Low-cost MRI devices and methods for real-time monitoring of flow and transfer phenomena in milli-channels
-
Feryal Guerroudj
Abstract
An NMR/MRI methodology is developed for the study of flows in miniaturized systems handling volumes of fluid in the microliter range. Specific MRI devices are implemented, including radiofrequency coils with millimetric dimensions whose size and geometry correspond to the studied systems. We follow a low-cost development procedure of home-made milli-RF coils, including their dimensioning, the simulation of the produced electromagnetic field, their fabrication and their integration in experimental devices. In each of the two cases presented the filling factor is optimized and the sensitivity of the measurement is greatly improved over standard commercial instrumentations by a factor up to 17. Two applications are then discussed: the characterization of the hydrodynamics in an anchor shaped micromixer and the monitoring of the development of a biofilm at the pore scale.
Article note:
A collection of invited papers based on presentations at the Italian-French International Conference on Magnetic Resonance, Milan, Italy, 27–30 September 2022.
-
Research funding: This study is funded by the French National Research Agency, project BIOCIDES ANR-21-CE50-0027.
Appendix: MRI acquisition parameters
Fig. 3(f) | Fig. 3(g) and (h) | |
---|---|---|
Method | mic_msme | mic_msme |
TR | 300 ms | 300 ms |
TE | 4.7 ms | 5 ms |
FOV | 1.2 × 1.2 cm2 | 0.75 × 0.75 cm2 |
In-plane resolution | 47 × 47 µm2/pixel | 29 × 29 µm2/pixel |
Slice thickness | 400 µm | 200 µm |
Slice orientation | Sagittal | Axial |
Slice position | 2.5 mm from the mixing point | |
#Accumulations | 8 | 8 |
Acq. time | 10 min | 10 min |
Solution | Copper sulfate T 1 ∼ 100 ms | Copper sulfate T 1 ∼ 100 ms |
Fig. 4(f) and (h) | Fig. 4(g) and (i) | ||
---|---|---|---|
Method | mic_msme | Method | Flowmap |
TR | 500 ms | Protocol | Velocity-map |
TE | 5.5 ms | TR | 500 ms |
FOV | 0.5 × 0.5 cm2 | TE | 7 ms |
In-plane resolution | 20 × 20 µm2/pixel | ∆ | 2.88 ms |
Slice thickness | 500 µm | δ | 2.77 ms |
Slice orientation | Axial | θ | 30° |
#Accumulation | 1 | FOV | 0.5 × 0.5 cm2 |
Acq. time | 2 min | In-plane resolution | 39 × 39 µm2 |
Solution | Copper sulfate T 1 ∼ 100 ms | Slice thickness | 500 µm |
Slice orientation | Axial | ||
Accumulation | 4 | ||
Acq. time | 6 min | ||
Solution | Copper sulfate T 1 ∼ 100 ms | ||
Flow rate | 0.6 mL/min |
Fig. 5(c1) and (c2) | Fig. 5(c1) | Fig. 5(c2) | ||
---|---|---|---|---|
Method | Flowmap | Instrumentation | Bruker Micro2.5/MicWB40 | Helmholtz milli-RF coil |
Protocol | Velocity-map | |||
TR | 300 ms | |||
TE | 6 ms | |||
∆ | 2.16 ms | FOV | 1 × 0.75 cm2 | 0.6 × 0.6 cm2 |
δ | 2.05 ms | |||
#Accumulations | 4 | In-plane resolution | 29 × 29 µm2 | 23 × 23 µm2 |
Acq. time | 6 min | |||
(1 Velocity component) | ||||
Solution | Copper sulfate | |||
Re outlet | 80 | |||
Slice orientation | Axial | |||
Slice position | 2.5 mm | |||
From mixing point | ||||
Slice thickness | 200 µm |
Figs. 6(c, e and f)
|
Instrumentation: Bruker Micro2.5/MicWB40 |
---|---|
Fig. 6(c) | |
Method | MSME |
Protocol | MSME-T2-map |
TR | 15 000 ms |
TE eff | 15 ms |
#Echos | 16 |
#Accumulations | 1 |
Acq. time | 24 min |
Slice orientation | Sagittal |
Slice thickness | 500 µm |
FOV | 0.5 × 1.5 cm2 |
In-plane resolution | 40 × 120 µm2/pixel |
Fig. 6(e) | Fig. 6(f) | |
---|---|---|
Method | Flowmap | Flowmap |
Protocol | Velocity-map | Velocity-map |
TR | 1000 ms | 1000 ms |
TE | 7 ms | 7 ms |
∆ | 2.89 ms | 2.89 ms |
δ | 2.78 ms | 2.78 ms |
FOV | 0.5 × 1.5 cm2 | 0.5 × 0.5 cm2 |
In-plane resolution | 40 × 120µm2/pixel | 40 × 40 µm2/pixel |
Slice thickness | 500 µm | 1 mm |
Slice orientation | Sagittal | Axial |
#Accumulations | 4 | 4 |
Acq. time | 6 min | 6 min |
(1 Component) | ||
Flow rate | 1.2 mL/min | 1.2 mL/min |
Fig. 7 | Instrumentation: saddle milli-RF coil | |
---|---|---|
Fig. 7(c) | Fig. 7(d) | |
Method | Flowmap | Flowmap |
Protocol | Velocity-map | Velocity-map |
TR | 1000 ms | 1000 ms |
TE | 7 ms | 7 ms |
∆ | 2.89 ms | 2.89 ms |
δ | 2.78 ms | 2.78 ms |
FOV | 0.5 × 0.5 cm2 | 0.5 × 0.5 cm2 |
In-plane resolution | 40 × 40 µm2/pixel | 40 × 40 µm2/pixel |
Slice thickness | 500 µm | 1 mm |
Slice orientation | Sagittal | Axial |
#Accumulations | 4 | 4 |
Acq. time | 6 min | 6 min |
(1 Component) | ||
Flow rate | 0.6 mL/min | 0.6 mL/min |
References
[1] L Chen, C Yang, Y Xiao, X Yan, L Hu, M Eggersdorfer, D Chen, D A Weitz, F Ye. Mater. Today Nano 16, 100136 (2021), https://doi.org/10.1016/j.mtnano.2021.100136.Search in Google Scholar
[2] D Figeys, D Pinto. Anal. Chem. 72, 330 A (2000), https://doi.org/10.1021/ac002800y.Search in Google Scholar PubMed
[3] A Manz, R C Anderson. Microsystem Technology in Chemistry and Life Science, Springer, Berlin Heidelberg (1998).10.1007/3-540-69544-3Search in Google Scholar
[4] W Ehrfeld, V Hessel, H Lehr. Microreactors for chemical synthesis and biotechnology—current developments and future applications. In Microsystem Technology in Chemistry and Life Science Topics in Current Chemistry, A. Manz, H. Becker (Eds.), Vol. 194, pp. 233–252, Springer Berlin Heidelberg, Berlin, Heidelberg (1998).10.1007/3-540-69544-3_10Search in Google Scholar
[5] X Chen, D Cui, C Liu, H Li, J Chen. Anal. Chim. Acta 584, 237 (2007), https://doi.org/10.1016/j.aca.2006.11.057.Search in Google Scholar PubMed
[6] A J deMello. Nature 442, 394 (2006), https://doi.org/10.1038/nature05062.Search in Google Scholar PubMed
[7] A Montillet, S Nedjar, M Tazerout. Fuel 106, 410 (2013), https://doi.org/10.1016/j.fuel.2012.11.018.Search in Google Scholar
[8] C-H Yeh, Y-C Lin. J. Micromech. Microeng. 23, 125025 (2013), https://doi.org/10.1088/0960-1317/23/12/125025.Search in Google Scholar
[9] E Samiei, M Tabrizian, M Hoorfar. Lab Chip 16, 2376 (2016), https://doi.org/10.1039/c6lc00387g.Search in Google Scholar PubMed
[10] G M Whitesides. Nature 442, 368 (2006), https://doi.org/10.1038/nature05058.Search in Google Scholar PubMed
[11] A Jahanbakhsh, K L Wlodarczyk, D P Hand, R R J Maier, M M Maroto-Valer. Sensors 20, 4030 (2020), https://doi.org/10.3390/s20144030.Search in Google Scholar PubMed PubMed Central
[12] R Lindken, M Rossi, S Große, J Westerweel. Lab Chip 9, 2551 (2009), https://doi.org/10.1039/b906558j.Search in Google Scholar PubMed
[13] P T Callaghan. Principles of Nuclear Magnetic Resonance Microscopy, Clarendon Press, Oxford (1991).10.1093/oso/9780198539445.001.0001Search in Google Scholar
[14] R R Forseth, F C Schroeder. Curr. Opin. Chem. Biol. 15 38, (2011), https://doi.org/10.1016/j.cbpa.2010.10.010.Search in Google Scholar PubMed PubMed Central
[15] L F Gladden, P Alexander. Meas. Sci. Technol. 7, 423 (1996), https://doi.org/10.1088/0957-0233/7/3/026.Search in Google Scholar
[16] S Stapf, S-I Han. NMR Imaging in Chemical Engineering, John Wiley & Sons Incorporated, Hoboken, Germany (2006).10.1002/3527607560Search in Google Scholar
[17] B Blümich. NMR Imaging of Materials, Clarendon Press Oxford University Press, Oxford New York (2000).Search in Google Scholar
[18] P T Callaghan. Rep. Prog. Phys. 62, 599 (1999), https://doi.org/10.1088/0034-4885/62/4/003.Search in Google Scholar
[19] C J Elkins, M T Alley. Exp. Fluids 43, 823 (2007), https://doi.org/10.1007/s00348-007-0383-2.Search in Google Scholar
[20] M Ferrari, J-P Mérel, S Leclerc, C Moyne. D Stemmelen. diffusion-fundamentals.org 18, 1–4 (2013).Search in Google Scholar
[21] J D Seymour, P T Callaghan. AIChE J. 43, 2096 (1997), https://doi.org/10.1002/aic.690430817.Search in Google Scholar
[22] P Mansfield, R Bowtell, S Blackband, D N Guilfoyle. Magn. Reson. Imaging 10, 741 (1992).10.1016/0730-725X(92)90406-PSearch in Google Scholar
[23] A El Kaddouri, J-C Perrin, T Colinart, C Moyne, S Leclerc, L Guendouz, O Lottin. Macromolecules 49, 7296 (2016), https://doi.org/10.1021/acs.macromol.6b01625.Search in Google Scholar
[24]] M Robert, A E Kaddouri, J-C Perrin, S Leclerc, O Lottin. J. Electrochem. Soc. 165, F3209 (2018), https://doi.org/10.1149/2.0231806jes.Search in Google Scholar
[25] M Darbouli, C Métivier, S Leclerc, C Nouar, M Bouteera, D Stemmelen. Int. J. Heat Mass Transfer 95, 742 (2016), https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.056.Search in Google Scholar
[26] S Leclerc, C Métivier. Exp. Fluids 59, 34 (2018), https://doi.org/10.1007/s00348-018-2494-3.Search in Google Scholar
[27] M Jenny, M Ferrari, N Gaudel, S K de Richter. Europhys. Lett. 121, 34003 (2018), https://doi.org/10.1209/0295-5075/121/34003.Search in Google Scholar
[28] J Fannir, S Leclerc, I Panfilova, D Stemmelen. Two-phase displacement. In Porous Media Studied By MRI Techniques ECMOR XVI – 16th European Conference on the Mathematics of Oil Recovery ECMOR XVI – 16th European Conference on the Mathematics of Oil Recovery, Barcelona, Spain (2018).10.3997/2214-4609.201802188Search in Google Scholar
[29] L F Gladden, A J Sederman. J. Magn. Reson. 229, 2 (2013), https://doi.org/10.1016/j.jmr.2012.11.022.Search in Google Scholar PubMed
[30] E Harel, A Pines. J. Magn. Reson. 193, 199 (2008), https://doi.org/10.1016/j.jmr.2008.04.037.Search in Google Scholar PubMed
[31] K Ogata, E Salager, C J Kerr, A E Fraser, C Ducati, A J Morris, S Hofmann, C P Grey. Nat. Commun. 5, 3217 (2014), https://doi.org/10.1038/ncomms4217.Search in Google Scholar PubMed
[32] S-H Cao, S Liu, H-J Sun, L Huang, Z-R Ni, W-L Jiang, M Zhan, Z-Y Zhou, S-G Sun, Z Chen. Anal. Chem. 91, 1686 (2019), https://doi.org/10.1021/acs.analchem.8b04006.Search in Google Scholar PubMed
[33] A G Webb. Anal. Chem. 84, 9 (2012), https://doi.org/10.1021/ac201500v.Search in Google Scholar PubMed
[34] R Fu, W W Brey, K Shetty, P Gor’kov, S Saha, J R Long, S C Grant, E Y Chekmenev, J Hu, Z Gan, M Sharma, F Zhang, T M Logan, R Brüschweller, A Edison, A Blue, I R Dixon, W D Markiewicz, T A Cross. J. Magn. Reson. 177, 1 (2005), https://doi.org/10.1016/j.jmr.2005.07.013.Search in Google Scholar PubMed
[35] V D Schepkin, W W Brey, P L Gor’kov, S C Grant. Magn. Reson. Imaging 28, 400 (2010), https://doi.org/10.1016/j.mri.2009.10.002.Search in Google Scholar PubMed PubMed Central
[36] S Junge. Cryogenic and superconducting coils for MRI. In Encyclopedia of Magnetic Resonance, R K Harris (Ed.), John Wiley & Sons, Ltd, Chichester, UK (2012).10.1002/9780470034590.emrstm1162Search in Google Scholar
[37] J H Ardenkjaer-Larsen, B Fridlund, A Gram, G Hansson, L Hansson, M H Lerche, R Servin, M Thaning, K Golman. Proc. Natl. Acad. Sci. 100, 10158 (2003), https://doi.org/10.1073/pnas.1733835100.Search in Google Scholar PubMed PubMed Central
[38] C R Bowers, D P Weitekamp. Phys. Rev. Lett. 57, 2645 (1986), https://doi.org/10.1103/physrevlett.57.2645.Search in Google Scholar
[39] D I Hoult, R E Richards. J. Magn. Reson. 213, 329 (2011), https://doi.org/10.1016/j.jmr.2011.09.018.Search in Google Scholar PubMed
[40] A G Webb. Microcoil Nuclear Magnetic Resonance Spectroscopy NMR Spectroscopy in Pharmaceutical Analysis, p. 48, Department of Bioengineering, Director Huck Institute Magnetic Resonance Centre, Penn State University, University Park, PA, USA (2008).10.1016/B978-0-444-53173-5.00004-4Search in Google Scholar
[41] A G Webb. J. Magn. Reson. 229, 55 (2013), https://doi.org/10.1016/j.jmr.2012.10.004.Search in Google Scholar PubMed
[42] A G Webb. Prog. Nucl. Magn. Reson. Spectrosc. 31, 1 (1997), https://doi.org/10.1016/s0079-6565(97)00004-6.Search in Google Scholar
[43] S Eroglu, B Gimi, B Roman, G Friedman, R L Magin. Concepts Magn. Reson. 17B, 1 (2003), https://doi.org/10.1002/cmr.b.10068.Search in Google Scholar
[44] J-C Ginefri, A Rubin, M Tatoulian, M Woytasik, F Boumezbeur, B Djemaï, M Poirier-Quinot, F Lethimonnier, L Darrasse, E Dufour-Gergam. J. Magn. Reson. 224, 61 (2012), https://doi.org/10.1016/j.jmr.2012.09.003.Search in Google Scholar PubMed
[45] J N Shoolery. Prog. Nucl. Magn. Reson. Spectrosc. 28, 37 (1995), https://doi.org/10.1016/0079-6565(95)01019-x.Search in Google Scholar
[46] R W Wiseman, T S Moerland, M J Kushmerick. NMR Biomed. 6, 153 (1993), https://doi.org/10.1002/nbm.1940060208.Search in Google Scholar PubMed
[47] R Narkowicz, D Suter, R Stonies. J. Magn. Reson. 175, 275 (2005), https://doi.org/10.1016/j.jmr.2005.04.014.Search in Google Scholar PubMed
[48] C Massin, F Vincent, A Homsy, K Ehrmann, G Boero, P-A Besse, A Daridon, E Verpoorte, N F de Rooij, R S Popovic. J. Magn. Reson. 164, 242 (2003), https://doi.org/10.1016/s1090-7807(03)00151-4.Search in Google Scholar PubMed
[49] E E McDonnell, S Han, C Hilty, K L Pierce, A Pines. Anal. Chem. 77, 8109 (2005), https://doi.org/10.1021/ac051320+.10.1021/ac051320+Search in Google Scholar PubMed
[50] D L Olson, T L Peck, A G Webb, R L Magin, J V Sweedler. Science 270, 1967 (1995), https://doi.org/10.1126/science.270.5244.1967.Search in Google Scholar
[51] C Massin, G Boero, F Vincent, J Abenhaim, P-A Besse, R S Popovic. Sens. Actuators, A 97–98, 280 (2002), https://doi.org/10.1016/s0924-4247(01)00847-0.Search in Google Scholar
[52] J Xie, X You, Y Huang, Z Ni, X Wang, X Li, C Yang, D Zhang, H Chen, H Sun, Z Chen. Nat. Commun. 11, 5793 (2020), https://doi.org/10.1038/s41467-020-19711-y.Search in Google Scholar PubMed PubMed Central
[53] M Klein, J-C Perrin, S Leclerc, L Guendouz, J Dillet, O Lottin. Macromolecules 46, 9259 (2013), https://doi.org/10.1021/ma401511t.Search in Google Scholar
[54] J-C Perrin, C Waldner, J Bossu, A Chatterjee, U Hirn. Chem. Eng. Sci. 251, 117464 (2022), https://doi.org/10.1016/j.ces.2022.117464.Search in Google Scholar
[55] J Dechow, A Forchel, T Lanz, A Haase. Microelectron. Eng. 53, 517 (2000), https://doi.org/10.1016/s0167-9317(00)00368-3.Search in Google Scholar
[56] R C Meier, J Höfflin, V Badilita, U Wallrabe, J G Korvink. J. Micromech. Microeng. 24, 045021 (2014), https://doi.org/10.1088/0960-1317/24/4/045021.Search in Google Scholar
[57] D Murphree, S B Cahn, D Rahmlow, D DeMille. J. Magn. Reson. 188, 160 (2007), https://doi.org/10.1016/j.jmr.2007.05.025.Search in Google Scholar PubMed
[58] M Woytasik, J-P Grandchamp, E Dufour-Gergam, J-P Gilles, S Megherbi, E Martincic, H Mathias, P Crozat. Sens. Actuators, A 132, 2 (2006), https://doi.org/10.1016/j.sna.2006.06.062.Search in Google Scholar
[59] A F R Alvarez, E Franco-Mejia, C R Pinedo-Jaramillo. Study and analysis of magnetic field homogeneity of square and circular Helmholtz coil Pairs: a Taylor Series approximation. In 2012 VI Andean Region International Conference 2012 VI Andean Region International Conference, pp. 77–80, IEEE, Cuenca, Azuay, Ecuador (2012).10.1109/Andescon.2012.27Search in Google Scholar
[60] D M Ginsberg, M J Melchner. Rev. Sci. Instrum. 41, 122 (1970), https://doi.org/10.1063/1.1684235.Search in Google Scholar
[61] J Wang, S She, S Zhang. Rev. Sci. Instrum. 73, 2175 (2002), https://doi.org/10.1063/1.1471352.Search in Google Scholar
[62] F Guerroudj, R Hreiz, J.-M. Commenge, J Bianchin, C Morlot, T D Le, J.-C Perrin. Chem. Eng. Sci. 269, 118473 (2023), https://doi.org/10.1016/j.ces.2023.118473.Search in Google Scholar
[63] K M Thormann, R M Saville, S Shukla, D A Pelletier, A M Spormann. J. Bacteriol. 186, 8096 (2004), https://doi.org/10.1128/jb.186.23.8096-8104.2004.Search in Google Scholar
[64] K M Thormann, R M Saville, S Shukla, A M Spormann. J. Bacteriol. 187, 1014 (2005), https://doi.org/10.1128/jb.187.3.1014-1021.2005.Search in Google Scholar
[65] J D Seymour, J P Gage, S L Codd, R Gerlach. Phys. Rev. Lett. 93, 198103 (2004), https://doi.org/10.1103/physrevlett.93.198103.Search in Google Scholar
© 2023 IUPAC & De Gruyter
Articles in the same Issue
- Frontmatter
- In this issue
- Editorial
- Preface, first Italian-French International Conference on Magnetic Resonance
- Conference papers
- Multinuclear solid state nuclear magnetic resonance for studying CsPbBr3 nanocubes
- Insights into the self-assembly of fampridine hydrochloride: how the choice of the solvent affects the crystallization of a simple salt
- NMR approaches to study proteins integrating globular and disordered domains: the case of c-Src
- 1H NMR spectroscopy of strongly J-coupled alcohols acquired at 50 mT (2 MHz) using a Carr–Purcell–Meiboom–Gill echo technique
- Skin, soap, and spaghetti: investigations of co-existing solid and liquid phases in organic materials using solid-state NMR with dynamics-based spectral editing
- Low-cost MRI devices and methods for real-time monitoring of flow and transfer phenomena in milli-channels
- IUPAC Technical Reports
- Chemical data evaluation: general considerations and approaches for IUPAC projects and the chemistry community (IUPAC Technical Report)
- A brief guide to polymer characterization: structure (IUPAC Technical Report)
Articles in the same Issue
- Frontmatter
- In this issue
- Editorial
- Preface, first Italian-French International Conference on Magnetic Resonance
- Conference papers
- Multinuclear solid state nuclear magnetic resonance for studying CsPbBr3 nanocubes
- Insights into the self-assembly of fampridine hydrochloride: how the choice of the solvent affects the crystallization of a simple salt
- NMR approaches to study proteins integrating globular and disordered domains: the case of c-Src
- 1H NMR spectroscopy of strongly J-coupled alcohols acquired at 50 mT (2 MHz) using a Carr–Purcell–Meiboom–Gill echo technique
- Skin, soap, and spaghetti: investigations of co-existing solid and liquid phases in organic materials using solid-state NMR with dynamics-based spectral editing
- Low-cost MRI devices and methods for real-time monitoring of flow and transfer phenomena in milli-channels
- IUPAC Technical Reports
- Chemical data evaluation: general considerations and approaches for IUPAC projects and the chemistry community (IUPAC Technical Report)
- A brief guide to polymer characterization: structure (IUPAC Technical Report)