Home Exploring reaction dynamics involving post-transition state bifurcations based on quantum mechanical ambimodal transition states
Article
Licensed
Unlicensed Requires Authentication

Exploring reaction dynamics involving post-transition state bifurcations based on quantum mechanical ambimodal transition states

  • Ching Ching Lam ORCID logo and Kendall N. Houk ORCID logo EMAIL logo
Published/Copyright: April 24, 2025

Abstract

Computational methods for predicting product ratios in dynamically controlled reactions with shallow intermediates or bifurcating pathways after an ambimodal transition state are reviewed and benchmarked. The range of methods includes molecular dynamics simulations, machine learning-based models and recent advancements in correlational methods, all of which rely on quantum mechanical computations. Together, these approaches form a computational toolbox that enhances the efficiency and effectiveness of exploring reaction selectivity influenced by dynamic effects.


Corresponding author: Kendall N. Houk, Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095-1569, USA, E-mail:
Article note: A collection of invited papers to celebrate the UN’s proclamation of 2025 as the International Year of Quantum Science and Technology.

Award Identifier / Grant number: CHE-2153972

Funding source: Croucher Foundation

Award Identifier / Grant number: Croucher Postdoctoral Fellowship

Acknowledgments

C.C.L. thanks Croucher Foundation and the Croucher Postdoctoral Fellowship program for the financial support of this project. K.N.H. thanks the National Science Foundation (CHE2153972) for financial support. This work used computational and storage services associated with the Hoffman2 Shared Cluster provided by the UCLA Institute for Digital Research and Education’s Research Technology Group.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission. C. C. Lam performed the research and wrote the paper with the guidance of Prof. K. N. Houk. Prof. K. N. Houk conceptualized and supervised the project.

  4. Use of Large Language Models, AI and Machine Learning Tools: ChatGPT for checking grammar and polishing text.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: Croucher Postdoctoral Fellowship from Croucher Foundation National Science Foundation (CHE-2153972).

  7. Data availability: All the data for this paper is available on GitHub: github.com/chingchinglam71/bifucating_product_ratio_prediction.

References

1. Rehbein, J.; Carpenter, B. K. Do We Fully Understand What Controls Chemical Selectivity? Phys. Chem. Chem. Phys. 2011, 13 (47), 20906–20922. https://doi.org/10.1039/C1CP22565K.Search in Google Scholar PubMed

2. Carpenter, B. K. Intramolecular Dynamics for the Organic Chemist. Acc. Chem. Res. 1992, 25 (11), 520–528. https://doi.org/10.1021/ar00023a006.Search in Google Scholar

3. Newman-Evans, R. H.; Carpenter, B. K. Temperature Dependence of Stereoselectivity as a Criterion for Mechanism. Rearrangement of Bicyclo[2.1.1]Hexene-5-d and Two Phenyl Derivatives. J. Am. Chem. Soc. 1984, 106 (25), 7994–7995. https://doi.org/10.1021/ja00337a070.Search in Google Scholar

4. Ess, D. H.; Wheeler, S. E.; Iafe, R. G.; Xu, L.; Çelebi-Ölçüm, N.; Houk, K. N. Bifurcations on Potential Energy Surfaces of Organic Reactions. Angew. Chem., Int. Ed. 2008, 47 (40), 7592–7601. https://doi.org/10.1002/anie.200800918.Search in Google Scholar PubMed PubMed Central

5. Valtazanos, P.; Elbert, S. T.; Xantheas, S.; Ruedenberg, K. The Ring Opening of Cyclopropylidene to Allene: Global Features of the Reaction Surface. Theor. Chim. Acta 1991, 78 (5), 287–326. https://doi.org/10.1007/BF01112344.Search in Google Scholar

6. Caramella, P.; Quadrelli, P.; Toma, L. An Unexpected Bispericyclic Transition Structure Leading to 4+2 and 2+4 Cycloadducts in the Endo Dimerization of Cyclopentadiene. J. Am. Chem. Soc. 2002, 124 (7), 1130–1131. https://doi.org/10.1021/ja016622h.Search in Google Scholar PubMed

7. Limanto, J.; Khuong, K. S.; Houk, K. N.; Snapper, M. L. Intramolecular Cycloadditions of Cyclobutadiene with Dienes: Experimental and Computational Studies of the Competing (2 + 2) and (4 + 2) Modes of Reaction. J. Am. Chem. Soc. 2003, 125 (52), 16310–16321. https://doi.org/10.1021/ja0380547.Search in Google Scholar PubMed

8. Yamamoto, Y.; Hasegawa, H.; Yamataka, H. Dynamic Path Bifurcation in the Beckmann Reaction: Support from Kinetic Analyses. J. Org. Chem. 2011, 76 (11), 4652–4660. https://doi.org/10.1021/jo200728t.Search in Google Scholar PubMed

9. Bogle, X. S.; Singleton, D. A. Dynamic Origin of the Stereoselectivity of a Nucleophilic Substitution Reaction. Org. Lett. 2012, 14 (10), 2528–2531. https://doi.org/10.1021/ol300817a.Search in Google Scholar PubMed PubMed Central

10. Garayalde, D.; Gómez-Bengoa, E.; Huang, X.; Goeke, A.; Nevado, C. Mechanistic Insights in Gold-Stabilized Nonclassical Carbocations: Gold-Catalyzed Rearrangement of 3-Cyclopropyl Propargylic Acetates. J. Am. Chem. Soc. 2010, 132 (13), 4720–4730. https://doi.org/10.1021/ja909013j.Search in Google Scholar PubMed

11. Hansen, J. H.; Gregg, T. M.; Ovalles, S. R.; Lian, Y.; Autschbach, J.; Davies, H. M. L. On the Mechanism and Selectivity of the Combined C−H Activation/Cope Rearrangement. J. Am. Chem. Soc. 2011, 133 (13), 5076–5085. https://doi.org/10.1021/ja111408v.Search in Google Scholar PubMed

12. Çelebi-Ölçüm, N.; Ess, D. H.; Aviyente, V.; Houk, K. N. Effect of Lewis Acid Catalysts on Diels−Alder and Hetero-Diels−Alder Cycloadditions Sharing a Common Transition State. J. Org. Chem. 2008, 73 (19), 7472–7480. https://doi.org/10.1021/jo801076t.Search in Google Scholar PubMed

13. Quadrelli, P.; Romano, S.; Toma, L.; Caramella, P. A Bispericyclic Transition Structure Allows for Efficient Relief of Antiaromaticity Enhancing Reactivity and Endo Stereoselectivity in the Dimerization of the Fleeting Cyclopentadienone. J. Org. Chem. 2003, 68 (15), 6035–6038. https://doi.org/10.1021/jo034401j.Search in Google Scholar PubMed

14. Quadrelli, P.; Romano, S.; Toma, L.; Caramella, P. Merging and Bifurcation of 4+2 and 2+4 Cycloaddition Modes in the Archetypal Dimerization of Butadiene. A Case of Competing Bispericyclic, Pericyclic and Diradical Paths. Tetrahedron Lett. 2002, 43 (48), 8785–8789. https://doi.org/10.1016/S0040-4039(02)02014-2.Search in Google Scholar

15. Katori, T.; Itoh, S.; Sato, M.; Yamataka, H. Reaction Pathways and Possible Path Bifurcation for the Schmidt Reaction. J. Am. Chem. Soc. 2010, 132 (10), 3413–3422. https://doi.org/10.1021/ja908899u.Search in Google Scholar PubMed

16. Çelebi-Ölçüm, N.; Ess, D. H.; Aviyente, V.; Houk, K. N. Lewis Acid Catalysis Alters the Shapes and Products of Bis-Pericyclic Diels−Alder Transition States. J. Am. Chem. Soc. 2007, 129 (15), 4528–4529. https://doi.org/10.1021/ja070686w.Search in Google Scholar PubMed

17. Hong, Y. J.; Tantillo, D. J. Biosynthetic Consequences of Multiple Sequential Post-Transition-State Bifurcations. Nat. Chem. 2014, 6 (2), 104–111. https://doi.org/10.1038/nchem.1843.Search in Google Scholar PubMed

18. Hong, Y. J.; Tantillo, D. J. A Potential Energy Surface Bifurcation in Terpene Biosynthesis. Nat. Chem. 2009, 1 (5), 384–389. https://doi.org/10.1038/nchem.287.Search in Google Scholar PubMed

19. Hong, Y. J.; Tantillo, D. J. Feasibility of Intramolecular Proton Transfers in Terpene Biosynthesis – Guiding Principles. J. Am. Chem. Soc. 2015, 137 (12), 4134–4140. https://doi.org/10.1021/ja512685x.Search in Google Scholar PubMed

20. Hare, S. R.; Tantillo, D. J. Post-Transition State Bifurcations Gain Momentum – Current State of the Field. Pure Appl. Chem. 2017, 89 (6), 679–698. https://doi.org/10.1515/pac-2017-0104.Search in Google Scholar

21. Tantillo, D. J. Chapter One - Beyond Transition State Theory – Non-Statistical Dynamic Effects for Organic Reactions. In Advances in Physical Organic Chemistry; Williams, I. H., Williams, N. H., Eds.; Academic Press: London, Vol. 55, 2021; pp 1–16.10.1016/bs.apoc.2021.06.001Search in Google Scholar

22. Ess, D. H. Quasiclassical Direct Dynamics Trajectory Simulations of Organometallic Reactions. Acc. Chem. Res. 2021, 54 (23), 4410–4422. https://doi.org/10.1021/acs.accounts.1c00575.Search in Google Scholar PubMed

23. Lee, S.; Goodman, J. M. VRAI-Selectivity: Calculation of Selectivity beyond Transition State Theory. Org. Biomol. Chem. 2021, 19 (17), 3940–3947. https://doi.org/10.1039/d1ob00234a.Search in Google Scholar PubMed

24. Lee, S.; Goodman, J. M. Rapid Route-Finding for Bifurcating Organic Reactions. J. Am. Chem. Soc. 2020, 142 (20), 9210–9219. https://doi.org/10.1021/jacs.9b13449.Search in Google Scholar PubMed

25. Lam, C. C.; Goodman, J. M. Reaction Dynamics as the Missing Puzzle Piece: The Origin of Selectivity in Oxazaborolidinium Ion-Catalysed Reactionstle. Chem. Sci. 2023, 14 (43), 12355–12365. https://doi.org/10.1039/D3SC03009A.Search in Google Scholar PubMed PubMed Central

26. Steinfeld, J. I.; Francisco, J. S.; Hase, W. L. Chemical Kinetics and Dynamics, 2nd ed.; Pearson, 1998.Search in Google Scholar

27. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A.Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16; Gaussian, Inc.: Wallingford CT, 2016.Search in Google Scholar

28. Hu, X.; Hase, W. L.; Pirraglia, T. Vectorization of the General Monte Carlo Classical Trajectory Program VENUS. J. Comput. Chem. 1991, 12 (8), 1014–1024. https://doi.org/10.1002/jcc.540120814.Search in Google Scholar

29. Lourderaj, U.; Sun, R.; Kohale, S. C.; Barnes, G. L.; de Jong, W. A.; Windus, T. L.; Hase, W. L. The VENUS/NWChem Software Package. Tight Coupling between Chemical Dynamics Simulations and Electronic Structure Theory. Comput. Phys. Commun. 2014, 185 (3), 1074–1080. https://doi.org/10.1016/j.cpc.2013.11.011.Search in Google Scholar

30. Hase, W. L.; Duchovic, R. J.; Hu, X.; Komornicki, A.; Lim, K. F.; Lu, D.; Peslherbe, G. H.; Swamy, K. N.; Linde, S. V.; Varandas, A. A. General Chemical Dynamics Computer Program. Quantum Chem. Program Exch. Bull. 1996, 16, 671.Search in Google Scholar

31. Singleton, D. A.; Hang, C.; Szymanski, M. J.; Greenwald, E. E. A New Form of Kinetic Isotope Effect. Dynamic Effects on Isotopic Selectivity and Regioselectivity. J. Am. Chem. Soc. 2003, 125 (5), 1176–1177. https://doi.org/10.1021/ja027221k.Search in Google Scholar PubMed

32. Kwan, E. E.; Liu, R. Y. Enhancing NMR Prediction for Organic Compounds Using Molecular Dynamics. J. Chem. Theory Comput. 2015, 11 (11), 5083–5089. https://doi.org/10.1021/acs.jctc.5b00856.Search in Google Scholar PubMed

33. Teynor, M. S.; Wohlgemuth, N.; Carlson, L.; Huang, J.; Pugh, S. L.; Grant, B. O.; Hamilton, R. S.; Carlsen, R.; Ess, D. H. Milo; Brigham Young University: Provo UT, 2021.Search in Google Scholar

34. Tremblay, M. T.; Yang, Z. J. The Effect of Zero-Point Energy in Simulating Organic Reactions with Post-Transition State Bifurcation. J. Phys. Org. Chem. 2022, 35 (11), e4322. https://doi.org/10.1002/poc.4322.Search in Google Scholar

35. Verlet, L. Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Phys. Rev. 1967, 159 (1), 98–103. https://doi.org/10.1103/PhysRev.159.98.Search in Google Scholar

36. Paranjothy, M.; Sun, R.; Zhuang, Y.; Hase, W. L. Direct Chemical Dynamics Simulations: Coupling of Classical and Quasiclassical Trajectories with Electronic Structure Theory. WIREs Comput. Mol. Sci. 2013, 3 (3), 296–316. https://doi.org/10.1002/wcms.1132.Search in Google Scholar

37. Senn, H. M.; Thiel, W. QM/MM Methods for Biomolecular Systems. Angew. Chem., Int. Ed. 2009, 48 (7), 1198–1229. https://doi.org/10.1002/anie.200802019.Search in Google Scholar PubMed

38. Acevedo, O.; Jorgensen, W. L. Advances in Quantum and Molecular Mechanical (QM/MM) Simulations for Organic and Enzymatic Reactions. Acc. Chem. Res. 2010, 43 (1), 142–151. https://doi.org/10.1021/ar900171c.Search in Google Scholar PubMed PubMed Central

39. Yang, Z.; Doubleday, C.; Houk, K. N. QM/MM Protocol for Direct Molecular Dynamics of Chemical Reactions in Solution: The Water-Accelerated Diels–Alder Reaction. J. Chem. Theory Comput. 2015, 11 (12), 5606–5612. https://doi.org/10.1021/acs.jctc.5b01029.Search in Google Scholar PubMed

40. Weitman, M.; Major, D. T. Challenges Posed to Bornyl Diphosphate Synthase: Diverging Reaction Mechanisms in Monoterpenes. J. Am. Chem. Soc. 2010, 132 (18), 6349–6360. https://doi.org/10.1021/ja910134x.Search in Google Scholar PubMed

41. Sheppard, A. N.; Acevedo, O. Multidimensional Exploration of Valley−Ridge Inflection Points on Potential-Energy Surfaces. J. Am. Chem. Soc. 2009, 131 (7), 2530–2540. https://doi.org/10.1021/ja803879k.Search in Google Scholar PubMed

42. Yang, Z.; Yang, S.; Yu, P.; Li, Y.; Doubleday, C.; Park, J.; Patel, A.; Jeon, B.; Russell, W. K.; Liu, H.; Russell, D. H.; Houk, K. N. Influence of Water and Enzyme SpnF on the Dynamics and Energetics of the Ambimodal [6+4]/[4+2] Cycloaddition. Proc. Natl. Acad. Sci. U. S. A. 2018, 115 (5), E848–E855. https://doi.org/10.1073/pnas.1719368115.Search in Google Scholar PubMed PubMed Central

43. Jorner, K.; Tomberg, A.; Bauer, C.; Sköld, C.; Norrby, P.-O. Organic Reactivity from Mechanism to Machine Learning. Nat. Rev. Chem 2021, 5 (4), 240–255. https://doi.org/10.1038/s41570-021-00260-x.Search in Google Scholar PubMed

44. Wigh, D. S.; Goodman, J. M.; Lapkin, A. A. A Review of Molecular Representation in the Age of Machine Learning. WIREs Comput. Mol. Sci. 2022, 12 (5), e1603. https://doi.org/10.1002/wcms.1603.Search in Google Scholar

45. Shim, E.; Tewari, A.; Cernak, T.; Zimmerman, P. M. Machine Learning Strategies for Reaction Development: Toward the Low-Data Limit. J. Chem. Inf. Model. 2023, 63 (12), 3659–3668. https://doi.org/10.1021/acs.jcim.3c00577.Search in Google Scholar PubMed PubMed Central

46. Rollins, N.; Pugh, S. L.; Maley, S. M.; Grant, B. O.; Hamilton, R. S.; Teynor, M. S.; Carlsen, R.; Jenkins, J. R.; Ess, D. H. Machine Learning Analysis of Direct Dynamics Trajectory Outcomes for Thermal Deazetization of 2,3-Diazabicyclo[2.2.1]Hept-2-Ene. J. Phys. Chem. A 2020, 124 (23), 4813–4826. https://doi.org/10.1021/acs.jpca.9b10410.Search in Google Scholar PubMed

47. Lyons, B. A.; Pfeifer, J.; Peterson, T. H.; Carpenter, B. K. Dynamic Models for the Thermal Deazetization of 2,3-Diazabicyclo[2.2.1]Hept-2-Ene. J. Am. Chem. Soc. 1993, 115 (6), 2427–2437. https://doi.org/10.1021/ja00059a043.Search in Google Scholar

48. Melville, J.; Hargis, C.; Davenport, M. T.; Hamilton, R. S.; Ess, D. H. Machine Learning Analysis of Dynamic-Dependent Bond Formation in Trajectories with Consecutive Transition States. J. Phys. Org. Chem. 2022, 35 (11), e4405. https://doi.org/10.1002/poc.4405.Search in Google Scholar

49. Kuan, K.-Y.; Hsu, C.-P. Predicting Selectivity with a Bifurcating Surface: Inaccurate Model or Inaccurate Statistics of Dynamics? J. Phys. Chem. A 2024, 128 (32), 6798–6805. https://doi.org/10.1021/acs.jpca.4c04039.Search in Google Scholar PubMed PubMed Central

50. Campos, R. B.; Tantillo, D. J. Designing Reactions with Post-Transition-State Bifurcations: Asynchronous Nitrene Insertions into C–C σ Bonds. Chem 2019, 5 (1), 227–236. https://doi.org/10.1016/j.chempr.2018.10.019.Search in Google Scholar

51. Ang, S. J.; Wang, W.; Schwalbe-Koda, D.; Axelrod, S.; Gómez-Bombarelli, R. Active Learning Accelerates Ab Initio Molecular Dynamics on Reactive Energy Surfaces. Chem 2021, 7 (3), 738–751. https://doi.org/10.1016/j.chempr.2020.12.009.Search in Google Scholar

52. Xue, X.-S.; Jamieson, C. S.; Garcia-Borràs, M.; Dong, X.; Yang, Z.; Houk, K. N. Ambimodal Trispericyclic Transition State and Dynamic Control of Periselectivity. J. Am. Chem. Soc. 2019, 141 (3), 1217–1221. https://doi.org/10.1021/jacs.8b12674.Search in Google Scholar PubMed

53. Zhou, C.; Birney, D. M. Sequential Transition States and the Valley−Ridge Inflection Point in the Formation of a Semibullvalene. Org. Lett. 2002, 4 (19), 3279–3282. https://doi.org/10.1021/ol026595f.Search in Google Scholar PubMed

54. Murakami, T.; Ibuki, S.; Takayanagi, T. Molecular Dynamics Simulations and Machine-Learning Assisted Study of the Reaction Path Bifurcation: Application to the Intramolecular Diels–Alder Cycloaddition between Cyclobutadiene and Butadiene. Comput. Theor. Chem. 2023, 1227, 114239. https://doi.org/10.1016/j.comptc.2023.114239.Search in Google Scholar

55. Yang, Z.; Dong, X.; Yu, Y.; Yu, P.; Li, Y.; Jamieson, C.; Houk, K. N. Relationships between Product Ratios in Ambimodal Pericyclic Reactions and Bond Lengths in Transition Structures. J. Am. Chem. Soc. 2018, 140 (8), 3061–3067. https://doi.org/10.1021/jacs.7b13562.Search in Google Scholar PubMed

56. Bharadwaz, P.; Maldonado-Domínguez, M.; Srnec, M. Bifurcating Reactions: Distribution of Products from Energy Distribution in a Shared Reactive Mode. Chem. Sci. 2021, 12 (38), 12682–12694. https://doi.org/10.1039/D1SC02826J.Search in Google Scholar PubMed PubMed Central

57. Martin-Somer, A.; Xue, X.-S.; Jamieson, C. S.; Zou, Y.; Houk, K. N. Computational Design of a Tetrapericyclic Cycloaddition and the Nature of Potential Energy Surfaces with Multiple Bifurcations. J. Am. Chem. Soc. 2023, 145 (7), 4221–4230. https://doi.org/10.1021/jacs.2c12871.Search in Google Scholar PubMed PubMed Central

58. Shin, W.; Hou, Y.; Wang, X.; Yang, Z. J. Interplay between Energy and Entropy Mediates Ambimodal Selectivity of Cycloadditions. J. Chem. Theory Comput. 2024, 20 (24), 10942–10951. https://doi.org/10.1021/acs.jctc.4c01138.Search in Google Scholar PubMed PubMed Central

59. Becke, A. D. Density‐functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98 (7), 5648–5652. https://doi.org/10.1063/1.464913.Search in Google Scholar

60. Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37 (2), 785–789. https://doi.org/10.1103/PhysRevB.37.785.Search in Google Scholar

61. Becke, A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A (Coll Park) 1988, 38 (6), 3098–3100. https://doi.org/10.1103/PhysRevA.38.3098.Search in Google Scholar

62. Lam, C. C.; Goodman, J. M. CONFPASS: Fast DFT Re-Optimizations of Structures from Confor-Mation Searches. J. Chem. Inf. Model. 2023, 63 (14), 4364–4375. https://doi.org/10.1021/acs.jcim.3c00649.Search in Google Scholar PubMed PubMed Central

63. Zhang, Y.; Cao, C.; She, Y.; Davies, H. M. L.; Yang, Y.-F.; Houk, K. N. Molecular Dynamics of the Davies Ambimodal C–H Functionalization/Cope Rearrangement Reaction. J. Org. Chem. 2024, 89 (23), 17176–17186. https://doi.org/10.1021/acs.joc.4c01682.Search in Google Scholar PubMed


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/pac-2025-0462).


Published Online: 2025-04-24

© 2025 IUPAC & De Gruyter

Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2025-0462/pdf
Scroll to top button