Abstract
In this study dihydropyrazole based derivatives were synthesized from substituted chalcone through Michael addition reaction. Urease inhibition activity of the compounds was evaluated, revealing that most compounds exhibited moderate inhibition. Among the synthesized compounds, 2b, 2m, and 2n demonstrated exceptional potency with IC50 values of 5.21 ± 0.91 µM, 6.21 ± 0.10 µM, and 5.21 ± 0.81 µM, respectively. Thus, these findings suggest that dihydropyrazole represent a promising scaffold for the development of novel urease inhibitors.
Funding source: Princess Nourah Bint Abdulrahman University
Award Identifier / Grant number: PNURSP2025R342
Acknowledgments
The authors extend their appreciation to Princess Nourah bint Abdulrahman University researcher supporting project number (PNURSP2025R342), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia for supporting this work.
-
Research ethics: Agreed and fulfil the research ethics.
-
Informed consent: No consent required.
-
Author contributions: W.R.: supervision; MS writing, conceptualization; N.K.: methodology; O.U.R.: data curation, supervision; L.R.: validation, MS editing; M.M.A.: formal analysis, visualization; A.S.A.: formal analysis, data curation.
-
Use of Large Language Models, AI and Machine Learning Tools: No tool used.
-
Conflict of interest: No conflict of interest.
-
Research funding: Researcher supporting project number (PNURSP2025R342), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
-
Data availability: The data could be made available, if requested.
References
1. Ríos, M. C.; Portilla, J. Recent Advances in Synthesis and Properties of Pyrazoles. Chem 2022, 4 (3), 940–968. https://doi.org/10.3390/chemistry4030065.Search in Google Scholar
2. Smith, R. A.; Kulmaczewski, R.; Halcrow, M. A. Ligand-Directed Metalation of a Gold Pyrazolate Cluster. Inorg. Chem. 2023, 62 (24), 9300–9305. https://doi.org/10.1021/acs.inorgchem.3c01667.Search in Google Scholar PubMed PubMed Central
3. Emashova, S. K.; Titov, A. A.; Smol’yakov, A. F.; Chernyadyev, A. Y.; Godovikov, I. A.; Godovikova, M. I.; Dorovatovskii, P. V.; Korlykov, A. A.; Filippov, O. A.; Shubina, E. S. Emissive Silver (I) Cyclic Trinuclear Complexes with Aromatic Amine Donor Pyrazolate Derivatives: Way to Efficiency. Inorg. Chem. Front. 2022, 9 (21), 5624–5634. https://doi.org/10.1039/D2QI01648F.Search in Google Scholar
4. Singh, R.; Gupta, V.; Singh, K. Synthetic Methodologies and Biological Importance of Phosphonylpyrazoles. RSYN Chem. Sci. 2024, 1 (1), 1–9. https://doi.org/10.70130/RCS.2024.0101001.Search in Google Scholar
5. Li, R.; Luo, P.; Guo, Y.; He, Y.; Wang, C. Clinical Features, Treatment, and Prognosis of SGLT2 Inhibitors Induced Acute Pancreatitis. Expert Opin. Drug Saf. 2024, 1–5. https://doi.org/10.1080/14740338.2024.2396387.Search in Google Scholar PubMed
6. Lin, W.-S.; Kuwata, S. Recent Developments in Reactions and Catalysis of Protic Pyrazole Complexes. Molecules 2023, 28 (8), 3529. https://doi.org/10.3390/molecules28083529.Search in Google Scholar PubMed PubMed Central
7. Kang, L.; Gao, X.; Liu, H.; Men, X.; Wu, H.; Cui, P.; Oldfield, E.; Yan, J. Structure–Activity Relationship Investigation of Coumarin–Chalcone Hybrids with Diverse Side-Chains as Acetylcholinesterase and Butyrylcholinesterase Inhibitors. Mol. Divers. 2018, 22 (4), 893–906. https://doi.org/10.1007/s11030-018-9839-y.Search in Google Scholar PubMed PubMed Central
8. Gao, X.; Tang, J.; Liu, H.; Liu, L.; Liu, Y. Structure–Activity Study of Fluorine or Chlorine-Substituted Cinnamic Acid Derivatives with Tertiary Amine Side Chain in Acetylcholinesterase and Butyrylcholinesterase Inhibition. Drug Dev. Res. 2019, 80 (4), 438–445. https://doi.org/10.1002/ddr.21515.Search in Google Scholar PubMed
9. Tian, G.; Li, Z.; Zhang, C.; Liu, X.; Fan, X.; Shen, K.; Meng, H.; Wang, N.; Xiong, H.; Zhao, M.; Liang, X.; Luo, L.; Zhang, L.; Yan, B.; Chen, X.; Peng, H.; Wei, F. Upgrading CO2 to Sustainable Aromatics via perovskite-mediated Tandem Catalysis. Nat. Commun. 2024, 15 (1), 3037; https://doi.org/10.1038/s41467-024-47270-z.Search in Google Scholar PubMed PubMed Central
10. Al Ati, G.; Chkirate, K.; El-Guourrami, O.; Chakchak, H.; Tüzün, B.; Mague, J. T.; Benzeid, H.; Achour, R.; Essassi, E. M. Schiff Base Compounds Constructed from Pyrazole–Acetamide: Synthesis, Spectroscopic Characterization, Crystal Structure, DFT, Molecular Docking and Antioxidant Activity. J. Mol. Struct. 2024, 1295, 136637. https://doi.org/10.1016/j.molstruc.2023.136637.Search in Google Scholar
11. Wang, X.; Yan, A.; Xiao, H.; Xiao, W.; Xu, L.; Wang, D. C3–H Trifluoroacetylation of Quinolines and Pyridines: Access to Heteroaryl Ketones, Carboxylic Acids, and Amides. Org. Lett. 2025, 27 (22), 5625–5631; https://doi.org/10.1021/acs.orglett.5c01350.Search in Google Scholar PubMed
12. Lou, Y.; Song, F.; Cheng, M.; Hu, Y.; Chai, Y.; Hu, Q.; Wang, Q.; Zhou, H.; Bao, M.; Gu, J.; Zhang, Y. Effects of the CYP3A Inhibitors, Voriconazole, Itraconazole, and Fluconazole on the Pharmacokinetics of Osimertinib in Rats. PeerJ 2023, 11, e15844. https://doi.org/10.7717/peerj.15844.Search in Google Scholar PubMed PubMed Central
13. Chkirate, K.; Essassi, E. M. Pyrazole and Benzimidazole Derivatives: Chelating Properties Towards Metals Ions and Their Applications. Curr. Org. Chem. 2022, 26 (19), 1735–1766. https://doi.org/10.2174/1385272827666221216110504.Search in Google Scholar
14. Lu, Q.; Chen, Y.; Liu, H.; Yan, J.; Cui, P.; Zhang, Q.; Gao, X.; Feng, X.; Liu, Y. Nitrogen-Containing Flavonoid and Their Analogs with Diverse B-Ring in Acetylcholinesterase and Butyrylcholinesterase Inhibition. Drug Dev. Res. 2020, 81 (8), 1037–1047. https://doi.org/10.1002/ddr.21726.Search in Google Scholar PubMed
15. Yu, T.; Wang, Y.; Dong, Y.; Han, D.; Liu, N.; Wang, B.; Tang, Y.; Wei, H. Dehydrogenative Syntheses of Biazoles via a “Pre-Join”Approach. JACS Au 2023, 3 (1), 80–85. https://doi.org/10.1021/jacsau.2c00597.Search in Google Scholar PubMed PubMed Central
16. Zhang, S.-Y.; Li, Z.; Hu, L.-Y.; Li, J.-T.; Wu, L. Access Polyarylbipyrazoles via Palladium-Catalysis and Visible-Light-Driven C(sp3)–P(V) Cleavage Relay Strategy. Org. Lett. 2024, 26 (15), 2949–2954. https://doi.org/10.1021/acs.orglett.4c00503.Search in Google Scholar PubMed
17. Sreelekha, M. K.; Shamnad, A.; Bhaskaran, R. P.; Babu, B. P. In Situ Generation and [3+2] Annulation Reactions of Propiolaldehyde: A Metal-Free, Cascade Route to Pyrazole and Bipyrazole Carboxaldehydes in One Pot. J. Org. Chem. 2025, 90 (19), 6596–6604. https://doi.org/10.1021/acs.joc.5c00246.Search in Google Scholar PubMed
18. Cao, D.; Zhou, X.; Guo, Q.; Xiang, M.; Bao, M.; He, B.; Mao, X. Unveiling the Role of Histone Deacetylases in Neurological Diseases: Focus on Epilepsy. Biomark. Res. 2024, 12 (1), 142. https://doi.org/10.1186/s40364-024-00687-6.Search in Google Scholar PubMed PubMed Central
19. Wang, L.; Li, X.; Men, X.; Liu, X.; Luo, J. Research Progress on Antioxidants and Protein Aggregation Inhibitors in Cataract Prevention and Therapy. Mol. Med. Rep. 2025, 31 (1), 22. https://doi.org/10.3892/mmr.2024.13387.Search in Google Scholar PubMed PubMed Central
20. Gaatha, K.; Kumar, S.; Sharma, A.; Bhuvanesh, N.; Roy, P.; Joshi, H. A. Trans-Palladium Dichloride Complex with a Bulky Organosulfur Ligand: Syntheses, Structure, and Applications in Catalytic Alkylation of Acetophenone and Secondary Alcohols Using Alcohols. New J. Chem. 2025, 49 (10), 3956–3968. https://doi.org/10.1039/D4NJ04901B.Search in Google Scholar
21. Wang, R.; Ni, W.; Fang, S.; Chen, J.; Fan, X. Ultrasound Assisted Green Synthesis of Lignosulfonate-Gold Nanocomposite (LS-Au Nps): the Study of Its Application in the Suzuki–Miyaura Coupling Reactions and Its Application for the Treatment of Gastric Cancer. J. Inorg. Organomet. Polym. Mater. 2025, 1–15. https://doi.org/10.1007/s10904-024-03578-3.Search in Google Scholar
22. Ullah, Z.; Rehman, W.; Rashid, M. U.; Khan, S.; Hussain, R.; Khan, Y.; Iqbal, T.; Felemban, S.; Khowdiary, M. Integrated Insights into the Synthesis and Biological Significances of Novel Benzofuran Based Oxadiazole/Thiadiazole Derivatives: a Comprehensive Computational and Experimental Study. J. Mol. Struct. 2024, 1314, 138726. https://doi.org/10.1016/j.molstruc.2024.138726.Search in Google Scholar
23. Zahora, B. A.; Gau, M. R.; Goldberg, K. I. Synthesis and Reactivity of PtII Methyl Complexes Supported by Pyrazolate Pincer Ligands. Organometallics 2020, 39 (8), 1230–1237. https://doi.org/10.1021/acs.organomet.0c00023.Search in Google Scholar
24. Nikovsky, I.; Polezhaev, A.; Melnikova, E.; Nelyubina, Y. V. New Iron (III) Oxo Complex with Substituted 2,6-Bis(pyrazol-3-yl)pyridine. Russ. J. Inorg. Chem. 2020, 65 (6), 864–869. https://doi.org/10.1134/S0036023620060145.Search in Google Scholar
25. Feng, S.; Chen, J.; Wang, R.; Li, H.; Xie, J.; Guo, Z.; Lau, T.-C.; Liu, Y. Dual Pathways in Catalytic Ammonia Oxidation by a Ruthenium Complex Bearing a Tetradentate Bipyridine–Bipyrazole Ligand: Isolation of a Diruthenium Intermediate with a μ-Hexazene Derivative. ACS 2024, 146 (31), 21490–21495. https://doi.org/10.1021/jacs.4c04326.Search in Google Scholar PubMed
26. Mehmood, R.; Sadiq, A.; Alsantali, R. I.; Mughal, E. U.; Alsharif, M. A.; Naeem, N.; Javid, A.; Al-Rooqi, M. M.; Chaudhry, G.-e.-S.; Ahmed, S. A. Synthesis and Evaluation of 1,3,5-Triaryl-2-Pyrazoline Derivatives as Potent Dual Inhibitors of Urease and α-Glucosidase Together with Their Cytotoxic, Molecular Modeling and Drug-Likeness Studies. ACS Omega 2022, 7 (4), 3775–3795. https://doi.org/10.1021/acsomega.1c06694.Search in Google Scholar PubMed PubMed Central
27. Matczuk, D.; Siczek, A. Effectiveness of the Use of Urease Inhibitors in Agriculture: a Review. Int. Agrophys. 2021, 35 (2), 197–208. https://doi.org/10.31545/intagr/139714.Search in Google Scholar
28. Naureen, S.; Chaudhry, F.; Asif, N.; Munawar, M. A.; Ashraf, M.; Nasim, F. H.; Arshad, H.; Khan, M. A. Discovery of Indole-Based Tetraarylimidazoles as Potent Inhibitors of Urease with Low Antilipoxygenase Activity. Eur. J. Med. Chem. 2015, 102, 464–470. https://doi.org/10.1016/j.ejmech.2015.08.011.Search in Google Scholar PubMed
© 2025 IUPAC & De Gruyter