Supplementary material # for # Synthesis and structural analysis of D-fructofuranosylated compounds for the analysis of GH172 difructose dianhydride I synthase/hydrolase Akihiro Ishiwata*, Toma Kashima, Machika Kaieda, Katsunori Tanaka, Kiyotaka Fujita*, Shinya Fushinobu*, Yukishige Ito* | Contents | Page | |--|------| | Contents | S1 | | General procedures | S2 | | Experimental procedure for the synthesis of 3. | S2 | | Scheme SI-1. Synthesis of 3. | S2 | | ¹ H and ¹³ C NMR spectra of SI-1 in CDCl ₃ | S5 | | ¹ H and ¹³ C NMR spectra of SI-2 in CDCl ₃ | S6 | | ¹ H and ¹³ C NMR spectra of SI-3 in CDCl ₃ | S7 | | ¹ H and ¹³ C NMR spectra of SI-4 in CDCl ₃ | S8 | | ¹ H- ¹ H COSY spectra and HMQC spectra of SI-4 in CDCl ₃ | S9 | | Figure SI-1. 1D NOE difference spectra of SI-4. | S10 | | ¹ H NMR and ¹³ C NMR spectra of 3 in CD ₃ OD (400 MHz) | S11 | | ¹ H- ¹ H COSY spectra and HMQC spectra of 3 in CD ₃ OD (400 MHz) | S12 | | Reference for SI. | S13 | #### **General procedures:** All reactions sensitive to air and/or moisture were carried out under argon atmosphere with anhydrous solvents. Substrates of glycosylations were dried by azeotropic removal with toluene. Column chromatography was performed on silica gel 60N, 100–210 mesh (Kanto Kagaku Co., Ltd.). Preparative thin layer chromatography was performed on silica gel 60 F254, 0.5 mm (E. Merck). ¹H NMR spectra were recorded at 400 MHz on a JEOL ECX 400 spectrometer and ¹H NMR spectra were referenced to CHCl₃ at 7.24 and MeOH at 3.31 ppm. ¹³C NMR at 100 MHz spectra were referenced to the central peak of CDCl₃ at 77.0 ppm and CD₃OD at 49.0 ppm. ESI-TOF mass spectra were recorded on a Waters Synapt G2 in positive mode with leucine-enkephalin as the internal standard by Dr. Toshihiko Nogawa (Molecular Structure Characterization Unit, RIKEN CSRS). All other reagents were purchased from the Wako Pure Chemical Industries Ltd., Kanto Chemicals Co. Inc., Tokyo Chemical Industry Co., Ltd. and Aldrich Chemical Company. #### Experimental procedure for the synthesis of 3. Figure SI-1. Synthesis of 3. #### Tolyl 3,4-di-O-acetyl-1,6-di-O-t-butyldiphenylsilyl-2-thio-D-fructofuranoside (SI-2). To a solution of D-fructose (10.0 g, 55.5 mmol) in pyridine (50 mL) was added TBDPSCl (31.3 mL, 122.3 mmol) at 0 °C under an Ar atmosphere. The reaction mixture was stirred at the same temperature for overnight and then to the mixture was added acetic anhydride (20 mL) at 0 °C. The reaction mixture was stirred at room temperature for overnight and quenched with ice water, extracted with ethyl acetate, washed with sat. KHSO₄ aq, H₂O, sat. NaHCO₃ aq, and brine, dried over Na₂SO₄, and evaporated in vacuo. The residue was purified by silica gel column chromatography using a gradient solvent system (hexane/ethyl acetate = 100/1 to 50/1 to 25/1 to 10/1 to 2/1) to give 2,3,4-tri-O-acetyl-1,6-di-O-tbutyldiphenylsilyl-D-fructofuranose (SI-1, 35.2 g, 81%) which was used as the anomeric mixture (α : $\beta = 1$: 2.2): ¹H NMR (400 MHz, CDCl₃): δ 1.01–1.08 (m, 39.6 H, t-Bu^{\beta} x2 + 18 H, t-Bu^{\alpha} x2), 1.82 (s, 3 H, Ac^{\alpha}), 2.026 (s, 6.6 H, Ac^{\beta} + 3 H, Ac^{α}), 2.031 (s, 6.6 H, Ac^{β}), 2.07 (s, Ac^{β} , 6.6 H), 2.10 (s, Ac^{α} , 3 H), 3.70 (d, J = 11.2 Hz, $C1^{\beta}$ -H, 2.2 H), 3.74 (d, J = 11.2 Hz, $C1^{\beta}$ -H, 2.2 Hz, C111.2 Hz, $C1^{\beta}$ -H, 2.2 H), 3.73 (d, J = 10.8 Hz, $C1^{\alpha}$ -H, 1 H), 3.77 (d, J = 10.8 Hz, $C1^{\alpha}$ -H, 1 H), 3.77–3.85 (m, $C6^{\beta}$ -H, 4.4 H), 3.84 (d, J = 11.2, 4.0 Hz, $C6^{\alpha}$ -H, 1 H), 3.89 (d, J = 11.2, 4.0 Hz, $C6^{\alpha}$ -H, 1 H), 4.05–4.12 (m, $C5^{\beta}$ -H, 2.2 H), 4.24 (dt, J = 5.2, 4.0 Hz, $C5^{\alpha}$ -H, 1 H), 5.21 (dd, J = 5.2, 1.2 Hz, $C4^{\alpha}$ -H, 1 H), 5.30 (d, J = 1.2 Hz, [SI-1, SI-2] $C3^{\alpha}$ -H, 1 H), 5.57 (t, J = 1.2 Hz, [SI-1, SI-2] [SI-1,5.2 Hz, C4^{β}-H, 2.2 H), 5.74 (d, J = 5.2 Hz, [SI-1, SI-2] C3 β -H, 2.2 H), 7.28–7.75 (m, Ar α , 22 H + Ar β , 10 H); ¹³C NMR (100 MHz, CDCl₃): δ 19.0 (tBu^{α}), 19.12 (tBu^{β}), 19.15 (tBu^{α}), 19.23 (tBu^{β}), 20.7 (Ac^{β}), 20.9 (Ac^{α}), 26.6 (tBu^{α} , tBu^{β}), 63.0 $(C^{\alpha}6)$, 64.7 $(C^{\alpha}1)$, 64.9 $(C^{\beta}6)$, 65.0 $(C^{\beta}1)$, 76.6 $(C^{\beta}3)$, 77.2 $(C^{\alpha}4)$, 77.8 $(C^{\beta}4)$, 81.5 $(C^{\alpha}3)$, 81.8 $(C^{\beta}5)$, 82.5 $(C^{\alpha}5)$, 103.2 $(C^{\beta}2)$, 104.0 $(C^{\alpha}2)$, 127.5, 127.6, 127.8, 127.9, 129.6, 129.6, 129.9, 130.0, 131.9, 132.1, 132.3, 132.5, 132.9, 133.0, 133.2, 135.4, 135.5, 135.6, 135.7 (Ar), 169.1 (C^{α} =O), 169.7 (C^{β} =O), 169.9 (C^{α} =O), 170.4 (C^{β} =O); ESI-TOF MS: calcd for C₄₄H₅₄Na₁O₉Si₂ [M+Na]⁺ 805.32, found 805.32; HRMS (ESI-TOF): calcd for C₄₄H₅₄Na₁O₉Si₂ [M+Na]⁺ 805.3204, found 805.3206. To a solution of 2,3,4-tri-*O*-acetyl-1,6-di-*O*-t-butyldiphenylsilyl-D-fructofuranose (10.0 g, 12.8 mmol) in CH₂Cl₂ (25 mL) were added 4-methylbenzenethiol (TolSH) (1.80 g, 14.5 mmol) and BF₃·OEt₂ (4.94 mL, 39.2 mmol) at 0 °C and the mixture was stirred for 2 h at room temperature and quenched with triethylamine (5 mL), extracted with ethyl acetate, washed with sat. NaHCO3 aq, and brine, dried over Na2SO4, and evaporated in vacuo. The residue was purified by silica gel column chromatography using a gradient solvent system (hexane/ethyl acetate = 100/1 to 50/1 to 25/1 to 10/1 to 2/1) to give the title compound (SI-2) (10.3 g, 95%) as the anomeric mixture (α : β = 2.0 : 1). **SI-2**: ¹H NMR (400 MHz, CDCl₃): α -isomer: δ 1.83 (s, Ac, 3 H), 2.04 (s, Ac, 3 H), 2.29 (s, Me, 3 H), 3.70 (d, J = 10.8Hz, C1-H, 1 H), 3.79 (d, J = 11.6, 3.6 Hz, C6-H, 1 H), 3.84 (d, J = 10.8 Hz, C1-H, 1 H), 3.86 - 3.90 (m, C6-H, 1 H), 3.69(d, J = 12.4 Hz, C1-H, 1 H), 4.31 (td, J = 6.8, 3.6 Hz, C5-H, 1 H), 5.22 (dd, J = 6.8, 4.4 Hz, C4-H, 1 H), 5.42 (d, J = 4.4 Hz, C4-H, 1 H), 5.42 (d, J = 4.4 Hz, C4-H, 1 H), 5.42 (d, J = 4.4 Hz, C4-H, 1 H), 5.42 (d, J = 4.4 Hz, C4-H, 1 H), 5.42 (d, J = 4.4 Hz, C4-H, 1 Hz), 5.42 (d, J = 4.4 Hz), 6.42 JHz, [SI-1, SI-2] C3-H, 1 H), 6.94 (d, J = 8.0 Hz, Ar, 2 H), 7.26–7.72 (m, Ar, 12 H); **\(\beta\)-isomer**: δ 1.96 (s, Ac, 3 H), 2.13 (s, Ac, 3 H), 2.23 (s, Me, 3 H), 3.58 (d, J = 10.8 Hz, C1-H, 1 H), 3.71 (d, J = 10.8 Hz, C1-H, 1 H), 3.86–3.90 (m, C6-H, 2 H), $4.16 \text{ (q, } J = 6.0 \text{ Hz, C5-H, 1 H)}, 5.55 \text{ (d, } J = 6.4, 6.0 \text{ Hz, C4-H, 1 H)}, 6.04 \text{ (d, } J = 6.4 \text{ Hz,}^{[\text{SI-1, SI-2}]} \text{ C3-H, 1 H)}, 6.85 \text{ (d, } J = 6.4, 6.0 \text{ Hz, C4-H, 1 H)}, 6.04 \text{ (d, } J = 6.4, 6.0 \text{ Hz,}^{[\text{SI-1, SI-2}]} \text{ C3-H, 1 H)}, 6.85 \text{ (d, } J = 6.4, 6.0 \text{ Hz,}^{[\text{SI-1, SI-2}]} \text{ C3-H, 1 H)}, 6.85 \text{ (d, } J = 6.4, 6.0 \text{ Hz,}^{[\text{SI-1, SI-2}]} \text{ C3-H,}^{[\text{SI-1, \text$ 8.0 Hz, Ar, 2 H), 7.26–7.72 (m, Ar, 12 H); ¹³C NMR (100 MHz, CDCl₃): δ 18.9, 19.10, 19.14, 19.16 (tBu), 20.6, 20.7 (Ac), 21.0 ($C^{\beta}H_3Ar$), 21.1 ($C^{\alpha}H_3Ar$), 26.5, 26.6, 26.7 (tBu), 63.3 ($C^{\alpha}1$), 63.6 ($C^{\alpha}6$), 64.0 ($C^{\beta}6$), 66.0 ($C^{\beta}1$), 76.9 ($C^{\beta}4$), 77.3 $(C^{\beta}3)$, 77.8 $(C^{\alpha}4)$, 81.17 $(C^{\alpha}3/C^{\alpha}5)$, 81.19 $(C^{\alpha}3/C^{\alpha}5)$, 81.8 $(C^{\beta}5)$, 95.7 $(C^{\beta}2)$, 96.6 $(C^{\alpha}2)$, 126.19, 126.82, 127.42, 127.49, 127.54, 127.62, 127.63, 129.00, 129.27, 129.30, 129.42, 129.47, 129.56, 129.64, 132.78, 132.92, 133.00, 133.06, 133.10, 133.13, 133.18, 134.69, 135.32, 135.38, 135.51, 135.64, 135.72, 135.97, 138.18, 138.28 (Ar), 169.4 (C^{α} =O), 169.7 ($C^{\beta}=O$), 169.9 ($C^{\beta}=O$), 170.0 ($C^{\alpha}=O$). ESI-TOF MS: calcd for $C_{49}H_{58}Na_1O_7S_1Si_2$ [M+Na]⁺ 869.33, found 869.34; HRMS (ESI-TOF): calcd for C₄₉H₅₈Na₁O₇S₁Si₂ [M+Na]⁺ 869.3340, found 869.3339. #### Tol 1,3,4,6-tetra-O-acetyl-2-thio-D-fructofuranoside (SI-3). To a solution of tolyl 3,4-di-O-acetyl-1,6-di-O-t-butyldiphenylsilyl-D-fructofuranose (SI-2) (6.21 g, 7.33 mmol) in THF (100 mL) was added TBAF (1 M in THF, 22 mL, 22 mmol) at room temperature and the mixture was stirred for 2 h at room temperature. After evaporation, to a solution of the resultant residue in pyridine (20 mL) was added acetic anhydride (5.0 mL) at 0 °C and the mixture was stirred overnight at room temperature and quenched with ice water, extracted with ethyl acetate, washed with sat. KHSO₄ aq, H₂O, satd NaHCO₃ aq, and brine, dried over Na₂SO₄, and evaporated in vacuo. The residue was purified by silica gel column chromatography using a gradient solvent system (hexane/ethyl acetate = 25/1 to 10/1 to 5/1 to 3/1 to 1/1) to give the title compound (SI-3) (2.90 g, 87%, $\alpha : \beta = 1.9 : 1$): SI-3: ¹H NMR (400 MHz, CDCl₃): α-isomer: δ 2.02 (s, Ac, 3 H), 2.03 (s, Ac, 3 H), 2.06 (s, Ac, 3 H), 2.08 (s, Ac, 3 H), 2.31 (s, Me, 3 H), 4.00 (d, J = 12.4 Hz, C1-H, 1 H), 4.20 (d, J = 12.4, 6.4 Hz, C6-H, 1 H), 4.21 (d, J = 12.4 Hz, C1-H, 1 H), 4.38 (d, J = 12.4, 3.2 Hz, C6-H, 1 H), 4.45-4.50 (m, C5-H, 1 H), 5.10 (dd, J = 7.2, 4.0 Hz, C4-H, 1 H), 5.40 (d, J = 1.2) 4.0 Hz, C3-H, [SI-1, SI-2] 1 H), 7.10 (d, J = 8.0 Hz, Ar, 2 H), 7.36 (d, J = 8.0 Hz, Ar, 2 H); **β-isomer**: δ 2.03 (s, Ac, 3 H), 2.07 (s, Ac, 3 H), 2.10 (s, Ac, 3 H), 2.14 (s, Ac, 3 H), 2.30 (s, Me, 3 H), 4.04 (d, J = 12.4 Hz, C1-H, 1 H), 4.09 (d, J = 12.4 H 12.4 Hz, C1-H, 1 H), 4.25 (td, J = 6.4, 5.2 Hz, C5-H, 1 H), 4.39 (d, J = 12.4, 6.4 Hz, C6-H, 1 H), 4.45 - 4.50 (m, C6-H, 1 H), 5.54 (t, J = 6.4 Hz, C4-H, 1 H), 5.70 (d, J = 6.4 Hz, C3-H, [SI-1, SI-2] 1 H), 7.10 (d, J = 8.0 Hz, Ar, 2 H), 7.36 (d, J = 8.0Hz, Ar, 2 H); ¹³C NMR (100 MHz, CDCl₃): α-isomer: δ 20.5 (Ac), 20.7 (Ac x2), 20.8 (Ac), 21.2 (CH₃Ar), 62.6 (C1), 62.8 (C6), 77.0 (C4), 77.4 (C5), 80.5 (C3), 93.6 (C2), 125.3 (Tolyl), 129.7 (Tolyl), 136.4 (Tolyl), 139.8 (Tolyl). 169.1 (C=O), 169.9 (C=O), 170.0 (C=O), 170.4 (C=O); β-isomer: δ 20.62 (Ac), 20.66 (Ac), 20.70 (Ac), 20.74 (Ac), 21.1 (CH₃Ar), 63.7 (C6), 65.2 (C1), 76.2 (C4), 76.5 (C5), 79.3 (C3), 93.6 (C2), 124.8 (Tolyl), 129.6 (Tolyl), 136.3 (Tolyl), 139.5 (Tolyl). 169.6 (C=O), 169.9 (C=O), 170.0 (C=O), 170.6 (C=O); ESI-TOF MS: calcd for C₂₁H₂₆Na₁O₉S₁ [M+Na]⁺ #### 4-Nitrophenyl 1,3,4,6-tetra-O-acetyl-α-D-fructofuranoside (SI-4). The title compound was synthesized from SI-3 according to the synthesis of 4-nitrophenyl 1,3,4,6-tetra-O-acetyl-α-Darabinofuranoside. [SI-1] To a mixture of a tolyl 1,3,4,6-tetra-O-acetyl-2-thio-D-fructofuranoside (α : β = 1.9: 1, 0.60 g, 1.32 mmol) and p-nitrophenol (204 mg, 1.45 mmol) and freshly activated molecular sieve (4 Å, 0.25 g) in CH₂Cl₂ (3.0 mL) were added NIS (569 mg, 2.50 mmol) and AgOTf (34.6 mg, 0.132 mmol) at -20 °C under an argon atmosphere. The reaction mixture was stirred at the same temperature for 2 h and quenched with Et₃N. The suspension was diluted with CHCl₃ and filtered through a Celite pad, the filtrate was washed successively with 10% Na₂S₂O₃ aq, saturated NaHCO₃ aq, and brine. The organic layer was dried through Na₂SO₄ and concentrated in vacuo. The residue was purified by preparative thin layer chromatography (ethyl acetate/hexane = 1/2) to afford the title compound (458 mg, 74 %). SI-4: ¹H NMR (400 MHz, CDCl₃): δ 1.99 (s, Ac, 3 H), 2.09 (s, Ac, 3 H), 2.10 (s, Ac, 3 H), 2.12 (s, Ac, 3 H), 4.24 (dd, J = 12.0, 6.0 Hz, C6-H, 1 H), 4.33–4.38 (m, C5-H, 1 H), 4.45 (d, J = 12.4 Hz, C1-H, 1 H), 4.41 (d, J = 12.4 Hz, C1-H, 1 H), 4.45 (dd, J = 12.0, 3.6 Hz, C6-H, 1 H), 5.00 (dd, J = 4.8, 1.6 Hz, C4-H, 1 H), 5.62 (d, J = 1.6 Hz, C3-H, [SI-1, SI-2] 1 H). 7.24–7.29 (m, pNP 2 H), 8.14–8.20 (m, Ar, 2 H); 1D-NOE difference: irradiated 5.62 (C3-H) \rightarrow enhanced 8.19 (3.4%, pNP), 7.27 (4.1%, pNP); irradiated 7.27 (pNP) → enhanced 5.62 (1.4%, C3-H); ¹³C NMR (100 MHz, CDCl₃): δ 20.5 (MeCO), 20.6 (MeCO), 20.66 (MeCO), 20.71 (MeCO), 59.2 (C1), 62.8 (C6), 77.4 (C4), 80.0 (C3), 82.1 (C5), 110.0 (C2), 120.4 (pNP), 125.5 (pNP), 143.5 (pNP), 158.7 (pNP), 168.6 (MeCO), 169.6 (MeCO), 170.0 (MeCO), 170.4 (MeCO); ESI-TOF MS: calcd for C₂₀H₂₃N₁Na₁O₁₂ [M+Na]⁺ 492.11, found 492.11; HRMS (ESI-TOF): calcd for C₂₀H₂₃N₁Na₁O₁₂ [M+Na]⁺ 492.1118, found 492.1115. #### 4-Nitrophenyl α-D-fructofuranoside 3. The title compound **3** was synthesized from **SI-4** according to the synthesis of 4-nitrophenyl α -D-arabinofuranoside. [SI-3] To a solution of **SI-4** (30.0 mg, 63.9 μ mol) in MeOH (2.0 mL) at 0 °C was added a solution of MeONa (5.0 μ L, 28% in MeOH). The reaction mixture was stirred for 30 min at the same temperature, then neutralized with Amberlyst[®] 15 H⁺ form, filtered through Celite[®] pad and concentrated in *vacuo*. The residue was purified by preparative thin layer chromatography (CHCl₃/MeOH = 10/1) to afford the title compound (17.3 mg, 90%). 3: 1 H NMR (400 MHz, CD₃OD): δ 3.60 (dd, J = 12.4, 4.0 Hz, C6-H, 1 H), 3.70–3.75 (m, C1-H, C6-H, 2 H), 3.79 (d, J = 12.4 Hz, C1-H, 1 H), 3.90–3.94 (m, C4-H, C5-H, 2 H), 4.21 (d, J = 3.6 Hz, $^{[SI-1, SI-2]}$ C3-H, 1 H), 7.28–7.33 (m, pNP, 2 H), 8.06–8.10 (m, pNP, 2 H); 13 C NMR (100 MHz, CD₃OD): δ 61.3 (C1), 62.7 (C6), 78.0 (C4), 83.9 (C3), 85.5 (C5), 113.2 (C2), 122.3 (pNP), 126.0 (pNP), 144.2 (pNP), 161.8 (pNP); ESI-TOF MS: calcd for C₁₂H₁₅N₁Na₁O₈ [M+Na]⁺ 324.07, found 324.08; HRMS (ESI-TOF): calcd for C₁₂H₁₅N₁Na₁O₈ [M+Na]⁺ 324.0695, found 324.0697. ¹H NMR spectrum of **SI-1** in CDCl₃ (400 MHz). (X : peaks of residual EtOAc; * : peak of impurity <not assigned>). ¹³C NMR spectrum of **SI-1** in CDCl₃ (100 MHz). (X : peaks of residual EtOAc.) ¹H NMR spectrum of **SI-2** in CDCl₃ (400 MHz). (X : peaks of residual EtOAc) ¹³C NMR spectrum of SI-2 in CDCl₃ (100 MHz). (X : peaks of residual EtOAc) # ¹H NMR spectrum of **SI-3** in CDCl₃ (400 MHz). ¹³C NMR spectrum of SI-3 in CDCl₃ (100 MHz). ¹³C NMR spectrum of SI-4 in CDCl₃ (100 MHz). ¹H-¹H COSY spectrum of **SI-4** in CDCl₃ (400 MHz). HMQC spectrum of spectrum of SI-4 in CDCl₃ (400 MHz). **Figure SI-1.** 1D NOE difference spectra of **SI-4**. A) ¹H NMR spectra of **SI-4**; B) irradiated at 7.27 ppm (*p*NP-C2'-H) in CDCl₃ (100 MHz); C) irradiated at 3.44 ppm (C3H) in CDCl₃ (400 MHz). Enhancements (%) were estimated by comparing to an irradiated peak as the standard (100%). ¹H NMR spectrum of **3** in CD₃OD (400 MHz). (*: peaks of impurity <not assigned>). ^{13}C NMR spectrum of 3 in CD₃OD (100 MHz). (*: peaks of impurity <not assigned>) ¹H-¹H COSY spectrum of **3** in CD₃OD (400 MHz). # HMQC spectrum of 3 in CD₃OD (400 MHz). # Reference for SI. - [SI-1] T. Barclay, M. Ginic-Markovic, M. R. Johnston, P. Cooper, N. Petrovsky, Carbohydr. Res. 347, 136–141 (2012) - [SI-2] A. Bouali, G. Descotes, D. F. Ewing, A. Grouiller, J. Lefkidou, A.-D. Lespinasse, G. Mackenzie, J. Carbohydr. Chem. 11, 159–169 (1992) - [SI-3] S. Kaeothip, A. Ishiwata, T. Ito, S. Fushinobu, K. Fujita, Y. Ito, Carbohydr. Res. 382, 95–100 (2013)