Home Hyperacid lake monitoring from Poás Volcano, Costa Rica, using UAV (Unmanned Aerial Vehicle)
Article
Licensed
Unlicensed Requires Authentication

Hyperacid lake monitoring from Poás Volcano, Costa Rica, using UAV (Unmanned Aerial Vehicle)

  • José Pablo Sibaja-Brenes ORCID logo EMAIL logo , Rosa Alfaro-Solís , Maria Martínez-Cruz , Ian Godfrey , Akihiko Terada , Alejandro Rodríguez , Geoffroy Avard and Guillermo E. Alvarado-Induni
Published/Copyright: May 22, 2025

Abstract

Poás Volcano is a complex stratovolcano in Costa Rica’s Central Mountain Range and hosts acidic volcanic lakes. This study uses Unmanned Aerial Vehicles (UAV) to monitor the physicochemical characteristics of the hyperacid crater lake. Sampling was conducted in January and May of 2024, using a DJI Matrice 600 Pro equipped with a water collection system. The results showed extremely low pH values (as low as −1.04), high temperatures (up to 64 °C), and high concentrations of sulfate (134 877 ppm) and chloride (88 434 ppm), highlighting the influence of volcanic activity on the chemical composition of the hyperacid lake water. Sampling was marked by a decrease in rainfall patterns during the dry season and a reduction in the lake’s water volume, indicating a high evaporation rate and the release of gases and ash. The SO4 2−/Cl ratio was relatively constant, with no increase in activity and that meant that it was safe for tourism, based on the physicochemical characteristics of the hyperacid crater lake.


Corresponding author: José Pablo Sibaja-Brenes, Laboratory of Atmospheric Chemistry (LAQAT-UNA), School of Chemistry, Universidad Nacional, Heredia, Costa Rica, e-mail:
Article note: A collection of invited papers based on presentations at the Costa Rica Chemistry Congress (CR 2024) held on 23–26 July 2024 in Heredia, Costa Rica.

Acknowledgments

Universidad National for financial support.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The author states no conflict of interest.

  6. Research funding: Universidad Nacional.

  7. Data availability: Contacting to .

References

1. Anderson, K.; Gaston, K. J. Lightweight Unmanned Aerial Vehicles will Revolutionize Spatial Ecology. Front. Ecol. Environ. 2013, 11 (3), 138–146. https://doi.org/10.1890/120150.Search in Google Scholar

2. Hwang, B. C.; Giardina, C. P.; Adu-Bredu, S.; Barrios-Garcia, M. N.; Calvo-Alvarado, J. C.; Dargie, G. C.; Diao, H.; Duboscq-Carra, V. G.; Hemp, A.; Hemp, C.; Huaraca Huasco, W.; Ivanov, A. V.; Johnson, N. G.; Kuijper, D. P. J.; Lewis, S. L.; Lobos-Catalán, P.; Malhi, Y.; Marshall, A. R.; Mumladze, L.; Ngute, A. S. K.; Palma, A. C.; Petritan, I. C.; Rodríguez-Cabal, M. A.; Suspense, I. A.; Zagidullina, A.; Andersson, T.; Galiano-Cabrera, D. F.; Jiménez-Castillo, M.; Churski, M.; Gage, S. A.; Filippova, N.; Francisco, K. S.; Gaglianese-Woody, M.; Iankoshvili, G.; Kaswamila, M. A.; Lyatuu, H.; Mampouya Wenina, Y. E.; Materu, B.; Mbemba, M.; Moritz, R.; Orang, K.; Plyusnin, S.; Puma Vilca, B. L.; Rodríguez-Solís, M.; Šamonil, P.; Stępniak, K. M.; Walsh, S. K.; Xu, H.; Metcalfe, D. B. The Impact of Insect Herbivory on Biogeochemical Cycling in Broadleaved Forests Varies with Temperature. Ecol. Indic. 2023, 148, 111154. https://doi.org/10.1038/s41467-024-50245-9.Search in Google Scholar PubMed PubMed Central

3. Xingzhen, L.; Long, H.; Stijn, B.; Peter, G. Applications of Unmanned Vehicle Systems for Multi-Spatial Scale Monitoring and Management of Aquatic Ecosystems: A Review. Ecol. Inform. 2018, 2025, 102926. https://doi.org/10.1016/j.ecoinf.2024.102926.Search in Google Scholar

4. Oliveira, A. S.; Alves, M.; Leitão, F.; Tacão, M.; Henriques, I.; Castro, P. M. L.; Amorim, C. L. Bioremediation of Coastal Aquaculture Effluents Spiked with Florfenicol using Microalgae-Based Granular Sludge – A Promising Solution for Recirculating Aquaculture Systems. Water Res. 2023, 247, 120076. https://doi.org/10.1016/j.watres.2023.120076.Search in Google Scholar PubMed

5. Pettit, C.; McAlpine, C. A. Unmanned Aerial Vehicles (UAVs) for Surveying and Monitoring Freshwater Ecosystems. Aquat. Conserv.: Mar. Freshw. Ecosyst. 2016, 26 (6), 1136–1144. https://doi.org/10.1002/aqc.2674.Search in Google Scholar

6. Bydalek, F.; Webster, G.; Barden, R.; Weightman, A. J.; Kasprzyk-Hordern, B.; Wenk, J. Microplastic Biofilm, Associated Pathogen and Antimicrobial Resistance Dynamics through a Wastewater Treatment Process Incorporating a Constructed Wetland. Water Res. 2023, 233, 119367. https://doi.org/10.1016/j.watres.2022.119367.Search in Google Scholar PubMed

7. Colomina, I.; Molina, P. Unmanned Aerial Systems for Photogrammetry and Remote Sensing: A Review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. https://doi.org/10.1016/j.isprsjprs.2014.02.013.Search in Google Scholar

8. Stieglitz, T.; Nelson, C. L. Advances in UAV-Based Water Quality Monitoring: A Review. Environ. Monit. Assess. 2020, 192, 322. https://doi.org/10.1007/s10661-020-08777-4.Search in Google Scholar

9. Yuan, S.; Denghui, W; Lei, L.; Rongsheng, N.; Shuili, Y.; Naiyun, G. Application of Remote Sensing Technology in Water Quality Monitoring: From Traditional Approaches to Artificial Intelligence. Water. Res. 2024, 267 (7), 122546. https://doi.org/10.1016/j.watres.2024.122546.Search in Google Scholar PubMed

10. De Moor, M.; Avard, G. Recent Developments in UAV Applications for Volcanic Monitoring: A Review. J. Volcanol. Geotherm. Res. 2021, 407, 107119.Search in Google Scholar

11. Pasternack, G. B.; Varekamp, J. C. Volcanic Lake Systematics I. Physical Constraints. Bull. Volcanol. 1997, 58, 528–538; https://doi.org/10.1007/s004450050160.Search in Google Scholar

12. Rizzo, D.; Miller, P.; Dando, S. Use of UAVs for Monitoring Volcanic Gas Emissions: An Application to Mount Etna, Italy. J. Volcanol. Geotherm. Res. 2018, 354, 170–178. https://doi.org/10.1016/j.jvolgeores.2017.12.003.Search in Google Scholar

13. Samadzadegan, F.; Barros, A. P.; Fenton, J. W. Advances in UAV-Based Monitoring of Volcanic Activity: A Case Study of Mount St. Helens. Geosci. Remote Sens. 2022, 16 (5), 1057–1068. https://doi.org/10.1139/dsa-2022-0023.Search in Google Scholar

14. Fournier, R. O. Chemical Geothermometers and Mixing Models for Geothermal Systems. Geothermics 1987, 16 (1), 69–80.Search in Google Scholar

15. Hernández, A.; Herrera, R.; Hernández, A. La laguna del cráter Poás: Monitoreo y características geológicas. Rev. Geo. de Costa Rica 2019, 21, 132–146.Search in Google Scholar

16. Tassi, F.; Vaselli, O.; Fernández, E.; Duarte, E.; Martínez, M.; Delgado-Huertas, A.; Bergamaschi, F. Morphological and Geochemical Features of Crater Lakes in Costa Rica: An Overview. J. Limnol. 2009, 68 (2), 193; https://doi.org/10.4081/jlimnol.2009.193.Search in Google Scholar

17. Wiemer, M.; Sharples, J.; Lee, S. Improved Monitoring of Volcanic Eruptions using UAVs: Lessons from Recent Field Campaigns. Nat. Hazards Earth Syst. Sci. 2018, 18 (3), 837–845. https://doi.org/10.1186/s40623-018-0835-3.Search in Google Scholar

18. Terada, A.; Morita, Y.; Hashimoto, T.; Toshiya, T.; Mori, T.; Ohba, T.; Yaguchi, M.; Kanda, W. Water Sampling using a Drone at Yugama Crater Lake, Kusatsu-Shirane Volcano, Japan. Earth, Planets Space 2018, 70, 64; https://doi.org/10.1186/s40623-018-0835-3.Search in Google Scholar

19. SINAC. Plan General de Manejo del Parque Nacional Volcán Poás, Sistema Nacional de Áreas de Conservación (SINAC); Sistema Nacional de Áreas de Conservación (SINAC): Costa Rica, 2020.Search in Google Scholar

20. Sibaja-Brenes, J. P.; Terada, A.; Alfaro-Solís, R.; Cambronero Luna, M.; Umaña Castro, D.; Porras Ramírez, D.; Sánchez Gutiérrez, R.; Martínez Arroyo, M.; Godfrey, I.; Martínez Cruz, M. Drone Monitoring of Volcanic Lakes in Costa Rica: A New Approach. Drone Syst. Appl. 2023, 11, 1–14. https://doi.org/10.1139/dsa-2022-0023.Search in Google Scholar

21. Martínez, M.; Fernández, E.; Valdés, J.; Barboza, V.; Van der Laat, R.; Duarte, E.; Malavassi, E.; Sandoval, L.; Barquero, J.; Marino, T. Chemical Evolution and Volcanic Activity of the Active Crater Lake of Poás Volcano, Costa Rica, 1993–1997. J. Volcanol. Geotherm. Res. 2000, 97 (1–4), 127–146. https://doi.org/10.1016/S0377-0273(99)00165-1.Search in Google Scholar

Received: 2025-01-30
Accepted: 2025-04-28
Published Online: 2025-05-22

© 2025 IUPAC & De Gruyter

Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2025-0427/pdf
Scroll to top button