Home Molecular aromaticity: a quantum phenomenon
Article
Licensed
Unlicensed Requires Authentication

Molecular aromaticity: a quantum phenomenon

  • Miquel Solà ORCID logo EMAIL logo and Dariusz W. Szczepanik ORCID logo EMAIL logo
Published/Copyright: April 15, 2025

Abstract

To celebrate the International Year of Quantum Science and Technology (IYQ), we discuss how the concept of aromaticity emerges from the postulates of quantum mechanics. Based on this discussion, we analyze the case of cyclo [18]carbon, a molecule that was characterized for the first time in 2019 in a scanning tunneling microscope. From the very beginning, this molecule was classified as an aromatic molecule. In the present work, we challenge this classification and provide arguments to classify this molecule as a non-aromatic species.


Corresponding authors: Miquel Solà, Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany, 69, 17003-Girona, Catalonia, Spain, e-mail: ; and Dariusz W. Szczepanik, K. Guminski Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Kraków, Poland, e-mail:
Article note: A collection of invited papers to celebrate the UN’s proclamation of 2025 as the International Year of Quantum Science and Technology.

Award Identifier / Grant number: 2021SGR623

Award Identifier / Grant number: ICREA Academia prize 2024 to M.S.

Funding source: Infrastruktura PL-Grid

Award Identifier / Grant number: PLG/2024/017801

Award Identifier / Grant number: PID2023-147424NB-I00

Funding source: Narodowe Centrum Nauki

Award Identifier / Grant number: 2021/42/E/ST4/00332

Acknowledgments

M.S. thanks the financial support from the Agencia Española de Investigación (MCIN/AEI/10.13039/501100011033) for project PID2023-147424NB-I00 and from the Generalitat de Catalunya for Project 2021SGR623 and ICREA Academia prize 2024 to M.S. D.W.S. acknowledges financial support from the National Science Centre, Poland (2021/42/E/ST4/00332) and Polish high-performance computing infrastructure PLGrid (HPC Center: ACK Cyfronet AGH) for providing computer facilities and support within computational grant no. PLG/2024/017801.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Competing interests: The authors state no conflict of interest.

  6. Research funding: Agencia Española de Investigación (MCIN/AEI/10.13039/501100011033) project PID2023- 147424NB-I00 Generalitat de Catalunya Project 2021SGR623 and ICREA Academia prize 2024 to M.S. National Science Centre, Poland Project 2021/42/E/ST4/00332 Polish high-performance computing infrastructure PLGrid Project PLG/2024/017801.

  7. Data availability: The authors confirm that the data supporting the findings of this study are available within the article.

References

1. International Year of Quantum Science and Technology. https://quantum2025.org/ (Accessed 2025-3-8).Search in Google Scholar

2. Balaban, A. T. Is Aromaticity Outmoded? Pure & Appl. Chem. 1980, 52, 1409–1429; https://doi.org/10.1351/pac198052061409.a.Binsch, G. Aromaticity – An exercise in chemical futility? Naturwissenschaften 1973, 60, 369–374; https://doi.org/10.1007/BF00602510.b.Krygowski, T. M.; Cyrański, M. K.; Czarnocki, Z.; Häfelinger, G.; Katritzky, A. R. Aromaticity: a Theoretical Concept of Immense Practical Importance. Tetrahedron 2000, 56, 1783–1796; https://doi.org/10.1016/S0040-4020(99)00979-5.c.Lloyd, D. What is aromaticity? J. Chem. Inf. Comp. Sci. 1996, 36, 442–447; https://doi.org/10.1021/ci950158g.d.Solà, M. Why Aromaticity Is a Suspicious Concept? Why? Front. Chem. 2017, 5, 22; https://doi.org/10.3389/fchem.2017.00022.e.Hoffmann, R. The Many Guises of Aromaticity. Am. Sci. 2015, 103, 18–22; https://doi.org/10.1511/2015.112.18.f.Frenking, G.; Krapp, A. Unicorns in the world of chemical bonding models. J. Comput. Chem. 2007, 28, 15–24; https://doi.org/10.1002/jcc.20543.Search in Google Scholar

3. Solà, M.; Bickelhaupt, F. M. Particle on a Ring Model for Teaching the Origin of the Aromatic Stabilization Energy and the Hückel and Baird Rules. J. Chem. Educ. 2022, 99, 3497–3501; https://doi.org/10.1021/acs.jchemed.2c00523.Search in Google Scholar PubMed PubMed Central

4. Hückel, E. Quanstentheoretische Beiträge zum Benzolproblem II. Quantentheorie der induzierten Polaritäten. Z. Physik 1931, 72, 310–337; https://doi.org/10.1007/BF01341953.a.Hückel, E. Quantentheoretische Beiträge zum Problem der aromatischen und ungesättigten Verbindungen. III. Z. Physik 1932, 76, 628–648; https://doi.org/10.1007/BF01341936.b.Hückel, E. The theory of unsaturated and aromatic compounds. Z. Elektrochemie 1937, 43 (752-788), 827–849; https://doi.org/10.1002/bbpc.19370431016.c.Doering, W. V. E.; Detert, F. L. Cycloheptatrienylium oxide. J. Am. Chem. Soc. 1951, 73, 876–877; https://doi.org/10.1021/ja01146a537.Search in Google Scholar

5. Baird, N. C. Quantum organic photochemistry. II. Resonance and aromaticity in the lowest 3ππ* state of cyclic hydrocarbons. J. Am. Chem. Soc. 1972, 94, 4941–4948; https://doi.org/10.1021/ja00769a025.a.Ottosson, H. Organic photochemistry: Exciting excited-state aromaticity. Nat. Chem. 2012, 4, 969–971; https://doi.org/10.1038/nchem.1518.b.Karas, L. J.; Wu, J. I. Baird’s rules at the tipping point. Nat. Chem. 2022, 14, 723–725; https://doi.org/10.1038/s41557-022-00988-z.Search in Google Scholar

6. Solà, M. Aromaticity rules. Nat. Chem. 2022, 14, 585–590; https://doi.org/10.1038/s41557-022-00961-w.Search in Google Scholar PubMed

7. Chen, Z.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. v. R. Nucleus-Independent Chemical Shifts (NICS) as an Aromaticity Criterion. Chem. Rev. 2005, 105, 3842–3888; https://doi.org/10.1021/cr030088+.10.1021/cr030088+Search in Google Scholar PubMed

8. Solà, M.; Boldyrev, A. I.; Cyrański, M. K.; Krygowski, T. M.; Merino, G. Descriptors of Aromaticity: Energetic Criteria In Aromaticity and Antiaromaticity: Concepts and Applications; Wiley & Sons: Chichester, 2023; pp. 111–130.a.Cyrański, M. K. Energetic Aspects of Cyclic π-electron Delocalization: Evaluation of the Methods of Estimating Aromatic Stabilization Energies. Chem. Rev. 2005, 105, 3773–3811; https://doi.org/10.1021/cr0300845.Search in Google Scholar PubMed

9. Cyrański, M. K.; Schleyer, P. v. R.; Krygowski, T. M.; Jiao, H.; Hohlneicher, G. Facts and artifacts about aromatic stability estimation. Tetrahedron 2003, 59, 1657–1665; https://doi.org/10.1016/S0040-4020(03)00137-6.a.Cyrański, M. K.; Krygowski, T. M.; Katritzky, A. R.; Schleyer, P. v. R. To what extent can aromaticity be defined uniquely? J. Org. Chem. 2002, 67, 1333–1338; https://doi.org/10.1021/jo016255s.Search in Google Scholar

10. Solà, M.; Boldyrev, A. I.; Cyrański, M. K.; Krygowski, T. M.; Merino, G. Descriptors of Aromaticity: Electronic Criteria In Aromaticity and Antiaromaticity: Concepts and Applications; Wiley & Sons: Chichester, 2023; pp. 145–192.10.1002/9781119085928Search in Google Scholar

11. Giambiagi, M.; de Giambiagi, M. S.; Mundim, K. C. Definition of a multicenter bond index. Struct. Chem. 1990, 1, 423–427; https://doi.org/10.1007/BF00671228.Search in Google Scholar

12. Bader, R. F. W.; Streitwieser, A.; Neuhaus, A.; Laidig, K. E.; Speers, P. Electron delocalization and the Fermi hole. J. Am. Chem. Soc. 1996, 118, 4959–4965; https://doi.org/10.1021/ja953563x.a.Fradera, X.; Austen, M. A.; Bader, R. F. W. The Lewis model and beyond. J. Phys. Chem. A 1999, 103, 304–314; https://doi.org/10.1021/jp983362q.b.Fradera, X.; Poater, J.; Simon, S.; Duran, M.; Solà, M. Electron-pairing analysis from localization and delocalization indices in the framework of the atoms-in-molecules theory. Theor. Chem. Acc. 2002, 108, 214–224; https://doi.org/10.1007/s00214-002-0375-5.Search in Google Scholar

13. Bultinck, P.; Ponec, R.; Van Damme, S. Multicenter bond indices as a new measure of aromaticity in polycyclic aromatic hydrocarbons. J. Phys. Org. Chem. 2005, 18, 706–718; https://doi.org/10.1002/poc.922.Search in Google Scholar

14. Savin, A.; Nesper, R.; Wengert, S.; Fassler, T. F. ELF: The electron localization function. Angew. Chem., Int. Ed. Engl. 1997, 36, 1809–1832; https://doi.org/10.1002/anie.199718081.a.Feixas, F.; Matito, E.; Duran, M.; Solà, M.; Silvi, B. Electron Localization Function at the Correlated Level: A Natural Orbital Formulation. J. Chem. Theory Comput. 2010, 6, 2736–2742; https://doi.org/10.1021/ct1003548.b.Poater, J.; Duran, M.; Solà, M.; Silvi, B. Theoretical Evaluation of Electron Delocalization in Aromatic Molecules by Means of Atoms in Molecules (AIM) and Electron Localization Function (ELF) Topological Approaches. Chem. Rev. 2005, 105, 3911–3947; https://doi.org/10.1021/cr030085x.Search in Google Scholar

15. Santos, J. C.; Andres, J.; Aizman, A.; Fuentealba, P. An Aromaticity Scale Based on the Topological Analysis of the Electron Localization Function Including σ and π contributions. J, Chem. Theor. Comput. 2005, 1, 83–86; https://doi.org/10.1021/ct0499276.a.Santos, J. C.; Tiznado, W.; Contreras, R.; Fuentealba, P. Sigma-pi separation of the electron localization function and aromaticity. J. Chem. Phys. 2004, 120, 1670–1673; https://doi.org/10.1063/1.1635799.Search in Google Scholar PubMed

16. Szczepanik, D. W. A new perspective on quantifying electron localization and delocalization in molecular systems. Comput. Theor. Chem. 2016, 1080, 33–37; https://doi.org/10.1016/j.comptc.2016.02.003.a.Szczepanik, D. W.; Andrzejak, M.; Dominikowska, J.; Pawełek, B.; Krygowski, T. M.; Szatylowicz, H.; Solà, M. The electron density of delocalized bonds (EDDB) applied for quantifying aromaticity. Phys. Chem. Chem. Phys. 2017, 19, 28970–28981; https://doi.org/10.1039/C7CP06114E.b.Szczepanik, D. W.; Andrzejak, M.; Dyduch, K.; Żak, E.; Makowski, M.; Mazur, G.; Mrozek, J. A uniform approach to the description of multicenter bonding. Phys. Chem. Chem. Phys. 2014, 16, 20514–20523; https://doi.org/10.1039/C4CP02932A.Search in Google Scholar

17. Poater, J.; Fradera, X.; Duran, M.; Solà, M. The Delocalization Index as an Electronic Aromaticity Criterion. Application to a Series of Planar Polycyclic Aromatic Hydrocarbons. Chem. Eur. J. 2003, 9, 400–406; https://doi.org/10.1002/chem.200390041.Search in Google Scholar PubMed

18. Matito, E.; Duran, M.; Solà, M. The aromatic fluctuation index (FLU): A new aromaticity index based on electron delocalization. J. Chem. Phys. 2005, 122, 014109; https://doi.org/10.1063/1.1824895.a.Matito, E.; Duran, M.; Solà, M. Erratum: “The aromatic fluctuation index (FLU): A new aromaticity index based on electron delocalization”. [J. Chem Phys. 122, 014109 (2005)]. J. Chem. Phys. 2006, 125; https://doi.org/10.1063/1.2222352.b.Matito, E.; Salvador, P.; Duran, M.; Solà, M. Aromaticity Measures from Fuzzy-Atom Bond Orders. The Aromatic Fluctuation (FLU) and the para-Delocalization (PDI) Indexes. J. Phys. Chem. A2006, 110, https://doi.org/10.1021/jp057387i.Search in Google Scholar PubMed

19. Matta, C. F.; Hernández-Trujillo, J. Bonding in Polycyclic Aromatic Hydrocarbons in Terms of the Electron Density and of Electron Delocalization. J. Phys. Chem. A 2003, 107, 7496–7504; https://doi.org/10.1021/jp034952d.a.Matta, C. F.; Hernández-Trujillo, J. Erratum to ′′Bonding in Polycyclic Aromatic Hydrocarbons in Terms of the Electron Density and of Electron Delocalization. J. Phys. Chem. A 2005, 109, 10798; https://doi.org/10.1021/jp055864r.Search in Google Scholar

20. Shanbogh, P. P.; Sundaram, N. G. Fullerenes revisited. Reson. 2015, 20, 123–135; https://doi.org/10.1007/s12045-015-0160-0.Search in Google Scholar

21. Diederich, F.; Rubin, Y.; Knobler, C. B.; Whetten, R. L.; Schriver, K. E.; Houk, K. N.; Li, Y. All-Carbon Molecules: Evidence for the Generation of Cyclo[18]carbon from a Stable Organic Precursor. Science 1989, 245, 1088–1090; https://doi.org/10.1126/science.245.4922.1088.Search in Google Scholar PubMed

22. Diederich, F.; Rubin, Y. Synthetic Approaches toward Molecular and Polymeric Carbon Allotropes. Angew Chem. Int. Ed. Engl. 1992, 31, 1101–1123; https://doi.org/10.1002/anie.199211013.a.Diederich, F.; Kivala, M. All-carbon scaffolds by rational design. Adv. Mater. 2010, 22, 803–812; https://doi.org/10.1002/adma.200902623.b.Anderson, H. L.; Patrick, C. W.; Scriven, L. M.; Woltering, S. L. A. Short History of Cyclocarbons. Bull. Chem. Soc. Jpn. 2020, 94, 798–811; https://doi.org/10.1246/bcsj.20200345.c.Pooja; Yadav, S.; Pawar, R. Chemistry of Cyclo[18]Carbon (C18): A Review. Chem. Rec. 2024, 24, e202400055; https://doi.org/10.1002/tcr.202400055.Search in Google Scholar

23. Parasuk, V.; Almlof, J.; Feyereisen, M. W. The [18] all-carbon molecule: cumulene or polyacetylene? J. Am. Chem. Soc. 1991, 113, 1049–1050; https://doi.org/10.1021/ja00003a052.a.Neiss, C.; Trushin, E.; Görling, A. The Nature of One-Dimensional Carbon: Polyynic versus Cumulenic. ChemPhysChem 2014, 15, 2497–2502; https://doi.org/10.1002/cphc.201402266.b.Hutter, J.; Luethi, H. P.; Diederich, F. Structures and vibrational frequencies of the carbon molecules C2-C18 calculated by density functional theory. J. Am. Chem. Soc. 1994, 116, 750–756; https://doi.org/10.1021/ja00081a041.Search in Google Scholar

24. Torelli, T.; Mitas, L. Electron Correlation in C4N+2 Carbon Rings: Aromatic versus Dimerized Structures. Phys. Rev. Lett. 2000, 85, 1702–1705; https://doi.org/10.1103/PhysRevLett.85.1702.a.Plattner, D. A.; Houk, K. N. C18 Is a Polyyne. J. Am. Chem. Soc. 1995, 117, 4405–4406; https://doi.org/10.1021/ja00120a026.Search in Google Scholar PubMed

25. Arulmozhiraja, S.; Ohno, T. CCSD calculations on C14, C18, and C22 carbon clusters. J. Chem. Phys. 2008, 128, 114301; https://doi.org/10.1063/1.2838200.Search in Google Scholar PubMed

26. Baryshnikov, G. V.; Valiev, R. R.; Nasibullin, R. T.; Sundholm, D.; Kurten, T.; Ågren, H. Aromaticity of Even-Number Cyclo[n]carbons (n = 6–100). J. Phys. Chem. A 2020, 124, 10849–10855; https://doi.org/10.1021/acs.jpca.0c09692.Search in Google Scholar PubMed PubMed Central

27. Stasyuk, A. J.; Stasyuk, O. A.; Solà, M.; Voityuk, A. A. Cyclo[18]carbon: the smallest all-carbon electron acceptor. Chem. Commun. 2020, 56, 352–355; https://doi.org/10.1039/C9CC08399E.a.Stasyuk, A. J.; Stasyuk, O. A.; Solà, M.; Voityuk, A. A. Correction: Cyclo[18]carbon: the smallest all-carbon electron acceptor. Chem. Commun. 2020, 56, 1302; https://doi.org/10.1039/D0CC90021D.Search in Google Scholar PubMed

28. Liu, Z.; Lu, T.; Chen, Q. An sp-hybridized all-carboatomic ring, cyclo[18]carbon: Bonding character, electron delocalization, and aromaticity. Carbon 2020, 165, 468–475; https://doi.org/10.1016/j.carbon.2020.04.099.Search in Google Scholar

29. Kaiser, K.; Scriven, L. M.; Schulz, F.; Gawel, P.; Gross, L.; Anderson, H. L. An sp-hybridized molecular carbon allotrope, cyclo[18]carbon. Science 2019, 365, 1299–1301; https://doi.org/10.1126/science.aay1914.Search in Google Scholar PubMed

30. Baryshnikov, G. V.; Valiev, R. R.; Kuklin, A. V.; Sundholm, D.; Ågren, H. Cyclo[18]carbon: Insight into Electronic Structure, Aromaticity, and Surface Coupling. J. Phys. Chem. Lett. 2019, 10, 6701–6705; https://doi.org/10.1021/acs.jpclett.9b02815.Search in Google Scholar PubMed

31. Dai, C.; Chen, D.; Zhu, J. Achieving Adaptive Aromaticity in Cyclo[10]carbon by Screening Cyclo[n]carbon (n=8−24). Chem.–Asian J. 2020, 15, 2187–2191; https://doi.org/10.1002/asia.202000528.a.Charistos, N. D.; Muñoz-Castro, A. Induced magnetic field in sp-hybridized carbon rings: analysis of double aromaticity and antiaromaticity in cyclo[2N]carbon allotropes. Phys. Chem. Chem. Phys. 2020, 22, 9240–9249; https://doi.org/10.1039/D0CP01252A.b.Fowler, P. W.; Mizoguchi, N.; Bean, D. E.; Havenith, R. W. A. Double Aromaticity and Ring Currents in All-Carbon Rings. Chem. Eur. J. 2009, 15, 6964–6972; https://doi.org/10.1002/chem.200900322.c.Pan, C.; Liu, Z. Intermolecular Interaction, Electronic Structure and Aromaticity of Possible Dimers of Cyclo[18]Carbon (C18). ChemPhysChem 2025, e202400912; https://doi.org/10.1002/cphc.202400912.Search in Google Scholar PubMed

32. Kozáková, S.; Alharzali, N.; Černušák, I. Cyclo[n]carbons and catenanes from different perspectives: disentangling the molecular thread. Phys. Chem. Chem. Phys. 2023, 25, 29386–29403; https://doi.org/10.1039/D3CP03887D.Search in Google Scholar

33. Baranac-Stojanović, M. (Anti)aromaticity of cyclo[2n]carbons (n = 3 – 12). Chem.–Asian J. 2025, e202500295; https://doi.org/10.1002/asia.202500295.Search in Google Scholar PubMed

34. Szczepanik, D. W.; Solà, M.; Andrzejak, M.; Pawelek, B.; Dominikowska, J.; Kukułka, M.; Dyduch, K.; Krygowski, T. M.; Szatylowicz, H. The Role of the Long-Range Exchange Corrections in the Description of Electron Delocalization in Aromatic Species. J. Comput. Chem. 2017, 38, 1640–1654; https://doi.org/10.1002/jcc.24805.Search in Google Scholar PubMed

35. Pereira, Z. S.; da Silva, E. Z. Spontaneous Symmetry Breaking in Cyclo[18]Carbon. J. Phys. Chem. A 2020, 124, 1152–1157; https://doi.org/10.1021/acs.jpca.9b11822.Search in Google Scholar PubMed

36. Jirásek, M.; Rickhaus, M.; Tejerina, L.; Anderson, H. L. Experimental and Theoretical Evidence for Aromatic Stabilization Energy in Large Macrocycles. J. Am. Chem. Soc. 2021, 143, 2403–2412; https://doi.org/10.1021/jacs.0c12845.Search in Google Scholar PubMed

37. Van Nyvel, L.; Alonso, M.; Solà, M. Effect of size, charge, and spin state on Hückel and Baird aromaticity in [N]annulenes. Chem. Sci. 2025, 16, 5613–5622; https://doi.org/10.1039/D4SC08225G.Search in Google Scholar PubMed PubMed Central

38. McNaught, A. D.; Wilkinson, A. The IUPAC compendium of chemical terminology; Blackwell Scientific Publications: Oxford, 1997. Online version (2019-) created by Chalk, S. J. https://doi.org/10.1351/goldbook.A00442/ (accessed 2025-3-8).Search in Google Scholar

Published Online: 2025-04-15

© 2025 IUPAC & De Gruyter

Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2025-0465/pdf
Scroll to top button