Home Green synthesis, characterization and bioactivity analysis of eco-friendly silver nanoparticles using Schefflera actinophylla flowers
Article
Licensed
Unlicensed Requires Authentication

Green synthesis, characterization and bioactivity analysis of eco-friendly silver nanoparticles using Schefflera actinophylla flowers

  • Harishankar Sunilkumar , Haripriya R. Venpalackal , Aswathy S. Nair , Rani V. Sivasankarapillai , Emmanuel Simon and Supriya Radhakrishnan ORCID logo EMAIL logo
Published/Copyright: May 23, 2025

Abstract

The synthesis of nanoparticles (NPs) has gained prominence due to their distinct properties and wide-ranging applications. Among various methods, green synthesis stands out for its environmentally friendly approach. This study investigates the green synthesis of silver nanoparticles (AgNPs) using the aqueous extract of Umbrella plant flowers (Schefflera actinophylla). Phytochemical analysis of the extract identified the presence of alkaloids, terpenoids, saponins, resins, carbohydrates, and phenols. Silver nanoparticles were synthesized using a 0.1 M AgNO3 solution and monitored through UV-visible spectroscopy, which revealed an absorption peak at 370 nm. Characterization through infrared (FTIR) spectroscopy, Field Emission Scanning Electron Microscopy (FE-SEM), Dynamic Light Scattering (DLS), and Zeta potential measurements indicated an average particle size of 8.9 nm and a zeta potential of −8.8 mV. FE-SEM images showed nanoparticles in various shapes. The AgNPs exhibited significant antimicrobial activity against common bacteria such as Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, and Escherichia coli, as well as fungi including Aspergillus niger and Candida albicans. Furthermore, the nanoparticles displayed notable antioxidant activity with an IC50 value of 37.025 μg/ml. This study highlights the benefits of using plant-based methods for nanoparticle synthesis, offering an eco-friendly alternative to conventional chemical processes, thus reducing pollution and mitigating antibiotic resistance in microbes.


Corresponding author: Supriya Radhakrishnan, Postgraduate and Research Department of Botany, SVR NSS College, Vazhoor, Kerala, 686505, India, e-mail:
Article note: A collection of invited papers based on presentations at the International Conference on Pesticides and Related Emerging Organic Pollutants Impact on the Environment and Human Health and Its Remediation Strategies held on 7 - 9 Nov 2024 in Bangalore, India.

Acknowledgments

Acknowledgements to SVR NSS College, Vazhoor for providing the infrastructure to do the work.

  1. Research ethics: NA.

  2. Informed consent: Informed consent was obtained from all individuals included in this study, or their legal guardians or wards.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: Grammarly, Chat GPT – to improve language.

  5. Competing interests: The authors state no conflict of interest.

  6. Research funding: Nil.

  7. Data availability: NA.

References

1. Manicum, A-L. E.; Mokgalaka-Fleischmann, N. S.; Tembu, J. V.; Manicum, A. L. E. Advances in Phytonanotechnology: A Plant-Mediated Green Synthesis of Metal Nanoparticles using Phyllanthus Plant Extracts and their Antimicrobial and Anticancer Applications. Nanomaterials 2023, 13 (19), 2616; https://doi.org/10.3390/nano13192616.Search in Google Scholar PubMed PubMed Central

2. Dhir, R.; Chauhan, S.; Subham, P.; Kumar, S.; Sharma, P.; Shidiki, A.; Kumar, G. Plant-Mediated Synthesis of Silver Nanoparticles: Unlocking their Pharmacological Potential–A Comprehensive Review. Front. Bioeng. Biotechnol. 2024, 11, 1324805; https://doi.org/10.3389/fbioe.2023.1324805.Search in Google Scholar PubMed PubMed Central

3. Kumar, S.; Pandey, A. K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013, 2013, 162750; https://doi.org/10.1155/2013/162750.Search in Google Scholar PubMed PubMed Central

4. Pandey, K. B.; Rizvi, S. I. Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Oxid. Med. Cell. Longev. 2009, 2 (5), 270–278; https://doi.org/10.4161/oxim.2.5.9498.Search in Google Scholar PubMed PubMed Central

5. Mittal, A. K.; Chisti, Y.; Banerjee, U. C. Synthesis of Metallic Nanoparticles using Plant Extracts. Biotechnol. Adv. 2013, 31 (2), 346–356; https://doi.org/10.1016/j.biotechadv.2013.01.003.Search in Google Scholar PubMed

6. Hano, C.; Abbasi, B. H. Plant-Based Green Synthesis of Nanoparticles: Production, Characterization, and Applications. Biomolecules 2021, 12 (1), 31; https://doi.org/10.3390/biom12010031.Search in Google Scholar PubMed PubMed Central

7. Dhand, V.; Soumya, L.; Bharadwaj, S.; Chakra, S.; Bhatt, D.; Sreedhar, B. Green Synthesis of Silver Nanoparticles using Coffea Arabica Seed Extract and its Antibacterial Activity. Mater. Sci. Eng. C 2016, 58, 36–43; https://doi.org/10.1016/j.msec.2015.08.018.Search in Google Scholar PubMed

8. Iravani, S. Green Synthesis of Metal Nanoparticles using Plants. Green Chem. 2011, 13 (10), 2638–2650; https://doi.org/10.1039/c1gc15386b.Search in Google Scholar

9. Aigbe, U. O.; Osibote, O. A. Green synthesis of metal oxide nanoparticles and their various applications. J. Hazard. Mater. Adv. 2024, 13, 100401; https://doi.org/10.1016/j.hazadv.2024.100401.Search in Google Scholar

10. Afonso, I. S.; Cardoso, B.; Nobrega, G.; Minas, G.; Ribeiro, J. E.; Lima, R. A. Green Synthesis of Nanoparticles from Olive Oil Waste for Environmental and Health Applications: A Review. J. Environ. Chem. Eng. 2024, 12 (5), 114022; https://doi.org/10.1016/j.jece.2024.114022.Search in Google Scholar

11. Thatyana, M.; Dube, N. P.; Kemboi, D.; Manicum, A.-L. E.; Mokgalaka-Fleischmann, N. S.; Tembu, J. V. Advances in Phytonanotechnology: A Plant-Mediated Green Synthesis of Metal Nanoparticles using phyllanthus Plant Extracts and their Antimicrobial and Anticancer Applications. Nanomaterials 2023, 13, 2616; https://doi.org/10.3390/nano13192616.Search in Google Scholar PubMed PubMed Central

12. Guan, Z.; Ying, S.; Ofoegbu, P. C.; Clubb, P.; Rico, C.; He, F.; Hong, J. Green synthesis of nanoparticles: Current developments and limitations. Environ. Technol. Innovat. 2022, 26, 102336; https://doi.org/10.1016/j.eti.2022.102336.Search in Google Scholar

13. Abuzeid, H. M.; Julien, C. M.; Zhu, L.; Hashem, A. M. Green Synthesis of Nanoparticles and their Energy Storage, Environmental, and Biomedical Applications. Crystals 2023, 13 (11), 1576; https://doi.org/10.3390/cryst13111576.Search in Google Scholar

14. Choudhary, S.; Sharma, R.; Devi, A.; Thakur, A.; Giri, S. K.; Nagar, S.; Singh, G. Green Synthesis of Copper Nanoparticles and their Evaluation for Antimicrobial Activity and Bio-Compatibility. Mater. Today: Proc. 2023; https://doi.org/10.1016/j.matpr.2023.02.347.Search in Google Scholar

15. Elemike, E. E.; Onwudiwe, D. C.; Ekennia, A. C. Eco-Friendly Synthesis of Silver Nanoparticles using Umbrella Plant, and Evaluation of their Photocatalytic and Antibacterial Activities. Inorg. Nano-Metal Chem. 2020, 50, 389–399; https://doi.org/10.1080/24701556.2020.1716005.Search in Google Scholar

16. Thankamani, V.; James, J.; Arunkumar, T. V.; Dev, L. M. S. Phytochemical Screening and Antimicrobial Activity of Alstonia scholaris flower (L.) R.Br. Int. J. Pharmaceut. Res. Dev. 2011, 3 (4), 172–178.Search in Google Scholar

17. Wayne, P. A. Performance Standards for Antimicrobial Susceptibility Testing: Nineteenth Informational Supplement. Clin. Lab. Stand. Instit. 2009, M100-S19, 136–139.Search in Google Scholar

18. Berkow, E. L.; Lockhart, S. R.; Ostrosky-Zeichner, L. Antifungal Susceptibility Testing: Current Approaches. Clin. Microbiol. Rev. 2020, 33 (3), 1–30; https://doi.org/10.1128/cmr.00069-19.Search in Google Scholar

19. Dubale, S.; Kebebe, D.; Zeynudin, A.; Abdissa, N.; Suleman, S. Phytochemical Screening and Antimicrobial Activity Evaluation of Selected Medicinal Plants in Ethiopia. J. Exp. Pharmacol. 2023, 15, 51–62; https://doi.org/10.2147/jep.s379805.Search in Google Scholar PubMed PubMed Central

20. Mensor, M. L.; Menezes, F. S.; Leitão, G. G.; Reis, A. S.; Santos, T. C. D.; Coube, C. S.; Leitão, S. G. Screening of Brazilian Plant Extracts for Antioxidant Activity by the use of DPPH Free Radical Method. Phytother Res. 2001, 15 (2), 127–130; https://doi.org/10.1002/ptr.687.Search in Google Scholar PubMed

21. Firn, R. Nature’s Chemicals: The Natural Products that Shaped our World; Oxford University Press: Oxford, 2010.Search in Google Scholar

22. Newman, D. J.; Cragg, G. M. Natural Products as Sources of new Drugs from 1981 to 2014. J. Nat. Prod. 2016, 79 (3), 629–661; https://doi.org/10.1021/acs.jnatprod.5b01055.Search in Google Scholar PubMed

23. Sparg, S. G.; Light, M. E.; van Staden, J. Biological Activities and Distribution of Plant Saponins. J. Ethnopharmacol. 2004, 94 (2–3), 219–243; https://doi.org/10.1016/j.jep.2004.05.016.Search in Google Scholar PubMed

24. Scalbert, A.; Johnson, I. T.; Saltmarsh, M. Polyphenols: Antioxidants and Beyond. Am. J. Clin. Nutr. 2005, 81 (1), 215S–217S; https://doi.org/10.1093/ajcn/81.1.215s.Search in Google Scholar PubMed

25. Lehninger, A. L.; Nelson, D. L.; Cox, M. M. Lehninger Principles of Biochemistry; W. H. Freeman: Newyork, 2008.Search in Google Scholar

26. Ghani, A. Medicinal Plants of Bangladesh: Chemical Constituents and Uses, 2nd ed.; Asiatic Society of Bangladesh: Dhaka, 2003.Search in Google Scholar

27. Shankar, S. S.; Ahmad, A.; Sastry, M. Geranium Leaf-Assisted Biosynthesis of Silver Nanoparticles. Biotechnol. Prog. 2003, 19 (6), 1627–1631; https://doi.org/10.1021/bp034070w.Search in Google Scholar PubMed

28. Kumar, D. A.; Palanichamy, V.; Roopan, S. M. Green Synthesis of Silver Nanoparticles Using Alternanthera dentata Leaf Extract at Room Temperature and their Antimicrobial Activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2010, 79 (3), 594–598.Search in Google Scholar

29. Saha, S.; Naik, M. M.; Prasad, K. Synthesis of silver nanoparticles from plant extracts and their applications: A green approach. In Green Synthesis, Characterization and Applications of Nanoparticles; Rajendran, K., Ed.; Elsevier: Amsterdam, 2019; pp 31–52.Search in Google Scholar

30. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003, 107 (3), 668–677; https://doi.org/10.1021/jp026731y.Search in Google Scholar

31. Darroudi, M.; Ahmad, M. B.; Shameli, K.; Abdullah, A. H.; Ibrahim, N. A. Synthesis and Characterization of UV-Irradiated Silver/Montmorillonite Nanocomposites. Solid State Sci. 2009, 11 (9), 1621–1624; https://doi.org/10.1016/j.solidstatesciences.2009.06.016.Search in Google Scholar

32. Balavandy, S. K.; Shameli, K.; Biak, D. R. B. A.; Abidin, Z. Z. Stirring Time Effect of Silver Nanoparticles Prepared in Glutathione Mediated by Green Method. Chem. Cent. J. 2014, 8 (1), 11–20; https://doi.org/10.1186/1752-153x-8-11.Search in Google Scholar PubMed PubMed Central

33. Link, S.; El-Sayed, M. A. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. J. Phys. Chem. B 1999, 103 (40), 8410–8426; https://doi.org/10.1021/jp9917648.Search in Google Scholar

34. Sajanlal, P. R.; Sreeprasad, T. S.; Samal, A. K.; Pradeep, T. Anisotropic Nanomaterials: Structure, Growth, Assembly, and Functions. Nano Rev. 2011, 2 (1), 5883; https://doi.org/10.3402/nano.v2i0.5883.Search in Google Scholar PubMed PubMed Central

35. Chupradit, S.; Kavitha, M.; Suksatan, W.; Ansari, M. J.; Al Mashhadani, Z. I.; Kadhim, M. M.; Mustafa, Y. S.; Shafik, S. S.; Kianfar, E. Morphological Control: Properties and Applications of Metal Nanostructures. Adv. Mater. Sci. Eng. 2022, 2022, 1–15; https://doi.org/10.1155/2022/1971891.Search in Google Scholar

36. Chand, K.; Cao, D.; Fouad, D. E.; Shah, A. H.; Dayo, A. Q.; Zhu, K.; Lakhan, M. N.; Mehdi, G.; Dong, S. Green Synthesis, Characterization and Photocatalytic Application of Silver Nanoparticles Synthesized by Various Plant Extracts. Arab. J. Chem. 2020, 13 (11), 8248–8261; https://doi.org/10.1016/j.arabjc.2020.01.009.Search in Google Scholar

37. Sengul, A. B.; Asmatulu, R. Toxicity of Metal and Metal Oxide Nanoparticles: A Review. Environ. Chem. Lett. 2020, 18, 1659–1683.10.1007/s10311-020-01033-6Search in Google Scholar

38. Jain, P. K.; Huang, X.; El-Sayed, I. H.; El-Sayed, M. A. Review of some Interesting Surface Plasmon Resonance-Enhanced Properties of Noble Metal Nanoparticles and their Applications to Biosystems. Plasmonics 2008, 2 (3), 107–118; https://doi.org/10.1007/s11468-007-9031-1.Search in Google Scholar

39. Rai, M.; Yadav, A.; Gad, A. Silver Nanoparticles as a New Generation of Antimicrobials. Biotechnol. Adv. 2009, 27 (1), 76–83; https://doi.org/10.1016/j.biotechadv.2008.09.002.Search in Google Scholar PubMed

40. Ingrid, D. L.; Souza, D. L.; Saez, V.; Mansur, R. E. Lipid Nanoparticles Containing Coenzyme Q10 for Topical Applications: An Overview of their Characterization. Colloids Surf. B Biointerfacess 2023, 230, 113491; https://doi.org/10.1016/j.colsurfb.2023.113491.Search in Google Scholar PubMed

41. Lima, A. K. O.; Vasconcelos, A. A.; Kobayashi, R. K. T.; Nakazato, G.; Braga, H. d. C.; Taube, P. S. Green Synthesis: Characterization and Biological Activity of Silver Nanoparticles Using Aqueous Extracts of Plants from the Arecaceae Family. Acta Sci. Technol. 2021, 43, e52011.10.4025/actascitechnol.v43i1.52011Search in Google Scholar

42. El-Nour, K. M. A.; Eftaiha, A.; Al-Warthan, A.; Ammar, R. A. A. Synthesis and Applications of Silver Nanoparticles. Arab. J. Chem. 2010, 3 (3), 135–140; https://doi.org/10.1016/j.arabjc.2010.04.008.Search in Google Scholar

43. Rai, M.; Deshmukh, S. D.; Ingle, A. P.; Gade, A. K. Silver Nanoparticles: The Powerful Nanoweapon Against Multidrug-Resistant Bacteria. J. Appl. Microbiol. 2012, 112 (5), 841–852; https://doi.org/10.1111/j.1365-2672.2012.05253.x.Search in Google Scholar PubMed

44. Adil, M.; Filimban, F. Z.; Quddoos, A.; Sher, A. A.; Naseer, M. Phytochemical Screening, HPLC Analysis, Antimicrobial, and Antioxidant Effect of Euphorbia parviflora L. (Euphorbiaceae Juss.). Sci. Rep. 2024, 14 (1), 55905.10.1038/s41598-024-55905-wSearch in Google Scholar

45. Wang, L.; Hu, C.; Shao, L. The Antimicrobial Activity of Nanoparticles: Present Situation and Prospects for the Future. Int. J. Nanomed. 2017, 14 (12), 1227–1249; https://doi.org/10.2147/ijn.s121956.Search in Google Scholar PubMed PubMed Central

46. Dare, R. G.; Lautenschlager, S. O. S. Nanoparticles with Antioxidant Activity. Antioxidants (Basel) 2025, 14 (2), 221; https://doi.org/10.3390/antiox14020221.Search in Google Scholar PubMed PubMed Central

47. Hou, T.; Guo, Y.; Han, W.; Zhou, Y.; Netala, V. R.; Li, H.; Li, H.; Zhang, Z. Exploring the Biomedical Applications of Biosynthesized Silver Nanoparticles Using Perilla frutescens Flavonoid Extract: Antibacterial, Antioxidant, and Cell Toxicity Properties against Colon Cancer Cells. Molecules 2023, 28, 6431; https://doi.org/10.3390/molecules28176431.Search in Google Scholar PubMed PubMed Central

48. Zhang, X. F.; Liu, Z. G.; Shen, W.; Gurunathan, S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. IJMS 2016, 17, 1534; https://doi.org/10.3390/ijms17091534.Search in Google Scholar PubMed PubMed Central

Published Online: 2025-05-23

© 2025 IUPAC & De Gruyter

Downloaded on 1.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2024-0378/html
Scroll to top button