Abstract
Currently, we find ourselves with the urgent need for chemistry to exert a substantial positive influence on environmental impact, by means of products and chemical processes. To achieve these objectives, we must pay special attention in terms of resource sustainability, considering factors such as life cycle assessments and minimizing carbon footprints. Biomass obtained from organic matter found in plants as well as agricultural and industrial waste, represents the most abundant reserve of renewable materials on our planet. In this perspective we highlight the research and innovation possibilities provided by renewable raw materials obtained from biomass within the domain of organic synthesis toward sustainable development. We focus our discussion on different reactions in the field of organic chemistry, primarily employing furanic platforms as renewable compounds derived from cellulosic biomass. The main aim is to generate high-value products, with a special emphasis on potential development of new pharmaceuticals.
References
[1] Keijer, T.; Bakker, V.; Slootweg, J. C. Nat. Chem. 2019, 11, 190–195. https://doi.org/10.1038/s41557-019-0226-9.Search in Google Scholar PubMed
[2] Kümmerer, K.; Clark, J. H.; Zuin, V. G. Science 2020, 367, 369–370. https://doi.org/10.1126/science.aba4979.Search in Google Scholar PubMed
[3] Nicolaou, K. C. Isr. J. Chem. 2018, 58, 104–113. https://doi.org/10.1002/ijch.201700121.Search in Google Scholar
[4] Nicolaou, K. C. Proc. R. Soc. A 2014, 470 (1), 20130690. https://doi.org/10.1098/rspa.2013.0690.Search in Google Scholar PubMed PubMed Central
[5] Nising, C. F.; von Nussbaum, F. Eur. J. Org Chem. 2022, 17 (1). https://doi.org/10.1002/ejoc.202200252.Search in Google Scholar
[6] Yue, K.; Zhou, Q.; Bird, R.; Zhu, L.; Zhang, D.; Li, D.; Zou, L.; Yang, J.; Fu, X.; Georges, G.P. J. Org. Chem. 2023, 88, 4031–4035. https://doi.org/10.1021/acs.joc.2c03057.Search in Google Scholar PubMed
[7] Castiello, C.; Junghanns, P.; Mergel, A.; Jacob, C.; Ducho, C.; Valente, S.; Rotili, D.; Fioravanti, R.; Zwergel, C.; Mai, A. Green Chem. 2023, 25, 2109–2169. https://doi.org/10.1039/d2gc03772f.Search in Google Scholar
[8] Zimmerman, J. B.; Anastas, P. T.; Erythropel, H. C.; Leitner, W. Science 2020, 367, 397–400. https://doi.org/10.1126/science.aay3060.Search in Google Scholar PubMed
[9] Ganesh, K. N.; Zhang, D.; Miller, S. J.; Rossen, K.; Chirik, P. J.; Kozlowski, M. C.; Zimmerman, J. B.; Brooks, B. W.; Savage, P. E.; Allen, D. T.; Voutchkova-Kostal, A. M. Org. Process Res. Dev. 2021, 25, 1455–1459. https://doi.org/10.1021/acs.oprd.1c00216.Search in Google Scholar
[10] Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey, G. R.; Leazer, J. L.Jr.; Linderman, R. J.; Lorenz, K.; Manley, J.; Pearlman, B. A.; Wells, A.; Zaksh, A.; Zhang, T. Y. Green Chem. 2007, 9 (411), 411–420. https://doi.org/10.1039/b703488c.Search in Google Scholar
[11] Schaub, T. Chem. Eur. J. 2021, 27, 1865–1869. https://doi.org/10.1002/chem.202003544.Search in Google Scholar PubMed
[12] Chen, T.; Kim, H.; Pan, S.; Tseng, P.; Lin, Y.; Chiang, P. Sci. Tot. Envir. 2020, 716, 136998. https://doi.org/10.1016/j.scitotenv.2020.136998.Search in Google Scholar PubMed
[13] Mestres, R. Educ. Quím. 2013, 24, 103–112. https://doi.org/10.1016/S0187-893X(13)72503-5.Search in Google Scholar
[14] Erythropel, H. C.; Zimmerman, J. B.; de Winter, T. M.; Petitjean, L.; Melnikov, F.; Lam, C. H.; Lounsbury, A. W.; Mellor, K. E.; Janković, N. Z.; Tu, Q.; Pincus, L. N.; Falinski, M. M.; Shi, W.; Coish, P.; Plata, De. L.; Anastas, P. T. Green Chem. 2018, 20, 1929–1961. https://doi.org/10.1039/c8gc00482j.Search in Google Scholar
[15] He, M.; Sun, Y.; Han, B. Angew. Chem., Int. Ed. 2013, 52 (2), 9620–9633. https://doi.org/10.1002/anie.201209384.Search in Google Scholar PubMed
[16] Queneau, Y.; Han, B. Innovation 2022, 3, 100184. https://doi.org/10.1016/j.xinn.2021.100184.Search in Google Scholar PubMed PubMed Central
[17] Groß, J.; Kühlborn, J.; Opatz, T. Green Chem. 2020, 22, 4411–4425. https://doi.org/10.1039/d0gc01484b.Search in Google Scholar
[18] Corma, A.; Iborra, S.; Velty, A. Chem. Rev. 2007, 107, 2411–2502. https://doi.org/10.1021/cr050989d.Search in Google Scholar PubMed
[19] Palkovits, R.; Delidovich, I. Phil. Trans. R. Soc. A. 2017, 376 (64), 20170064. https://doi.org/10.1098/rsta.2017.0064.Search in Google Scholar PubMed PubMed Central
[20] Tuck, C.O.; Pérez, E.; Horváth, I.T.; Sheldon, R.A.; Poliakoff, M. Science 2012, 337, 695–699. https://doi.org/10.1126/science.1218930.Search in Google Scholar PubMed
[21] Brun, N.; Hesemann, P.; Esposito, D. Chem. Sci. 2017, 8 (4724), 4724–4738. https://doi.org/10.1039/c7sc00936d.Search in Google Scholar PubMed PubMed Central
[22] Gallezot, P. Chem. Soc. Rev. 2012, 41, 1538–1558. https://doi.org/10.1039/c1cs15147a.Search in Google Scholar PubMed
[23] Kühlborn, J.; Groß, J.; Opatz, T. Nat. Prod. Rep. 2020, 37, 380–424. https://doi.org/10.1039/c9np00040b.Search in Google Scholar PubMed
[24] Koh, P.F.; Loh, T.P. Green Chem. 2015, 17, 3746–3750. https://doi.org/10.1039/c5gc00900f.Search in Google Scholar
[25] Cioc, R.C.; Ruijter, E.; Orru, R.V.A. Green Chem. 2014, 16, 2958–2975. https://doi.org/10.1039/C4GC00013G.Search in Google Scholar
[26] Dömling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39 (3168), 3168–3210. https://doi.org/10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U.10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-USearch in Google Scholar
[27] Shaaban, S.; Abdel-Wahab, B.F. Mol. Divers. 2016, 20, 233–254. https://doi.org/10.1007/s11030-015-9602-6.Search in Google Scholar
[28] Fan, W.; Queneau, Y.; Popowycz, F. Green Chem. 2018, 20 (485), 485–492. https://doi.org/10.1039/C7GC03425C.Search in Google Scholar
[29] Golubev, P.; Pankova, A.; Krasavin, M. Tetrahedron Lett. 2019, 60, 1578–1581. https://doi.org/10.1016/j.tetlet.2019.05.018.Search in Google Scholar
[30] Martinho, L.A.; Rosalba, T.P.F.; Sousa, G.G.; Gatto, C.C.; Politi, J.R.S.; Andrade, C.K.Z. Mol. Divers. 2024, 28, 111–123. https://doi.org/10.1007/s11030-023-10618-6.Search in Google Scholar
[31] de la Sovera, V.; López, G.V.; Porcal, W. Eur. J. Org Chem. 2022, 2022, e202101369. https://doi.org/10.1002/ejoc.202101369.Search in Google Scholar
[32] Chacón-Huete, F.; Messina, C.; Cigana, B.; Forgione, P. ChemSusChem 2022, 15, e202200328. https://doi.org/10.1002/cssc.202200328.Search in Google Scholar PubMed
[33] Kim, H.; Kim, J.; Won, W. ChemSusChem 2022, 15, e202200240. https://doi.org/10.1002/cssc.202200240.Search in Google Scholar PubMed
[34] Espro, C.; Paone, E.; Mauriello, F.; Gotti, R.; Uliassi, E.; Bolognesi, M.L.; Rodríguez-Padrónae, D.; Luque, R. Chem. Soc. Rev. 2021, 50, 11191–11207. https://doi.org/10.1039/D1CS00524C.Search in Google Scholar
[35] Pengxin Yu, P.; Sun, G.; Xiong, L.; Zheng, B.; Li, T.; Jiang, J.; Wang, Y.; Yang, W. Mol. Cat. 2022, 521, 112187. https://doi.org/10.1016/j.mcat.2022.112187.Search in Google Scholar
[36] Mascal, M. ACS Sustain. Chem. Eng. 2019, 7, 5588–5601. https://doi.org/10.1021/acssuschemeng.8b06553.Search in Google Scholar
[37] Flourat, A.L.; Peru, A.A.M.; Teixeira, A.R.S.; Brunissen, F.; Allais, F. Green Chem. 2015, 17, 404–412. https://doi.org/10.1039/C4GC01231C.Search in Google Scholar
[38] Camp, J. E.; Greatrex, B. W. Front. Chem. 2022, 10 (1), 902239. https://doi.org/10.3389/fchem.2022.902239.Search in Google Scholar PubMed PubMed Central
© 2024 IUPAC & De Gruyter
Articles in the same Issue
- Frontmatter
- Editorial
- Preface for the special issue ‘Activities and Actions Towards a Sustainable Future’ – a joint project by the International Union of Pure and Applied Chemistry (IUPAC) and the International Younger Chemists Network (IYCN)
- Special topic papers
- One story as part of the Global Conversation on Sustainability: dye adsorption studies using a novel bio-derived calcite material
- The past is the future: from natural acid-base indicators to natural reagents in sustainable analytical chemistry
- Renewable carbon resource from biomass: building molecular architectures from furanic platforms
- Paths and synergies in accelerating the UN 17 SDGs through the lens of green chemistry: contributions from a Brazilian university and its Institute of Chemistry
- Outreach in coordinated individual events: the GCS format of CNR Italy
- Green chemistry for all: three principles of Inclusive Green and Sustainable Chemistry Education
- Molecular approach to semiconductors: a shift towards ecofriendly manufacturing and neuroinspired interfaces
Articles in the same Issue
- Frontmatter
- Editorial
- Preface for the special issue ‘Activities and Actions Towards a Sustainable Future’ – a joint project by the International Union of Pure and Applied Chemistry (IUPAC) and the International Younger Chemists Network (IYCN)
- Special topic papers
- One story as part of the Global Conversation on Sustainability: dye adsorption studies using a novel bio-derived calcite material
- The past is the future: from natural acid-base indicators to natural reagents in sustainable analytical chemistry
- Renewable carbon resource from biomass: building molecular architectures from furanic platforms
- Paths and synergies in accelerating the UN 17 SDGs through the lens of green chemistry: contributions from a Brazilian university and its Institute of Chemistry
- Outreach in coordinated individual events: the GCS format of CNR Italy
- Green chemistry for all: three principles of Inclusive Green and Sustainable Chemistry Education
- Molecular approach to semiconductors: a shift towards ecofriendly manufacturing and neuroinspired interfaces