Home Advancements in electrochemical sensors: nanotechnology-driven innovations for enhanced detection
Article
Licensed
Unlicensed Requires Authentication

Advancements in electrochemical sensors: nanotechnology-driven innovations for enhanced detection

  • Shaikshavali Mohammad ORCID logo , Sumiya Bhanu Shaik , Girish Victor Allu , Dova Nani and Sandeep Munjal EMAIL logo
Published/Copyright: July 4, 2025

Abstract

Electrochemical (EC) sensors are pivotal for quantitative analysis as well as detection of the chemical and biological analytes across different fields, such as biomedical applications, food safety, and environmental monitoring etc. The present review discusses the electrochemical sensor of different types (potentiometric, impedimetric, amperometric) and their key mechanisms. The enhancement of sensors performance as well as efficiency has also been explored in detail. Integration of nanomaterials and nanocomposites offers improved selectivity, sensitivity, faster response time and facilitates the sensor miniaturization to the nanoscale. Specific applications, including the detection of (i) disease biomarkers, (ii) pesticides, (iii) pollutants, (iv) contaminants, (v) glucose and (vi) pesticide residues, are detailed. Present review further covers the limitations and the challenges of nanomaterials’ utilization in fabrication process of electrochemical sensors, including their (i) stability, (ii) biocompatibility, (iii) scalability and (iv) manufacturing related constraints. Future perspectives, encompassing advances in hybrid nanomaterials, nanocomposites, and the incorporation of AI and IoT, are also discussed. The present comprehensive review aims to be beneficial for all the researchers/scientists working in similar fields, guiding the development of electrochemical sensors with higher potential for novel applications.


Corresponding author: Sandeep Munjal, Multidisciplinary Research & Innovation Center, National Forensic Sciences University, Goa Campus, Gandhinagar, Goa, 403401, India, e-mail:
Article note: A collection of invited papers based on presentations at the International Conference on Pesticides and Related Emerging Organic Pollutants Impact on the Environment and Human Health and Its Remediation Strategies held on 7–9 Nov 2024 in Bangalore, India.

Acknowledgments

We would like to thank Multidisciplinary Research & Innovation Center, NFSU Goa.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: All other authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Suni, I. I. Impedance Methods for Electrochemical Sensors Using Nanomaterials. Trac. Trends Anal. Chem. 2008, 27, 604–611. https://doi.org/10.1016/j.trac.2008.03.012.Search in Google Scholar

2. Sneharani, A. H. Attributes of Functionalized Nanomaterial-Based Electrochemical Sensors for Food and Beverage Analysis. In Functionalized Nanomaterial-Based Electrochemical Sensors; Hussain, C. M., Ed.; Elsevier: United States, 2022; pp 177–206.Search in Google Scholar

3. Ivanišević, I. The Role of Silver Nanoparticles in Electrochemical Sensors for Aquatic Environmental Analysis. Sensors 2023, 23, 3692. https://doi.org/10.3390/s23073692.Search in Google Scholar PubMed PubMed Central

4. Hassani, S.; Momtaz, S.; Vakhshiteh, F.; Maghsoudi, A. S.; Ganjali, M. R.; Norouzi, P. Biosensors and Their Applications in Detection of Organophosphorus Pesticides in the Environment. Arch. Toxicol. 2017, 91, 109–130. https://doi.org/10.1007/s00204-016-1875-8.Search in Google Scholar PubMed

5. Suhito, I. R.; Koo, K-M.; Kim, T-H. Recent Advances in Electrochemical Sensors for the Detection of Biomolecules and Whole Cells. Biomedicines 2020, 9, 15. https://doi.org/10.3390/biomedicines9010015.Search in Google Scholar PubMed PubMed Central

6. Tığ, G. A.; Pekyardımcı, Ş. Nanostructured Electrochemical Biosensors For Medical Applications. In Emerging Technologies in Biophysical Sciences: A World Scientific Reference; Demirci, U., Ed.; World Scientific Connect: USA, Vol. 3, 2023; pp 157–174.10.1142/9789811226113_0006Search in Google Scholar

7. Sakthivel, K.; Balasubramanian, S.; Chang-Chien, G.-P.; Wang, S.-F.; Ahammad; Billey, W.; Platero, J.; Soundappan, T.; Sekhar, P. Editors’ Choice–Review–Advances in Electrochemical Sensors: Improving Food Safety, Quality, and Traceability. ECS Sens. Plus 2024, 3, 020605. https://doi.org/10.1149/2754-2726/ad5455.Search in Google Scholar

8. Curulli, A. Nanomaterials in Electrochemical Sensing Area: Applications and Challenges in Food Analysis. Molecules 2020, 25, 5759. https://doi.org/10.3390/molecules25235759.Search in Google Scholar PubMed PubMed Central

9. Yadav, A. K.; Verma, D.; Sajwan, R. K.; Poddar, M.; Yadav, S. K.; Verma, A. K Nanomaterial-Based Electrochemical Nanodiagnostics for Human and Gut Metabolites Diagnostics: Recent Advances and Challenges. Biosensors (Basel) 2022, 12, 733. https://doi.org/10.3390/bios12090733.Search in Google Scholar PubMed PubMed Central

10. Farzin, M. A.; Abdoos, H. A Critical Review on Quantum Dots: From Synthesis toward Applications in Electrochemical Biosensors for Determination of Disease-Related Biomolecules. Talanta 2021, 224, 121828. https://doi.org/10.1016/j.talanta.2020.121828.Search in Google Scholar PubMed

11. Si, Y.; Lee, H. J. Carbon Nanomaterials and Metallic Nanoparticles-Incorporated Electrochemical Sensors for Small Metabolites: Detection Methodologies and Applications. Curr. Opin. Electrochem. 2020, 22, 234–243. https://doi.org/10.1016/j.coelec.2020.08.007.Search in Google Scholar

12. Alarcon‐Angeles, G.; Álvarez‐Romero, G. A.; Merkoçi, A. Graphene and Carbon Nanotube‐based Electrochemical Biosensors for Environmental Monitoring. In Advanced Carbon Materials and Technology; Tiwari, A., Ed.; Wiley: Sweden, 2014; pp 87–128.10.1002/9781118895399.ch3Search in Google Scholar

13. Erkmen, C.; Sanko, V.; Ozturk, B. O.; Quinchía, J.; Orozco, J.; Kuralay, F. Mesoporous Silica-Based Electrochemical Biosensors in the Determination of Cancer Biomarkers: Current Progress on Analytical Performance and Future Trends. Trac. Trends Anal. Chem. 2024, 179, 117876. https://doi.org/10.1016/j.trac.2024.117876.Search in Google Scholar

14. Liu, C.-C. Electrochemical Sensors. In Medical Devices and Human Engineering; CRC Press: Taiwan, 2014; pp 5–6.Search in Google Scholar

15. Park, C. O.; Fergus, J. W.; Miura, N.; Park, J.; Choi, A. Solid-State Electrochemical Gas Sensors. Ionics (Kiel) 2009, 15, 261–284. https://doi.org/10.1007/s11581-008-0300-6.Search in Google Scholar

16. Amirghasemi, F.; Soleimani, A.; Bawarith, S.; Tabassum, A.; Morrel, A.; Mousavi, M. P. S. FAST (Flexible Acetylcholine Sensing Thread): Real-Time Detection of Acetylcholine with a Flexible Solid-Contact Potentiometric Sensor. Bioengineering 2023, 10, 655. https://doi.org/10.3390/bioengineering10060655.Search in Google Scholar PubMed PubMed Central

17. Jasinski, G.; Strzelczyk, A.; Chachulski, B.; Jasinski, P. Staircase Voltammetry Application to Electrocatalytic Gas Sensor. Procedia Eng. 2012, 47, 1422–1425. https://doi.org/10.1016/j.proeng.2012.09.424.Search in Google Scholar

18. Jasiñski, P.; Nowakowski, A. Simultaneous Detection of Sulphur Dioxide and Nitrogen Dioxide by Nasicon Sensor with Platinum Electrodes. Ionics (Kiel) 2000, 6, 230–234. https://doi.org/10.1007/BF02374071.Search in Google Scholar

19. Jasinski, G. Detection and Classification of Gaseous Compounds by Solid Electrolyte Cyclic Voltammetry Sensors. In Ceramic Engineering and Science Proceedings, 2010, pp 99–108.10.1002/9780470944080.ch11Search in Google Scholar

20. An, Z.; Wu, Y.; Zhao, Y.; Lu, Y.; Liu, Q. Portable Electrochemical Sensing Systems. In Portable and Wearable Sensing Systems; Liu, Q., Ed.; Wiley: China, 2024; pp 19–39.10.1002/9783527841080.ch2Search in Google Scholar

21. Baranwal, J.; Barse, B.; Gatto, G.; Broncova, G.; Kumar, A. Electrochemical Sensors and Their Applications: A Review. Chemosensors 2022, 10, 363. https://doi.org/10.3390/chemosensors10090363.Search in Google Scholar

22. Simões, F. R.; Xavier, M. G. Electrochemical Sensors. In Nanoscience and its Applications; Da Róz, A. L., Ed.; Elsevier: Brazil, 2017; pp 155–178.10.1016/B978-0-323-49780-0.00006-5Search in Google Scholar

23. Pereira, J. D.; Monge, J.; Postolache, O. Measurement and Applications: Electrochemical Sensors and Instruments: Main Characteristics and Applications. IEEE Instrum. Meas. Mag. 2024, 27, 18–25. https://doi.org/10.1109/MIM.2024.10423658.Search in Google Scholar

24. Singh, J. Nanomaterials and Nanotechnology. Asian J. Chem. 2006, 18 (3), 1653–1656.10.1002/jhet.5570430634Search in Google Scholar

25. Kopp Alves, A.; Bergmann, C. P.; Berutti, F. A. Combustion Synthesis. Combustion Synthesis 2013, 11–22. https://doi.org/10.1007/978-3-642-41275-2_2.Search in Google Scholar

26. Kecel-Gunduz, S.; Celik, S.; Ozel, A. E. Practical Aspects. In Nanobiomaterials Science, Development and Evaluation; Razavi, M., Ed.; Elsevier: Istanbul, 2017; pp 281–299.10.1016/B978-0-08-100963-5.00015-XSearch in Google Scholar

27. Asmatulu, R. Toxicity of Nanomaterials and Recent Developments in Lung Disease; Martin-Loeches, I., Ed.; Bronchitis, InTech: London, 2011.10.5772/16670Search in Google Scholar

28. Buzea, C.; Pacheco, I. Nanomaterials and Their Classification. In EMR/ESR/EPR Spectroscopy for Characterization of Nanomaterials; Springer: Berlin, 2017; pp 3–45.10.1007/978-81-322-3655-9_1Search in Google Scholar

29. Berven, C. A.; Dobrokhotov, V. V. Towards Practicable Sensors Using One-Dimensional Nanostructures. Int J Nanotechnol. 2008, 5, 402. https://doi.org/10.1504/IJNT.2008.017446.Search in Google Scholar

30. Adiba; Pandey, V.; Munjal, S.; Ahmad, T. NiO Nanoparticles: Phase Purification and Strain Analysis. AIP Conf. Proc. 2021, 020121. https://doi.org/10.1063/5.0061305.Search in Google Scholar

31. Ansari, M. Z.; Munjal, S.; Kumar, V.; Khare, N. Electrical Conduction Noise and its Correlation with Structural Properties of Cu2 ZnSnS4 Thin Films. Mater. Res. Express 2016, 3, 076404. https://doi.org/10.1088/2053-1591/3/7/076404.Search in Google Scholar

32. Pandey, V.; Adiba, A.; Nehla, P.; Munjal, S.; Ahmad, T. Bipolar Resistive Switching with Multiple Intermediate Resistance States in Mn3O4 Thin Film. Mater. Today Commun. 2023, 34, 105484. https://doi.org/10.1016/j.mtcomm.2023.105484.Search in Google Scholar

33. Patlolla, V. R.; Srikanth, M.; Asmatulu, R. Review of Various Nanomaterials and Their Major Health Issues. In SAMPE Fall Technical Conference, Vol. 1, Charleston, 2012; pp. 1–15.Search in Google Scholar

34. Joudeh, N.; Linke, D. LD. Nanoparticle Classification, Physicochemical Properties, Characterization, and Applications: A Comprehensive Review for Biologists. J. Nanobiotechnol. 2022, 20 (1), 262. https://doi.org/10.1186/s12951-022-01477-8.Search in Google Scholar PubMed PubMed Central

35. Nikolelis, D.; Nikoleli, G. P. Nanosensors; CRC Press: Boca Raton, 2023.10.1201/9780367822286Search in Google Scholar

36. Pérez-López, B.; Merkoçi, A. Nanomaterials-Based (Bio)Sensing Systems for Safety and Security Applications. In Portable Electrochemical Sensors; Springer Nature Link: Berlin, 2012; pp 43–61.10.1007/978-94-007-2872-1_3Search in Google Scholar

37. Dutt, S.; Gupta, A. K.; Aadil, K. R.; Bunekar, N.; Mishra, V. K.; Kumar, R. Nanomaterials of Metal and Metal Oxides for Optical Biosensing Application. In Metal Oxides for Biomedical and Biosensor Applications; Mondal, K., Ed.; Elsevier: United States, 2022; pp 321–352.10.1016/B978-0-12-823033-6.00011-9Search in Google Scholar

38. Savkare, S. V. Design and Characterization of a Gold Nanoparticle-Based Plasmonic Biosensor. In 2023 International Conference on Recent Advances in Science and Engineering Technology (ICRASET). IEEE, 2023, pp. 1–6.10.1109/ICRASET59632.2023.10420016Search in Google Scholar

39. Varghese, A.; Hegde, G. Emerging Nanomaterials for Catalysis and Sensor Applications; CRC Press: New York, 2023.10.1201/9781003218708Search in Google Scholar

40. Alwin David, S.; Rajkumar, R.; Karpagavinayagam, P.; Fernando, J.; Vedhi, C. Sustainable Carbon Nanomaterial-Based Sensors: Future Vision for the Next 20 Years. In Carbon Nanomaterials-Based Sensors; Manjunatha, J. G., Ed.; Elsevier: India, 2022; pp 429–443.10.1016/B978-0-323-91174-0.00011-1Search in Google Scholar

41. He, Q.; Wang, B.; Liang, J.; Liu, J.; Liang, B.; Li, G. Research on the Construction of Portable Electrochemical Sensors for Environmental Compounds Quality Monitoring. Mater. Today Adv. 2023, 17, 100340. https://doi.org/10.1016/j.mtadv.2022.100340.Search in Google Scholar

42. Chandran, G. T.; Li, X.; Ogata, A.; Penner, R. M. Electrically Transduced Sensors Based on Nanomaterials (2012–2016). Anal. Chem. 2017, 89, 249–275. https://doi.org/10.1021/acs.analchem.6b04687.Search in Google Scholar PubMed

43. Fadel, T. R.; Farrell, D. F.; Friedersdorf, L. E.; Griep, M. H.; Hoover, M. D.; Meador, M. A. Toward the Responsible Development and Commercialization of Sensor Nanotechnologies. ACS Sens 2016, 1, 207–216. https://doi.org/10.1021/acssensors.5b00279.Search in Google Scholar PubMed PubMed Central

44. Ahmad, G.; Nawaz, A.; Nawaz, S.; Shad, N. A.; Sajid, M. M.; Javed, Y. Nanomaterial-based Gas Sensor for Environmental Science and Technology. In Nanofabrication for Smart Nanosensor Applications; Pal, K., Ed.; Elsevier: India, 2020; pp 229–252.10.1016/B978-0-12-820702-4.00010-6Search in Google Scholar

45. Ozkan, S. A., Ed. Hybrid Type of Electroanalytical Nanosensors for Environmental Monitoring. In Recent Trends and Perspectives on Electrochemical Sensors for Environmental Monitoring; Elsevier: Turkey, 2024; pp 217–252.Search in Google Scholar

46. Cetinkaya, A.; Budak, F.; Ozcelikay Akyildiz, G.; Ozkan, S. A. Hybrid Type of Electroanalytical Nanosensors for Environmental Monitoring. In Recent Trends and Perspectives on Electrochemical Sensors for Environmental Monitoring; Ozkan, S. A., Ed.; Elsevier: Turkey, 2024; pp 217–252.10.1016/B978-0-443-13388-6.00008-5Search in Google Scholar

47. Ozcelikay Akyildiz, G.; Yence, M.; Caglayan, M. G.; Ozkan, S. A. The Sensitive Electrochemical Sensors of Pharmaceutical Compound Residues in Environmental Samples. In Recent Trends and Perspectives on Electrochemical Sensors for Environmental Monitoring; Elsevier: Turkey, 2024.10.1016/B978-0-443-13388-6.00012-7Search in Google Scholar

48. Valero-Calvo, D.; Toyos-Rodríguez, C.; Zor, E.; de la Escosura-Muñiz, A. New Portable Electrochemical Sensors for the Detection of Drug Residues. In Recent Trends and Perspectives on Electrochemical Sensors for Environmental Monitoring; Ozkan, S. A., Ed.; Elsevier: Turkey, 2024; pp 617–636.10.1016/B978-0-443-13388-6.00019-XSearch in Google Scholar

49. Laghlimi, C.; Moutcine, A.; Chtaini, A.; Isaad, J.; Soufi, A.; Ziat, Y. Recent Advances in Electrochemical Sensors and Biosensors for Monitoring Drugs and Metabolites in Pharmaceutical and Biological Samples. ADMET DMPK 2023, 11, 151–173. https://doi.org/10.5599/admet.1709.Search in Google Scholar PubMed PubMed Central

50. Suk, K. H.; Gopinath, S. C. B. Drug Encapsulated Nanoparticles for Treating Targeted Cells. Curr. Med. Chem. 2017, 24, 3310–3321. https://doi.org/10.2174/0929867324666170502122444.Search in Google Scholar PubMed

51. Lu, S.-Y.; Shan, S.-S.; Lu, T.-H.; Yeh, Y.-H.; Kuo, S.-C.; Chen, Y.-C. A Review of CMOS Electrochemical Readout Interface Designs for Biomedical Assays. IEEE Sens J. 2021, 21, 12469–12483. https://doi.org/10.1109/JSEN.2021.3056443.Search in Google Scholar

52. Hashkavayi, A. B.; Raoof, J. B. Nucleic Acid–Based Electrochemical Biosensors. In Electrochemical Biosensors; Ensafi, A. A., Ed.; Elsevier: Iran, 2019; pp 253–276.10.1016/B978-0-12-816491-4.00009-7Search in Google Scholar

53. Sneharani, A. H. Attributes of Functionalized Nanomaterial-Based Electrochemical Sensors for Food and Beverage Analysis. In Functionalized Nanomaterial-Based Electrochemical Sensors; Hussain, C. M.; Manjunatha, J. G., Eds.; Elsevier: United States, India, 2022; pp 177–206.10.1016/B978-0-12-823788-5.00005-3Search in Google Scholar

54. Liu, Y.; Xiao, Y.; Zhang, Y.; Gao, X.; Wang, H.; Niu, B. ZnO-rGO-based Electrochemical Biosensor for the Detection of Organophosphorus Pesticides. Bioelectrochemistry 2024, 156, 108599. https://doi.org/10.1016/j.bioelechem.2023.108599.Search in Google Scholar PubMed

55. Bala, R.; Sharma, R. K.; Wangoo, N. Development of Gold Nanoparticles-Based Aptasensor for the Colorimetric Detection of Organophosphorus Pesticide Phorate. Anal. Bioanal. Chem. 2016, 408, 333–338. https://doi.org/10.1007/s00216-015-9085-4.Search in Google Scholar PubMed

56. Wang, K.; Lin, X.; Zhang, M.; Li, Y.; Luo, C.; Wu, J. Review of Electrochemical Biosensors for Food Safety Detection. Biosensors (Basel) 2022, 12, 959. https://doi.org/10.3390/bios12110959.Search in Google Scholar PubMed PubMed Central

57. Zhang, C.; Lai, Q.; Chen, W.; Zhang, Y.; Mo, L.; Liu, Z. Three-Dimensional Electrochemical Sensors for Food Safety Applications. Biosensors (Basel) 2023, 13, 529. https://doi.org/10.3390/bios13050529.Search in Google Scholar PubMed PubMed Central

58. Magarelli, G.; Freire, A. M.; Silva, L. P. Electrochemical Sensors Coupled with Machine Learning for Food Safety and Quality Inspection. In Food Quality Analysis; Shukla, A. K., Ed.; Elsevier: India, 2023; pp 171–200.10.1016/B978-0-323-95988-9.00001-1Search in Google Scholar

59. Wang, Y.; Ma, X.; Qiao, X.; Yang, P.; Sheng, Q.; Zhou, M. Perspectives for Recognition and Rapid Detection of Foodborne Pathogenic Bacteria Based on Electrochemical Sensors. EFood 2021, 2, 125–139. https://doi.org/10.2991/efood.k.210621.001.Search in Google Scholar

60. Ezoji, H.; Rahimnejad, M. Nanoparticles-based Electrochemical Sensors and Biosensors. In Nanoparticle Design and Characterization for Catalytic Applications in Sustainable Chemistry; Luque, R., Ed.; The Royal Society of Chemistry: Spain, 2019; pp 329–345.10.1039/9781788016292-00329Search in Google Scholar

61. Ananda Murthy, H. C.; Wagassa, A. N.; Ravikumar, C. R.; Nagaswarupa, H. P. Functionalized Metal and Metal Oxide Nanomaterial-Based Electrochemical Sensors. In Functionalized Nanomaterial-Based Electrochemical Sensors; Manjunatha, J. G., Ed.; Elsevier: India, 2022; pp 369–392.10.1016/B978-0-12-823788-5.00001-6Search in Google Scholar

62. Pandey, B.; Shankar, D. Recent Trends in Metallic Nanocomposites for Sensing and Electrochemical Devices. In Nanoparticles Reinforced Metal Nanocomposites; Springer Nature Singapore: Singapore, 2023; pp 237–271.10.1007/978-981-19-9729-7_8Search in Google Scholar

63. Seok, H; Park, T. H. Integration of Biomolecules and Nanomaterials: Towards Highly Selective and Sensitive Biosensors. Biotechnol. J. 2011, 6, 1310–1316. https://doi.org/10.1002/biot.201100006.Search in Google Scholar PubMed

64. Aziz, MdA.; Oyama, M. Nanomaterials in Electrochemical Biosensor. Adv. Mat. Res. 2014, 995, 125–143. https://doi.org/10.4028/www.scientific.net/AMR.995.125.Search in Google Scholar

65. Jia, X.; Dong, S.; Wang, E. Engineering the Bioelectrochemical Interface Using Functional Nanomaterials and Microchip Technique toward Sensitive and Portable Electrochemical Biosensors. Biosens. Bioelectron. 2016, 76, 80–90. https://doi.org/10.1016/j.bios.2015.05.037.Search in Google Scholar PubMed

66. Kang, S.; Mathwig, K.; Lemay, S. G. Response Time of Nanofluidic Electrochemical Sensors. Lab. Chip. 2012, 12, 1262. https://doi.org/10.1039/c2lc21104a.Search in Google Scholar PubMed

67. Hazra, S. K.; Basu, S. Development of Nanostructures by Electrochemical Method for Chemical Sensors. In Handbook of Nanoelectrochemistry; Springer International Publishing: Cham, 2015; pp. 1–45.10.1007/978-3-319-15207-3_23-1Search in Google Scholar

68. Lee, C.; An, S.; Cho, Y.; Chang, J.; Park, J.; Lee, M. Performance Improvement of Indium Tin Oxide Electrochemical Sensor by Mixing Carbon Black. Sensor. Mater. 2024, 36, 2199. https://doi.org/10.18494/SAM5007.Search in Google Scholar

69. Hellmann, A. Gc; Hellmann, C. K. A.; Caniglia, G.; Kranz, C. Miniaturized Electrochemical Biosensors. Encycl. Sensors Biosens. 2022, 1–4.10.1016/B978-0-12-822548-6.00152-7Search in Google Scholar

70. Mariani, F.; Gualandi, I.; Schuhmann, W.; Scavetta, E. Micro- and Nano-Devices for Electrochemical Sensing. Microchim. Acta. 2022, 189, 459. https://doi.org/10.1007/s00604-022-05548-3.Search in Google Scholar PubMed PubMed Central

71. Lanone, S.; Boczkowski, J. Biomedical Applications and Potential Health Risks of Nanomaterials: Molecular Mechanisms. Curr. Mol. Med. 2006, 6, 651–663. https://doi.org/10.2174/156652406778195026.Search in Google Scholar PubMed

72. Kalambate, P. K.; Thirabowonkitphithan, P.; Kaewarsa, P.; Permpoka, K.; Radwan, A. B.; Shakoor, R. A. Progress, Challenges, and Opportunities of Two-Dimensional Layered Materials Based Electrochemical Sensors and Biosensors. Mater. Today Chem. 2022, 26, 101235. https://doi.org/10.1016/j.mtchem.2022.101235.Search in Google Scholar

73. Kaya, H. K.; Çağlayan, T.; Kuralay, F. Functionalized Nanomaterial-Based Electrochemical Sensors for Point-Of-Care Devices. In Functionalized Nanomaterial-Based Electrochemical Sensors; Hussain, C. M., Ed.; Elsevier: United States, 2022; pp 309–335.10.1016/B978-0-12-823788-5.00021-1Search in Google Scholar

74. Godja, N-C.; Munteanu, F-D. Hybrid Nanomaterials: A Brief Overview of Versatile Solutions for Sensor Technology in Healthcare and Environmental Applications. Biosensors (Basel) 2024, 14, 67. https://doi.org/10.3390/bios14020067.Search in Google Scholar PubMed PubMed Central

75. Liu, X.; Huang, L.; Qian, K. Nanomaterial-Based Electrochemical Sensors: Mechanism, Preparation, and Application in Biomedicine. Adv. Nanobiomed Res. 2021, 1. https://doi.org/10.1002/anbr.202000104.Search in Google Scholar

76. Sable, H.; Kumar, V.; Singh, V.; Rustagi, S.; Chaudhary, V.; Pandit, S. Review–Nanosystems-Enhanced Electrochemical Biosensors for Precision in One Health Management. J. Electrochem. Soc. 2024, 171, 037527. https://doi.org/10.1149/1945-7111/ad32a1.Search in Google Scholar

77. Galvin, P.; Padmanathan, N.; Razeeb, K. M.; Rohan, J. F.; Nagle, L. C.; Wahl, A. Nanoenabling Electrochemical Sensors for Life Sciences Applications. J. Mater. Res. 2017, 32, 2883–2904. https://doi.org/10.1557/jmr.2017.290.Search in Google Scholar

78. J. G. Manjunatha. Novel Nanostructured Materials for Electrochemical Bio-Sensing Applications. 2023.Search in Google Scholar

79. Sattler, K. D., Ed.; 21st Century Nanoscience: A Handbook (Ten-Volume Set); CRC Press, 2022.Search in Google Scholar

80. Tang, K.; Li, X.; Li, Z.; Mao, L.; Liu, L.; Yuan, L. A Novel Enzyme-Based Electrochemical Biosensor for Sensitive Detection of Hydrogen Peroxide Based on the Fluorescent Peptide Self-Assembled Nanomaterials. J. Inorg. Organomet. Polym. Mater. 2024, 34, 5503–5514. https://doi.org/10.1007/s10904-024-03234-w.Search in Google Scholar

81. Song, Z.; Li, Y.; Li, R.; Fan, G-C.; Luo, X. Robust Electrochemical Biosensors Based on Antifouling Peptide Nanoparticles for Protein Quantification in Complex Biofluids. ACS Sens 2024, 9, 1525–1532. https://doi.org/10.1021/acssensors.3c02706.Search in Google Scholar PubMed

82. Dorney, J. Polystyrene: A Potential Standard for Developing In Vitro Cellular Tracking Methods for Nanotoxicology. PhD. Thesis, 2013.Search in Google Scholar

83. Arfin, T. Emerging Trends in Lab-On-A-Chip for Biosensing Applications. In Functionalized Nanomaterials Based Devices for Environmental Applications; Hussain, C. M.; Joshi, G. M., Eds.; Elsevier: United States, India, 2021; pp 199–218.10.1016/B978-0-12-822245-4.00008-8Search in Google Scholar

84. Danilov, M. O.; Kolbasov, G. Y. A. Modification of Carbon Nanotubes with Cadmium Sulfide Quantum Dots to Obtain Electrode Materials for Current Sources. American J. Energy Res. 2013, 1, 33–35. https://doi.org/10.12691/ajer-1-2-2.Search in Google Scholar

85. Cooper, K. Scalable Nanomanufacturing–A Review. Micromachines (Basel) 2017, 8, 20. https://doi.org/10.3390/mi8010020.Search in Google Scholar

86. Gumasta, K.; Kumar Gupta, S.; Benyoucef, L.; Tiwari, M. K. Developing a Reconfigurability Index Using Multi-Attribute Utility Theory. Int. J. Prod. Res. 2011, 49, 1669–1683. https://doi.org/10.1080/00207540903555536.Search in Google Scholar

87. Karri, R. R.; Mubarak, N. M.; Koduru, J. R.; Lingamdinne, L. P.; Dehghani, M. H.; Jatoi, A. S. Role of Hybrid Nanomaterials for a Sustainable Environment. In Hybrid Nanomaterials for Sustainable Applications; Koduru, J. R.; Mubarak, N. M., Eds.; Elsevier: South Korea, 2023; pp 1–24.10.1016/B978-0-323-98371-6.00017-3Search in Google Scholar

88. Taylor-Pashow, K. M. L.; Della Rocca, J.; Huxford, R. C.; Lin, W. Hybrid Nanomaterials for Biomedical Applications. Chem. Commun. 2010, 46, 5832. https://doi.org/10.1039/c002073g.Search in Google Scholar PubMed

89. Banin, U.; Ben-Shahar, Y.; Vinokurov, K. Hybrid Semiconductor–Metal Nanoparticles: From Architecture to Function. Chem. Mater. 2014, 26, 97–110. https://doi.org/10.1021/cm402131n.Search in Google Scholar

90. Talwar, A.; Anand, S.; Nayyar, A.; Fatima, F.; Zahera, M. Hybrid Nanomaterials. In Technological Applications of Nano-Hybrid Composites; IGI Global: Pennsylvania, 2024; pp 63–96.10.4018/979-8-3693-1261-2.ch003Search in Google Scholar

91. Cai, W.; Chen, F. C. Hybrid Nanomaterials: Design, Synthesis, and Biomedical Applications, 1st ed.; CRC Press: Boca Raton, 2017.10.1201/9781315370934-1Search in Google Scholar

92. Rajakumari, R.; Tharayil, A.; Thomas, S.; Kalarikkal, N. Hybrid Nanostructures for Biomedical Applications. In Hybrid Phosphor Materials; Springer Nature: Berlin, 2022; pp 275–301.10.1007/978-3-030-90506-4_12Search in Google Scholar

93. Thakur, A.; Kumar, A. Innovative Hybrid Nanomaterials for Precision Biomedical Solutions. In Innovations and Applications of Hybrid Nanomaterials; IGI Global: Pennsylvania, 2024; pp 144–182.10.4018/979-8-3693-3268-9.ch007Search in Google Scholar

94. Macchione, M.; Biglione, C.; Strumia, M. Design, Synthesis and Architectures of Hybrid Nanomaterials for Therapy and Diagnosis Applications. Polymers (Basel) 2018, 10, 527. https://doi.org/10.3390/polym10050527.Search in Google Scholar PubMed PubMed Central

95. Nashruddin, S. N. A. B. M.; Salleh, F. H. M.; Yunus, R. M.; Zaman, H. B. Artificial Intelligence−powered Electrochemical Sensor: Recent Advances, Challenges, and Prospects. Heliyon 2024, 10, e37964. https://doi.org/10.1016/j.heliyon.2024.e37964.Search in Google Scholar PubMed PubMed Central

96. Thapa, R.; Poudel, S.; Krukiewicz, K.; Kunwar, A. A Topical Review on AI-Interlinked Biodomain Sensors for Multi-Purpose Applications. Measurement 2024, 227, 114123. https://doi.org/10.1016/j.measurement.2024.114123.Search in Google Scholar

97. Zhou, Z.; Xu, T.; Zhang, X. Empowerment of AI Algorithms in Biochemical Sensors. Trac. Trends Anal. Chem. 2024, 173, 117613. https://doi.org/10.1016/j.trac.2024.117613.Search in Google Scholar

98. Sezer, B. B.; Turkmen, H.; Nuriyev, U. PPFchain: A Novel Framework Privacy-Preserving Blockchain-Based Federated Learning Method for Sensor Networks. Internet Things 2023, 22, 100781. https://doi.org/10.1016/j.iot.2023.100781.Search in Google Scholar

99. Materon, E. M.; Gómez, F. R.; Joshi, N.; Dalmaschio, C. J.; Carrilho, E.; Oliveira, O. N. Smart Materials for Electrochemical Flexible Nanosensors: Advances and Applications. In Nanosensors for Smart Manufacturing; Thomas, S.; Ahmadi, M.; Yasin, G., Eds.; Elsevier: India, Iran, China, 2021; pp 347–371.10.1016/B978-0-12-823358-0.00018-6Search in Google Scholar

100. del Campo, F. J. Self-powered Electrochemical Sensors. Curr. Opin. Electrochem. 2023, 41, 101356. https://doi.org/10.1016/j.coelec.2023.101356.Search in Google Scholar

101. Mukhopadhyay, S. C.; Tyagi, S. K. S.; Suryadevara, N. K.; Piuri, V.; Scotti, F.; Zeadally, S. Artificial Intelligence-Based Sensors for Next Generation IoT Applications: A Review. IEEE Sens J 2021, 21, 24920–24932. https://doi.org/10.1109/JSEN.2021.3055618.Search in Google Scholar

102. Camargo, J. R.; Orzari, L. O.; de Souza Rodrigues, J.; Felipe de Lima, L.; Longo Cesar Paixão, T. R.; Fraceto, L. F. Advancements in Disposable Electrochemical Systems for Sustainable Agriculture Monitoring: Trends, Gaps, and Applied Examples. Trac. Trends Anal. Chem. 2024, 180, 117968. https://doi.org/10.1016/j.trac.2024.117968.Search in Google Scholar

Received: 2024-12-31
Accepted: 2025-06-03
Published Online: 2025-07-04

© 2025 IUPAC & De Gruyter

Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2024-0403/pdf
Scroll to top button