Home Low-cost MRI devices and methods for real-time monitoring of flow and transfer phenomena in milli-channels
Article
Licensed
Unlicensed Requires Authentication

Low-cost MRI devices and methods for real-time monitoring of flow and transfer phenomena in milli-channels

  • Feryal Guerroudj , Laouès Guendouz , Rainier Hreiz , Jean-Marc Commenge , Lucie Klopffer , Nicolas Louvet , Laurence Mathieu and Jean-Christophe Perrin EMAIL logo
Published/Copyright: June 15, 2023

Abstract

An NMR/MRI methodology is developed for the study of flows in miniaturized systems handling volumes of fluid in the microliter range. Specific MRI devices are implemented, including radiofrequency coils with millimetric dimensions whose size and geometry correspond to the studied systems. We follow a low-cost development procedure of home-made milli-RF coils, including their dimensioning, the simulation of the produced electromagnetic field, their fabrication and their integration in experimental devices. In each of the two cases presented the filling factor is optimized and the sensitivity of the measurement is greatly improved over standard commercial instrumentations by a factor up to 17. Two applications are then discussed: the characterization of the hydrodynamics in an anchor shaped micromixer and the monitoring of the development of a biofilm at the pore scale.


Article note:

A collection of invited papers based on presentations at the Italian-French International Conference on Magnetic Resonance, Milan, Italy, 27–30 September 2022.



Corresponding author: Jean-Christophe Perrin, Université de Lorraine, CNRS, LEMTA, F-54000 Nancy, France, E-mail:

  1. Research funding: This study is funded by the French National Research Agency, project BIOCIDES ANR-21-CE50-0027.

Appendix: MRI acquisition parameters

Fig. 3(f) Fig. 3(g) and (h)
Method mic_msme mic_msme
TR 300 ms 300 ms
TE 4.7 ms 5 ms
FOV 1.2 × 1.2 cm2 0.75 × 0.75 cm2
In-plane resolution 47 × 47 µm2/pixel 29 × 29 µm2/pixel
Slice thickness 400 µm 200 µm
Slice orientation Sagittal Axial
Slice position 2.5 mm from the mixing point
#Accumulations 8 8
Acq. time 10 min 10 min
Solution Copper sulfate T 1 ∼ 100 ms Copper sulfate T 1 ∼ 100 ms
Fig. 4(f) and (h) Fig. 4(g) and (i)
Method mic_msme Method Flowmap
TR 500 ms Protocol Velocity-map
TE 5.5 ms TR 500 ms
FOV 0.5 × 0.5 cm2 TE 7 ms
In-plane resolution 20 × 20 µm2/pixel 2.88 ms
Slice thickness 500 µm δ 2.77 ms
Slice orientation Axial θ 30°
#Accumulation 1 FOV 0.5 × 0.5 cm2
Acq. time 2 min In-plane resolution 39 × 39 µm2
Solution Copper sulfate T 1 ∼ 100 ms Slice thickness 500 µm
Slice orientation Axial
Accumulation 4
Acq. time 6 min
Solution Copper sulfate T 1 ∼ 100 ms
Flow rate 0.6 mL/min
Fig. 5(c1) and (c2) Fig. 5(c1) Fig. 5(c2)
Method Flowmap Instrumentation Bruker Micro2.5/MicWB40 Helmholtz milli-RF coil
Protocol Velocity-map
TR 300 ms
TE 6 ms
2.16 ms FOV 1 × 0.75 cm2 0.6 × 0.6 cm2
δ 2.05 ms
#Accumulations 4 In-plane resolution 29 × 29 µm2 23 × 23 µm2
Acq. time 6 min
(1 Velocity component)
Solution Copper sulfate
Re outlet 80
Slice orientation Axial
Slice position 2.5 mm
From mixing point
Slice thickness 200 µm
Figs. 6(c, e and f)
Instrumentation: Bruker Micro2.5/MicWB40
Fig. 6(c)
Method MSME
Protocol MSME-T2-map
TR 15 000 ms
TE eff 15 ms
#Echos 16
#Accumulations 1
Acq. time 24 min
Slice orientation Sagittal
Slice thickness 500 µm
FOV 0.5 × 1.5 cm2
In-plane resolution 40 × 120 µm2/pixel
Fig. 6(e) Fig. 6(f)
Method Flowmap Flowmap
Protocol Velocity-map Velocity-map
TR 1000 ms 1000 ms
TE 7 ms 7 ms
2.89 ms 2.89 ms
δ 2.78 ms 2.78 ms
FOV 0.5 × 1.5 cm2 0.5 × 0.5 cm2
In-plane resolution 40 × 120µm2/pixel 40 × 40 µm2/pixel
Slice thickness 500 µm 1 mm
Slice orientation Sagittal Axial
#Accumulations 4 4
Acq. time 6 min 6 min
(1 Component)
Flow rate 1.2 mL/min 1.2 mL/min
Fig. 7 Instrumentation: saddle milli-RF coil
Fig. 7(c) Fig. 7(d)
Method Flowmap Flowmap
Protocol Velocity-map Velocity-map
TR 1000 ms 1000 ms
TE 7 ms 7 ms
2.89 ms 2.89 ms
δ 2.78 ms 2.78 ms
FOV 0.5 × 0.5 cm2 0.5 × 0.5 cm2
In-plane resolution 40 × 40 µm2/pixel 40 × 40 µm2/pixel
Slice thickness 500 µm 1 mm
Slice orientation Sagittal Axial
#Accumulations 4 4
Acq. time 6 min 6 min
(1 Component)
Flow rate 0.6 mL/min 0.6 mL/min

References

[1] L Chen, C Yang, Y Xiao, X Yan, L Hu, M Eggersdorfer, D Chen, D A Weitz, F Ye. Mater. Today Nano 16, 100136 (2021), https://doi.org/10.1016/j.mtnano.2021.100136.Search in Google Scholar

[2] D Figeys, D Pinto. Anal. Chem. 72, 330 A (2000), https://doi.org/10.1021/ac002800y.Search in Google Scholar PubMed

[3] A Manz, R C Anderson. Microsystem Technology in Chemistry and Life Science, Springer, Berlin Heidelberg (1998).10.1007/3-540-69544-3Search in Google Scholar

[4] W Ehrfeld, V Hessel, H Lehr. Microreactors for chemical synthesis and biotechnology—current developments and future applications. In Microsystem Technology in Chemistry and Life Science Topics in Current Chemistry, A. Manz, H. Becker (Eds.), Vol. 194, pp. 233–252, Springer Berlin Heidelberg, Berlin, Heidelberg (1998).10.1007/3-540-69544-3_10Search in Google Scholar

[5] X Chen, D Cui, C Liu, H Li, J Chen. Anal. Chim. Acta 584, 237 (2007), https://doi.org/10.1016/j.aca.2006.11.057.Search in Google Scholar PubMed

[6] A J deMello. Nature 442, 394 (2006), https://doi.org/10.1038/nature05062.Search in Google Scholar PubMed

[7] A Montillet, S Nedjar, M Tazerout. Fuel 106, 410 (2013), https://doi.org/10.1016/j.fuel.2012.11.018.Search in Google Scholar

[8] C-H Yeh, Y-C Lin. J. Micromech. Microeng. 23, 125025 (2013), https://doi.org/10.1088/0960-1317/23/12/125025.Search in Google Scholar

[9] E Samiei, M Tabrizian, M Hoorfar. Lab Chip 16, 2376 (2016), https://doi.org/10.1039/c6lc00387g.Search in Google Scholar PubMed

[10] G M Whitesides. Nature 442, 368 (2006), https://doi.org/10.1038/nature05058.Search in Google Scholar PubMed

[11] A Jahanbakhsh, K L Wlodarczyk, D P Hand, R R J Maier, M M Maroto-Valer. Sensors 20, 4030 (2020), https://doi.org/10.3390/s20144030.Search in Google Scholar PubMed PubMed Central

[12] R Lindken, M Rossi, S Große, J Westerweel. Lab Chip 9, 2551 (2009), https://doi.org/10.1039/b906558j.Search in Google Scholar PubMed

[13] P T Callaghan. Principles of Nuclear Magnetic Resonance Microscopy, Clarendon Press, Oxford (1991).10.1093/oso/9780198539445.001.0001Search in Google Scholar

[14] R R Forseth, F C Schroeder. Curr. Opin. Chem. Biol. 15 38, (2011), https://doi.org/10.1016/j.cbpa.2010.10.010.Search in Google Scholar PubMed PubMed Central

[15] L F Gladden, P Alexander. Meas. Sci. Technol. 7, 423 (1996), https://doi.org/10.1088/0957-0233/7/3/026.Search in Google Scholar

[16] S Stapf, S-I Han. NMR Imaging in Chemical Engineering, John Wiley & Sons Incorporated, Hoboken, Germany (2006).10.1002/3527607560Search in Google Scholar

[17] B Blümich. NMR Imaging of Materials, Clarendon Press Oxford University Press, Oxford New York (2000).Search in Google Scholar

[18] P T Callaghan. Rep. Prog. Phys. 62, 599 (1999), https://doi.org/10.1088/0034-4885/62/4/003.Search in Google Scholar

[19] C J Elkins, M T Alley. Exp. Fluids 43, 823 (2007), https://doi.org/10.1007/s00348-007-0383-2.Search in Google Scholar

[20] M Ferrari, J-P Mérel, S Leclerc, C Moyne. D Stemmelen. diffusion-fundamentals.org 18, 1–4 (2013).Search in Google Scholar

[21] J D Seymour, P T Callaghan. AIChE J. 43, 2096 (1997), https://doi.org/10.1002/aic.690430817.Search in Google Scholar

[22] P Mansfield, R Bowtell, S Blackband, D N Guilfoyle. Magn. Reson. Imaging 10, 741 (1992).10.1016/0730-725X(92)90406-PSearch in Google Scholar

[23] A El Kaddouri, J-C Perrin, T Colinart, C Moyne, S Leclerc, L Guendouz, O Lottin. Macromolecules 49, 7296 (2016), https://doi.org/10.1021/acs.macromol.6b01625.Search in Google Scholar

[24]] M Robert, A E Kaddouri, J-C Perrin, S Leclerc, O Lottin. J. Electrochem. Soc. 165, F3209 (2018), https://doi.org/10.1149/2.0231806jes.Search in Google Scholar

[25] M Darbouli, C Métivier, S Leclerc, C Nouar, M Bouteera, D Stemmelen. Int. J. Heat Mass Transfer 95, 742 (2016), https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.056.Search in Google Scholar

[26] S Leclerc, C Métivier. Exp. Fluids 59, 34 (2018), https://doi.org/10.1007/s00348-018-2494-3.Search in Google Scholar

[27] M Jenny, M Ferrari, N Gaudel, S K de Richter. Europhys. Lett. 121, 34003 (2018), https://doi.org/10.1209/0295-5075/121/34003.Search in Google Scholar

[28] J Fannir, S Leclerc, I Panfilova, D Stemmelen. Two-phase displacement. In Porous Media Studied By MRI Techniques ECMOR XVI – 16th European Conference on the Mathematics of Oil Recovery ECMOR XVI – 16th European Conference on the Mathematics of Oil Recovery, Barcelona, Spain (2018).10.3997/2214-4609.201802188Search in Google Scholar

[29] L F Gladden, A J Sederman. J. Magn. Reson. 229, 2 (2013), https://doi.org/10.1016/j.jmr.2012.11.022.Search in Google Scholar PubMed

[30] E Harel, A Pines. J. Magn. Reson. 193, 199 (2008), https://doi.org/10.1016/j.jmr.2008.04.037.Search in Google Scholar PubMed

[31] K Ogata, E Salager, C J Kerr, A E Fraser, C Ducati, A J Morris, S Hofmann, C P Grey. Nat. Commun. 5, 3217 (2014), https://doi.org/10.1038/ncomms4217.Search in Google Scholar PubMed

[32] S-H Cao, S Liu, H-J Sun, L Huang, Z-R Ni, W-L Jiang, M Zhan, Z-Y Zhou, S-G Sun, Z Chen. Anal. Chem. 91, 1686 (2019), https://doi.org/10.1021/acs.analchem.8b04006.Search in Google Scholar PubMed

[33] A G Webb. Anal. Chem. 84, 9 (2012), https://doi.org/10.1021/ac201500v.Search in Google Scholar PubMed

[34] R Fu, W W Brey, K Shetty, P Gor’kov, S Saha, J R Long, S C Grant, E Y Chekmenev, J Hu, Z Gan, M Sharma, F Zhang, T M Logan, R Brüschweller, A Edison, A Blue, I R Dixon, W D Markiewicz, T A Cross. J. Magn. Reson. 177, 1 (2005), https://doi.org/10.1016/j.jmr.2005.07.013.Search in Google Scholar PubMed

[35] V D Schepkin, W W Brey, P L Gor’kov, S C Grant. Magn. Reson. Imaging 28, 400 (2010), https://doi.org/10.1016/j.mri.2009.10.002.Search in Google Scholar PubMed PubMed Central

[36] S Junge. Cryogenic and superconducting coils for MRI. In Encyclopedia of Magnetic Resonance, R K Harris (Ed.), John Wiley & Sons, Ltd, Chichester, UK (2012).10.1002/9780470034590.emrstm1162Search in Google Scholar

[37] J H Ardenkjaer-Larsen, B Fridlund, A Gram, G Hansson, L Hansson, M H Lerche, R Servin, M Thaning, K Golman. Proc. Natl. Acad. Sci. 100, 10158 (2003), https://doi.org/10.1073/pnas.1733835100.Search in Google Scholar PubMed PubMed Central

[38] C R Bowers, D P Weitekamp. Phys. Rev. Lett. 57, 2645 (1986), https://doi.org/10.1103/physrevlett.57.2645.Search in Google Scholar

[39] D I Hoult, R E Richards. J. Magn. Reson. 213, 329 (2011), https://doi.org/10.1016/j.jmr.2011.09.018.Search in Google Scholar PubMed

[40] A G Webb. Microcoil Nuclear Magnetic Resonance Spectroscopy NMR Spectroscopy in Pharmaceutical Analysis, p. 48, Department of Bioengineering, Director Huck Institute Magnetic Resonance Centre, Penn State University, University Park, PA, USA (2008).10.1016/B978-0-444-53173-5.00004-4Search in Google Scholar

[41] A G Webb. J. Magn. Reson. 229, 55 (2013), https://doi.org/10.1016/j.jmr.2012.10.004.Search in Google Scholar PubMed

[42] A G Webb. Prog. Nucl. Magn. Reson. Spectrosc. 31, 1 (1997), https://doi.org/10.1016/s0079-6565(97)00004-6.Search in Google Scholar

[43] S Eroglu, B Gimi, B Roman, G Friedman, R L Magin. Concepts Magn. Reson. 17B, 1 (2003), https://doi.org/10.1002/cmr.b.10068.Search in Google Scholar

[44] J-C Ginefri, A Rubin, M Tatoulian, M Woytasik, F Boumezbeur, B Djemaï, M Poirier-Quinot, F Lethimonnier, L Darrasse, E Dufour-Gergam. J. Magn. Reson. 224, 61 (2012), https://doi.org/10.1016/j.jmr.2012.09.003.Search in Google Scholar PubMed

[45] J N Shoolery. Prog. Nucl. Magn. Reson. Spectrosc. 28, 37 (1995), https://doi.org/10.1016/0079-6565(95)01019-x.Search in Google Scholar

[46] R W Wiseman, T S Moerland, M J Kushmerick. NMR Biomed. 6, 153 (1993), https://doi.org/10.1002/nbm.1940060208.Search in Google Scholar PubMed

[47] R Narkowicz, D Suter, R Stonies. J. Magn. Reson. 175, 275 (2005), https://doi.org/10.1016/j.jmr.2005.04.014.Search in Google Scholar PubMed

[48] C Massin, F Vincent, A Homsy, K Ehrmann, G Boero, P-A Besse, A Daridon, E Verpoorte, N F de Rooij, R S Popovic. J. Magn. Reson. 164, 242 (2003), https://doi.org/10.1016/s1090-7807(03)00151-4.Search in Google Scholar PubMed

[49] E E McDonnell, S Han, C Hilty, K L Pierce, A Pines. Anal. Chem. 77, 8109 (2005), https://doi.org/10.1021/ac051320+.10.1021/ac051320+Search in Google Scholar PubMed

[50] D L Olson, T L Peck, A G Webb, R L Magin, J V Sweedler. Science 270, 1967 (1995), https://doi.org/10.1126/science.270.5244.1967.Search in Google Scholar

[51] C Massin, G Boero, F Vincent, J Abenhaim, P-A Besse, R S Popovic. Sens. Actuators, A 97–98, 280 (2002), https://doi.org/10.1016/s0924-4247(01)00847-0.Search in Google Scholar

[52] J Xie, X You, Y Huang, Z Ni, X Wang, X Li, C Yang, D Zhang, H Chen, H Sun, Z Chen. Nat. Commun. 11, 5793 (2020), https://doi.org/10.1038/s41467-020-19711-y.Search in Google Scholar PubMed PubMed Central

[53] M Klein, J-C Perrin, S Leclerc, L Guendouz, J Dillet, O Lottin. Macromolecules 46, 9259 (2013), https://doi.org/10.1021/ma401511t.Search in Google Scholar

[54] J-C Perrin, C Waldner, J Bossu, A Chatterjee, U Hirn. Chem. Eng. Sci. 251, 117464 (2022), https://doi.org/10.1016/j.ces.2022.117464.Search in Google Scholar

[55] J Dechow, A Forchel, T Lanz, A Haase. Microelectron. Eng. 53, 517 (2000), https://doi.org/10.1016/s0167-9317(00)00368-3.Search in Google Scholar

[56] R C Meier, J Höfflin, V Badilita, U Wallrabe, J G Korvink. J. Micromech. Microeng. 24, 045021 (2014), https://doi.org/10.1088/0960-1317/24/4/045021.Search in Google Scholar

[57] D Murphree, S B Cahn, D Rahmlow, D DeMille. J. Magn. Reson. 188, 160 (2007), https://doi.org/10.1016/j.jmr.2007.05.025.Search in Google Scholar PubMed

[58] M Woytasik, J-P Grandchamp, E Dufour-Gergam, J-P Gilles, S Megherbi, E Martincic, H Mathias, P Crozat. Sens. Actuators, A 132, 2 (2006), https://doi.org/10.1016/j.sna.2006.06.062.Search in Google Scholar

[59] A F R Alvarez, E Franco-Mejia, C R Pinedo-Jaramillo. Study and analysis of magnetic field homogeneity of square and circular Helmholtz coil Pairs: a Taylor Series approximation. In 2012 VI Andean Region International Conference 2012 VI Andean Region International Conference, pp. 77–80, IEEE, Cuenca, Azuay, Ecuador (2012).10.1109/Andescon.2012.27Search in Google Scholar

[60] D M Ginsberg, M J Melchner. Rev. Sci. Instrum. 41, 122 (1970), https://doi.org/10.1063/1.1684235.Search in Google Scholar

[61] J Wang, S She, S Zhang. Rev. Sci. Instrum. 73, 2175 (2002), https://doi.org/10.1063/1.1471352.Search in Google Scholar

[62] F Guerroudj, R Hreiz, J.-M. Commenge, J Bianchin, C Morlot, T D Le, J.-C Perrin. Chem. Eng. Sci. 269, 118473 (2023), https://doi.org/10.1016/j.ces.2023.118473.Search in Google Scholar

[63] K M Thormann, R M Saville, S Shukla, D A Pelletier, A M Spormann. J. Bacteriol. 186, 8096 (2004), https://doi.org/10.1128/jb.186.23.8096-8104.2004.Search in Google Scholar

[64] K M Thormann, R M Saville, S Shukla, A M Spormann. J. Bacteriol. 187, 1014 (2005), https://doi.org/10.1128/jb.187.3.1014-1021.2005.Search in Google Scholar

[65] J D Seymour, J P Gage, S L Codd, R Gerlach. Phys. Rev. Lett. 93, 198103 (2004), https://doi.org/10.1103/physrevlett.93.198103.Search in Google Scholar

Published Online: 2023-06-15
Published in Print: 2023-10-26

© 2023 IUPAC & De Gruyter

Downloaded on 17.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2023-0105/html
Scroll to top button