ELF). These approaches provide rigorous frameworks for defining atomic and bonding regions, enabling additive decompositions of quantum mechanical observables. By analyzing critical points of the electron density and other scalar fields, we demonstrate how the QTAIM and the ELF offer complementary insights into molecular bonding. As a case study, we examine the electronic structure of carbon suboxide (C3O2), revealing that a combined QTAIM-ELF approach resolves discrepancies between two bonding descriptions.


Corresponding authors: Ángel Martín Pendás, Dept. Química Física y Analítica, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain, e-mail: ; and Julia Contreras-García, Laboratoire de Chimie Théorique, Sorbonne Universite and CNRS, 4 Pl Jussieu F, 75005 Paris, France, e-mail:
Article note: A collection of invited papers to celebrate the UN’s proclamation of 2025 as the International Year of Quantum Science and Technology Special Issue.

Funding source: Emergence-SU

Award Identifier / Grant number: H2Ox S23JR31014

Award Identifier / Grant number: Fisciency S23JRAR060

Award Identifier / Grant number: TcPredictor S22JRAR036

Funding source: MICIU

Award Identifier / Grant number: PID2021-122763NB-I00

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None used.

  5. Conflict of interest: The author states no conflict of interest.

  6. Research funding: JCG thanks ANR TcPredictor S22JRAR036, ANR Fisciency S23JRAR060 and Emergence-SU H2Ox S23JR31014 for funding. AMP thanks grant PID2021-122763NB-I00 funded by the Spanish MICIU (https://dx.doi.org/10.13039/501100011033) and by “ERDF A way of making Europe”, for financial support.

  7. Data availability: All data are contained in the manuscript.

References

1. Dalton, J. A New System of Chemical Philosophy. S. Russell, for R. Bickerstaff: Manchester, 1808.10.5479/sil.324338.39088000885681Search in Google Scholar

2. Lewis, G. N. The Atom and the Molecule. J. Am. Chem. Soc. 1916, 38, 762–785; https://doi.org/10.1021/ja02261a002.Search in Google Scholar

3. Carleo, G.; Troyer, M. Solving the Quantum Many-Body Problem with Artificial Neural Networks. Science 2017, 355 (6325), 602–606; https://doi.org/10.1126/science.aag2302.Search in Google Scholar PubMed

4. Primas, H. Chemistry, Quantum Mechanics and Reductionism. Lecture Notes in Chemistry, 1981 edition; Springer: Berlin, Germany, 2013.10.1007/978-3-662-11314-1Search in Google Scholar

5. Scerri, E.; Fisher, G., Eds. Essays in the Philosophy of Chemistry; Oxford University Press: New York, NY, 2016.10.1093/oso/9780190494599.001.0001Search in Google Scholar

6. Seifert, V. A. The Chemical Bond is a Real Pattern. Philos. Sci. 2022, 90 (2), 269–287; https://doi.org/10.1017/psa.2022.17.Search in Google Scholar

7. Mulliken, R. S. Molecular Orbital Theory and the Electronic Structure of Molecules. Nobel Lect. 1966, 188–212.Search in Google Scholar

8. Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. B 1964, 136, 864–871; https://doi.org/10.1103/physrev.136.b864.Search in Google Scholar

9. Riess, J.; Münch, W. The Theorem of Hohenberg and Kohn for Subdomains of a Quantum System. Theor. Chim. Acta 1981, 58 (4), 295–300; https://doi.org/10.1007/bf02426905.Search in Google Scholar

10. Mezey, P. A. U. L. G. The Holographic Electron Density Theorem and Quantum Similarity Measures. Mol. Phys. 1999, 96 (2), 169–178; https://doi.org/10.1080/00268979909482950.Search in Google Scholar

11. Bader, R. F. W.; Henneker, W. H.; Cade, P. E. Molecular Charge Distributions and Chemical Binding. J. Chem. Phys. 1967, 46, 3341–3363; https://doi.org/10.1063/1.1841222.Search in Google Scholar

12. Martín Pendás, Á.; Contreras-García, J. Topological Approaches to the Chemical Bond; Springer International Publishing: Cham, 2023.10.1007/978-3-031-13666-5Search in Google Scholar

13. Chérif, F. M. Special Issue: Philosophical Aspects and Implications of the Quantum Theory of Atoms in Molecules (Qtaim). Found. Chem. 2013, 15 (3), 245–251; https://doi.org/10.1007/s10698-013-9194-0.Search in Google Scholar

14. Berlin, T. Binding Regions in Diatomic Molecules. J. Chem. Phys. 1950, 19, 208–213; https://doi.org/10.1063/1.1748161.Search in Google Scholar

15. Koch, D.; Pavanello, M.; Shao, X.; Ihara, M.; Ayers, P. W.; Matta, C. F.; Jenkins, S.; Manzhos, S. The Analysis of Electron Densities: From Basics to Emergent Applications. Chem. Rev. 2024, 124 (22), 12661–12737; https://doi.org/10.1021/acs.chemrev.4c00297.Search in Google Scholar PubMed

16. Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Oxford Science Publications: Oxford, UK, 1990.10.1093/oso/9780198551683.001.0001Search in Google Scholar

17. Becke, A. D.; Edgecombe, K. E. A Simple Measure of Electron Localization in Atomic and Molecular Systems. J. Chem. Phys. 1990, 92, 5397–5403; https://doi.org/10.1063/1.458517.Search in Google Scholar

18. Hirsch, M. W.; Smale, S.; Devaney, R. L. Differential Equations, Dynamical Systems, and an Introduction to Chaos, 2nd ed.; Elsevier Academic Press: San Diego, 2004.Search in Google Scholar

19. Coppens, P. Electron Density from X-Ray Diffraction. Annu. Rev. Phys. Chem. 1992, 43, 663–692; https://doi.org/10.1146/annurev.physchem.43.1.663.Search in Google Scholar

20. Kato, W. A. On the Eigenfunctions of Many-Particle Systems in Quantum Mechanics. Commun. Pure Appl. Math. 1957, 10, 151–177; https://doi.org/10.1002/cpa.3160100201.Search in Google Scholar

21. Hoffmann-Ostenhof, M.; Hoffmann-Ostenhof, T. “schrödinger Inequalities” and Asymptotic Behavior of the Electron Density of Atoms and Molecules. Phys. Rev. A 1977, 16 (5), 1782–1785; https://doi.org/10.1103/physreva.16.1782.Search in Google Scholar

22. Keith, T. A. The AIMAll Program, 2015. Avalaible from: http://aim.tkgristmill.com.Search in Google Scholar

23. Menéndez-Herrero, M.; Francisco, E.; Martín Pendás, Á. Linnett is Back: Chemical Bonding through the Lens of Born Maxima. J. Chem. Theory Comput. 2025, 21 (5), 2448–2461; https://doi.org/10.1021/acs.jctc.4c01785.Search in Google Scholar PubMed

24. Bader, R. F. W.; Stephens, M. E. Spatial Localization of the Electronic Pair and Number Distributions in Molecules. J. Am. Chem. Soc. 1975, 97, 7391–7399; https://doi.org/10.1021/ja00859a001.Search in Google Scholar

25. Francisco, E.; Martín Pendás, A.; Blanco, M. A. Edf: Computing Electron Number Probability Distribution Functions in Real Space from Molecular Wave Functions. Comput. Phys. Commun. 2008, 178 (8), 621–634; https://doi.org/10.1016/j.cpc.2007.11.015.Search in Google Scholar

26. Silvi, P. D. B.; Jolly, L. H.; D’Arco, P. Pseudopotential Periodic Hartree-Fock Study of the Cristobalite to Stishovite Phase Transition. Theochem. J. Mol. Struct. 1992, 92, 1–9; https://doi.org/10.1016/0166-1280(92)87031-t.Search in Google Scholar

27. Weizsäcker, C. F. V. Zur theorie der kernmassen. Zeitschrift für Physik 1935, 96 (7–8), 431–458; https://doi.org/10.1007/bf01337700.Search in Google Scholar

28. Kohout, M.; Savin, A. Atomic Shell Structure and Electron Numbers. Int. J. Quantum Chem. 1996, 60, 875–882; https://doi.org/10.1002/(sici)1097-461x(1996)60:4<875::aid-qua10>3.0.co;2-4.10.1002/(SICI)1097-461X(1996)60:4<875::AID-QUA10>3.0.CO;2-4Search in Google Scholar

29. Silvi, B.; Savin, A. Classification of Chemical Bonds Based on Topological Analysis of Electron Localization Functions. Nature 1994, 371, 683–686; https://doi.org/10.1038/371683a0.Search in Google Scholar

30. Silvi, B. The Synaptic Order: A Key Concept to Understand Multicenter Bonding. J. Molec. Struct. 2002, 614, 3–10; https://doi.org/10.1016/s0022-2860(02)00231-4.Search in Google Scholar

31. Gillespie, R. J.; Hargittai, I. The VSEPR Model of Molecular Geometry; Allyn & Bacon: Boston, 1991.Search in Google Scholar

32. Michalski, M.; Gordon, A. J.; Berski, S. Topological Analysis of the Electron Localisation Function (Elf) Applied to the Electronic Structure of Oxaziridine: the Nature of N–O Bond. Struct. Chem. 2019, 30 (6), 2181–2189; https://doi.org/10.1007/s11224-019-01407-9.Search in Google Scholar

33. Diels, O.; Wolf, B. Ueber das kohlensuboxyd. i. Berichte der deutschen chemischen Gesellschaft 1906, 39 (1), 689–697; https://doi.org/10.1002/cber.190603901103.Search in Google Scholar

34. Jensen, P.; Johns, J. W. C. The Infrared Spectrum of Carbon Suboxide in the V6 Fundamental Region: Experimental Observation and Semirigid Bender Analysis. J. Mol. Spectrosc. 1986, 118 (1), 248–266; https://doi.org/10.1016/0022-2852(86)90239-0.Search in Google Scholar

35. Zhao, L.; Chai, C.; Petz, W.; Frenking, G. Carbones and Carbon Atom as Ligands in Transition Metal Complexes. Molecules 2020, 25 (21), 4943; https://doi.org/10.3390/molecules25214943.Search in Google Scholar PubMed PubMed Central


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/pac-2025-0466).


Received: 2025-03-25
Accepted: 2025-05-12
Published Online: 2025-06-19

© 2025 IUPAC & De Gruyter

Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2025-0466/pdf
Scroll to top button