Conference paper

Victor I. Saloutin*, Marina V. Goryaeva, Svetlana O. Kushch, Olga G. Khudina, Marina A. Ezhikova, Mikhail I. Kodess, Pavel A. Slepukhin and Yanina V. Burgart

Competitive ways for three-component cyclization of polyfluoroalkyl-3-oxo esters, methyl ketones and amino alcohols

https://doi.org/10.1515/pac-2019-1216

Abstract: The competitive routes were found for three-component cyclization of polyfluoroalkyl-3-oxo esters, methyl ketones with 3-amino alcohols. It was shown that the reactions with 3-aminopropanol in 1,4-dioxane predominantly lead to hexahydropyrido[2,1-*b*][1,3]oxazin-6-ones, and in ethanol to 3-hydroxy-propylaminocyclohexenones. In contrast, cyclizations with 2-aminoethanol and its analogues, regardless of the reaction conditions, yield hexahydrooxazolo[3,2-*a*]pyridin-5-ones as the main products. The *trans*- and *cis*-diastereomeric structure of heterocycles was established using X-ray and ¹H, ¹⁹F, ¹³C NMR spectroscopy, 2D ¹H-¹³C HSQC and HMBC experiments. The mechanism is proposed for competitive transformations of polyfluoroalkyl-3-oxo esters, methyl ketones with 3-amino alcohols.

Keywords: amino alcohols; diastereomers; cyclohex-2-en-1-ones; hexahydrooxazolo[3,2-*a*]pyridin-5-ones; hexahydropyrido[2,1-*b*][1,3]oxazin-6-ones; Mendeleev-21; methyl ketones; polyfluoroalkyl-3-oxo esters; three-component cyclization.

Introduction

Multicomponent reactions (MCR) play an important role in generating a variety of compounds whose structure is formed from three or more reagents in one step. MCR are extremely efficient, atom-economical, and technically feasible processes [1–4]. In the literature there are many examples illustrating the use of trifluoroacetoacetic ester in MCR to obtain different heterocyclic products [5–12].

Generally speaking, trifluoroacetoacetic ester belongs to the universally acknowledged building blocks of organic synthesis for obtaining a variety of open-chain, carbo- and hetero-cyclic molecules [13–15], including practically important compounds. Synthesis of trifluoromethyl-substituted heterocycles is especially promising for pharmaceutical chemistry, because the heterocycles have unique physical and biological properties due to the presence of the trifluoromethyl group [16–18]. It is an established fact that the replacement of methyl group by trifluoromethyl moiety leads to an increase in metabolic stability and lipophilicity of organic molecules, which can contribute to improving the pharmacokinetic characteristics of bioactive compounds [19–21]. A great

Article note: A collection of invited papers based on presentations at 21st Mendeleev Congress on General and Applied Chemistry (Mendeleev-21), held in Saint Petersburg, Russian Federation, 9–13 September 2019.

^{*}Corresponding author: Victor I. Saloutin, Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, Ekaterinburg, Russian Federation, e-mail: victor.saloutin@yandex.ru

Marina V. Goryaeva, Svetlana O. Kushch, Olga G. Khudina, Marina A. Ezhikova, Mikhail I. Kodess, Pavel A. Slepukhin and Yanina V. Burgart: Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, Ekaterinburg, Russian Federation, e-mail: pmv@ios.uran.ru (M.V. Goryaeva), kso@ios.uran.ru (S.O. Kushch), kog@ios.uran.ru (O.G. Khudina), ema@ios.uran.ru (M.A. Ezhikova), nmr@ios.uran.ru (M.I. Kodess), slepukhin@ios.uran.ru (P.A. Slepukhin), burgart@ios.uran.ru (Y.V. Burgart)

achievement in this field is the trifluoroacetoacetic ester-based production of the medicinal drug celecoxib as a selective COX-2 inhibitor [22, 23].

Our research team [24–34] and other researchers [35–38] have found numerous examples illustrating the synthesis of various heterocyclic systems from polyfluoroalkyl-containing 3-oxo esters and their derivatives in a way which is uncharacteristic of the non-fluorinated analogues.

Recently, we discovered a new three-component reaction of polyfluoroalkyl-3-oxo esters, methyl ketones with 1,2-di- and monoamines. It was found that the use of 1,2-ethanediamines in such reactions leads to chemo-, regio- and stereo-selective formation of hexahydroimidazo[1,2-a]pyridine-5-ones [39], which under dehydration conditions are transformed into 1-(2-aminoethyl)-6-alkyl-4-polyfluoroalkylpyridinones, including tuber-culostatic active ones [40]. The introduction of di- and monoalkyl amines into this three-component reaction changed the direction of cyclization, which allowed cyclohex-2-en-1-ones to be obtained [41]. Thus, varying the amine component in the new three-component reaction can result in both heterocyclic and carbocyclic compounds (Scheme 1).

Scheme 1: The routes of the reactions polyfluoroalkyl 3oxo esters 1 with methyl ketones 2 and amines 3.

In this work, the three-component reactions of polyfluoroalkyl-3-oxo esters $\mathbf{1}$ and methyl ketones $\mathbf{2}$ with 1,2- and 1,3-amino alcohols $\mathbf{3}$ were investigated. Amino alcohols are commercially available reagents that contain two nonequivalent reaction centres, whereby they can react as N,O-dinucleophiles generating a bicyclic backbone of hexahydrooxazolo(azino)pyridines $\mathbf{4}$, $\mathbf{5}$, and/or as N-mononucleophiles giving a cyclohexenone core $\mathbf{6}$, $\mathbf{7}$ (Scheme 1).

Oxazolo(azino)piperidine moiety is present in some natural products and drug-like molecules [42–46]. In addition, these compounds are used as intermediate products for the synthesis of bioactive alkaloids, for example, (R)-(-)-coniine, (-)-anabasine, (-)-solenopsin A, (\pm)-adalinine, etc. [47–49], as well as of a wide range of other optically pure carbo- and hetero-cycles [50, 51]; therefore, it shows promise to develop new approaches to the synthesis of these heterocycles derivatives.

The main method used for preparing hexahydrooxazolo[3,2-a] pyridinones and hexahydropyrido[2,1-b] oxazinones involves two-component cyclizations of 1,2- and 1,3-amino alcohols with acids having a ketone [52–57] or aldehyde [58–60] group at the C5 position [61]. Glutaric anhydride can be used instead of acids in condensation with amino alcohols, but in this case it is necessary to carry out subsequent reduction [62, 63]. The formation of the hexahydrooxazolo(azino)pyridine backbone is described as a result of four-component cyclization of butenoic acid, a 1,2- or 1,3-amino alcohol and gaseous CO and H_2 [64, 65]. Oxazolopiperidones were also prepared by condensation of Ser-OMe and 3-(5-oxo-1,3-oxazolidin-4-yl)propanal [66] or by cyclization of 2,4-dimethyl-4-(3-oxo-1-phenylbutyl)-1,3-oxazol-5(4H)-one with alanine [67]. The only example found in literature, which illustrates the synthesis of 3-phenyl-8a-(trifluoromethyl)hexahydro-5H-[1,3]oxazolo[3,2-a]pyridin-5-one, is by the reaction of 6,6,6-trifluoro-5-oxohexanoic acid with (S)-(+)-phenylglycinol [68].

Previously, we have reported on the value of synthesis of new cyclohexenone structures [41].

Results and discussion

In the present work, possible alternative ways were studied for the recently discovered three-component cyclization of polyfluoroalkyl-3-oxo esters 1 and methyl ketones 2 with 1,2- and 1,3-amino alcohols 3 as amine component into bicyclic heterocycles (hexahydrooxazolo[3,2-a]pyridin-5-ones 4 and hexahydro-2H,6H-pyrido [2,1-b][1,3]oxazin-6-ones 5) or cyclohex-2-en-1-ones 6, 7. The probable formation of diastereomeric bicycles cannot be overlooked, because the cyclization of polyfluoroalkyl-3-oxo esters 1 and methyl ketones 2 with 1,2ethanediamines resulted in 7-hydroxy-7-(polyfluoroalkyl)hexahydroimidazo[1,2-a]pyridin-5(1H)-ones in trans- and/or cis-forms depending on their structure and the reaction conditions [39].

Indeed, when we examined the 'H, 'F NMR spectra of the reaction mixture of trifluoroacetoacetic ester 1a, acetone 2a and 2-aminoethanol 3a in acetonitrile after three-day ageing, we detected the formation of two hexahydrooxazolo[3,2-a]pyridin-5-ones 4a^{cts} and 4a^{trans} as well as cyclohex-2-en-1-ones 6a as a minor product. Although the reaction in acetonitrile runs with the high total yield, the diastereoselectivity was low in these transformations (Table 1, entry 1), so we decided to optimize the reaction conditions. To control their course, we used the ¹⁹F NMR spectroscopy, since all three products bearing CF₃-group had singlet signals with determined chemical shifts ($4a^{mars}$ at δ 79.73 ppm, $4a^{cs}$ at δ 80.79 ppm and 6a at δ 80.38 ppm). It turned out that in aprotic lowpolar solvents (THF, 1,4-dioxane) a high conversion of the initial reagents was achieved (Table 1, entries 2, 3), but in 1,4-dioxane the reaction took place with high diastereoselectivity to give predominantly one bicycle 4arans (Table 1, entry 3). Under all these conditions, the formation of cyclohexenone 6a was observed only in trace amounts. Previously, for the effective formation of cyclohexenones in similar three-component synthesis, it was proposed to carry out the reaction in absolute ethanol with zeolites [41]. However, even under these conditions, we could not obtain product 6a with an acceptable yield (table 1, entries 4, 5). According to ¹⁹F NMR spectrum, its formation was recorded only with the yield at 8% (entry 5). Attempts to isolate cyclohexenone 6a as an individual compound were unsuccessful. Instead, it turned out that the proportion of cis-isomer 4acts in ethanol increases significantly. It should be noted that three-component cyclization of ester 1a, acetone 2a with aminoethanol 3a were sensitive to heating, because under these conditions there was a strong tarring of the reaction mass in contrast to similar reactions with 1,2-ethanediamines [39].

Table 1: Optimization of the reaction conditions for the 2-aminoethanol 3a.

Entry	Conditions ^a	Time, days	Products, yield [%] ^b			Total yield [%] ^b
			4a ^{trans}	4a ^{cis}	6a	
1	CH₃CN, HPLC	3	55	35	3	93
2	THF, 99+%	3	61	25	2	88
3	1,4-dioxane, 99+%	3	80	9	Trace	89
4	EtOH (abs)	3	42	33	7	82
5	EtOH (abs), zeolites	3	33	25	8	66

*Conditions: Reactions performed with 1a (1 mmol), 2a (1 mmol) and 3a (1 mmol) in 5 mL of the solvent at room temperature. ^bDetermined by ¹⁹F NMR analysis of the mixture.

Thus, in order to obtain the *trans*-isomers of hexahydrooxazolo[3,2-a]pyridin-5-ones 4^{trans} regioselectively, we carried out the reactions of esters 1 with methyl ketones 2 and aminoethanol 3a in 1,4-dioxane at room temperature, whereas cis-isomers 4cis were isolated from reactions in absolute ethanol.

As expected, in the three-component reaction of trifluoroacetoacetic ester **1a** with 2-aminoethanol **3a** in 1,4-dioxane, varying the methyl ketone component **2** by using 2-butanone **2b** and 2-hexanone **2c** instead of acetone **2a** led to the formation of bicycles *trans*-diastereomers **4b**^{trans}, **4c**^{trans} (Scheme 2). *Cis*-isomers **4b**^{cis}, **4c**^{cis} were isolated from a mixture of isomers that formed in approximately equal ratios in ethanol. The isomers were separated by fractional crystallization or column chromatography. However, we failed to find conditions for the isolation of **4b**^{cis} as an individual compound.

Unlike alkyl methyl ketones **2a–c**, the three-component reaction of acetophenone **2d** with ester **1a** and 2-aminoethanol **3a** even in ethanol resulted in one *cis*-diastereomer of hexahydrooxazolo[3,2-a]pyridin-5-ones **4d**^{cis}. The change and increase in stereoselectivity of this reaction may be due to the presence of a bulk phenyl substituent, which plays the role of a conformational anchor.

Further, it was found that the replacement of trifluoroacetoacetic ester $\mathbf{1a}$ by difluoromethyl- and penta-fluoroethyl-containing 3-oxo esters $\mathbf{1b}$ and $\mathbf{1c}$ in reaction with acetone $\mathbf{2a}$ and aminoethanol $\mathbf{3a}$ in 1,4-dioxane gives *trans*-diastereomers of bicycles $\mathbf{4e}^{trans}$ and $\mathbf{4f}^{trans}$. At the same time, their yields are reduced compared to the trifluoromethyl analogue. Carrying out these reactions in ethanol led to a significant tarring of the reaction mass. We were able to isolate only the *cis*-isomer $\mathbf{4f}^{cis}$ in the mixture of $\mathbf{3}$: 5 with the *trans*-isomer $\mathbf{4f}^{trans}$ from the reaction of pentafluoroethyl ester $\mathbf{1c}$.

We failed to isolate cyclohexenone **6a** as an individual substance from the three-component reaction of trifluoroacetoacetic ester **1a** with methyl ketone **2a** and aminoethanol **3a**, so we tried to realize its synthesis in ethanol via a two-component reaction of aminoethanol **3a** and aldol **8a** obtained from ester **1a** with methyl ketone **2a** according to the method [41]. However, under these conditions, cyclohexenone **6a** was formed as a byproduct along with heterocycle **4a**^{trans} (Scheme 3). Nevertheless, a similar reaction of ethyl-substituted aldol **8b** with aminoethanol **3a** allowed cyclohexenone **6b** to be isolated from a mixture with bicycle **4b**^{trans}. Note that the heterocycles **4a**^{trans}, **4b**^{trans} were obtained from aldol **8a,b** in 1,4-dioxane, albeit with lower yields compared to the three-component synthesis.

Scheme 3: Two-component synthesis of cyclohexenones 6 and hexahydrooxazolo[3,2-a]pyridin-5-ones 4.

In contrast to the reactions with aminoethanol 3a, three-component cyclization of ester 1a and acetone 2a with 3-amino-1-propanol 3b in aprotic solvents proceeded stereoselectively to form one diastereomer of hexahydropyrido[2,1-b][1,3]oxazin-6-one 5a^{trans}, whereas the isomer 5a^{cts} was either formed in trace amounts or not at all (Table 2, entries 1-4). The highest yields of bicycle 5a^{trans} were achieved in THF and 1,4-dioxane (Table 2, entries 2-4), but in 1,4-dioxane the selectivity of the reaction was higher. Another feature of the transformations with aminopropanol **3b** was the obtaining of cyclohexenone **7a** when ethanol was used as a solvent (Table 2, entries 5, 6). It should also be noted that cyclizations with amino alcohol 3b took more time (7– 10 days), and they occurred with moderate yields with incomplete conversion of the starting ester 1a. The attempts to increase the reaction rate and yields by adding triethylamine as a catalyst did not lead to the desired result (Table 2, entries 4, 6).

Table 2: Optimization of the reaction conditions for the 3-amino-1-propanol 3b.

OF3 OEt
$$H_2N$$
 OEt H_2N OFT H_2N OFT H_3N OFT H_4N OFT H_5N OTT H_5N OFT H_5N OTT H

Entry	Conditions ^a	Time, days	Products, yield [%] ⁶			Yield total
			5a ^{trans}	5a ^{cis}	7a	
1	CH₃CN, HPLC	10	27	8	6	41
2	THF, 99+%	10	60	trace	7	67
3	1.4-dioxane, 99+%	10	58	trace	trace	58
4	1.4-dioxane, 99+%, NEt_3	7	50	-	3	53
5	EtOH (abs), zeolites	10	8	4	53	61
6	EtOH (abs), NEt ₃ , zeolites	7	9	-	51	60

 $^{\circ}$ Conditions: Reactions performed with **1a** (1 mmol), **2a** (1 mmol) and **3b** (1 mmol) in 5 mL of the solvent at room temperature.

The reactions were monitored using 19F NMR spectra, in which all three products can be identified by singlet signals of their CF₃ groups ($5a^{trans}$ at δ 79.76 ppm, $5a^{cs}$ at δ 80.21 ppm and 7a at δ 80.38 ppm).

Realization of three-component reactions of trifluoroacetoacetic ester 1a with methyl ketones 2ad and 3-amino-1-propanol 3b in 1,4-dioxane allowed hexahydro-2H,6H-pyrido[2,1-b][1,3]oxazin-6-ones **5a-d** to be obtained as a single *trans*-diastereomer (Scheme 4). Introduction of 3-oxoesters **1b** ($R^F = CF_2H$) or 1c ($R^F = C_2F_5$) instead of ester 1a in the reaction with acetone 2a and 3-amino-1-propanol 3b also led to the formation of hexahydro-2*H*,6*H*-pyrido[2,1-*b*][1,3]oxazin-6-ones 5e^{trans} and 5f^{trans}, albeit with a small yield.

^bDetermined by ¹⁹F NMR analysis of the mixture.

1: $R^F = CF_3$ (a), CF_2H (b), C_2F_5 (c); 2: R = H (a), Me (b), Bu (c), Ph (d); 7: $R^1 = H$ (a, d), Me (b), Pr (c).

Scheme 4: Three-component reaction of polyfluoroalkyl-3-oxo esters 1, methyl ketones 2 and 3-amino-1-propanol 3b.

The use of abs. ethanol with zeolites as a condition for the three-component reaction of trifluoroacetoacetic ester 1a with methyl ketones 2a-c and 3-amino-1-propanol 3b resulted in cyclohexenones 7a-c (Scheme 4). A similar product 7d was obtained in the reaction of pentafluoroethyl substituted ester 1c with acetone 2a and amino propanol 3b under the same conditions.

In the studied three-component reactions, we also introduced amino alcohols 3c-e having various substituents that can affect the result of these transformations. It was found that the use of (+/-)-2-amino-1-propanol 3c in the reaction with ester 1a and acetone 2a in 1,4-dioxane led to cis,cis- and trans,cis-diastereomers of heterocycle 4g (Scheme 5). Obviously, the methyl substituent in the aminoethanol 3a affects the conformation of the resulting bicycle 4g.

$$F_{3}C \longrightarrow OEt \\ OH O \\ 1a \longrightarrow F_{3}C \longrightarrow Me \\ Ag trans, cis, 28\% \\ OH O \\ 1a \longrightarrow F_{3}C \longrightarrow Me \\ Ah trans, trans, 24-29\% \\ Ah cis, trans, 13-16\% \\ OH O \\ Me \\ 2a \longrightarrow Me \\ HN \longrightarrow OH \\ III \longrightarrow GC \longrightarrow Me \\ HO \longrightarrow OH \\ HO \longrightarrow OH$$

Conditions: i 1,4-dioxane, rt; ii EtOH, rt; iii EtOH, zeolites, rt

Scheme 5: Variation of amino alcohols 3 in the reaction with ester 1a and acetone 2a.

(+/-)-3-Amino-1,2-propanediol **3d** can react with ester **1a** and acetone **2a** as aminoethanol to form hexahydrooxazolo[3,2-a]pyridin-5-one **4h** and/or as 3-amino-2-propanol give hexahydropyrido[2,1-b][1,3]oxazin-6-one **5h**. However, regardless of the reaction conditions, two *trans,trans*- and *cis,trans*-diastereomers of

hexahydrooxazolo[3,2-a]pyridin-5-one 4h were obtained. Such reaction course may be preferable because of the thermodynamic benefit of the formation of a five-membered cycle over the formation of a six-membered one.

When 2-(methylamino)ethanol **3e** was used as an amino alcohol component in the reaction with ester **1a** and acetone 2a, only cyclohexenone 6c could be formed (Scheme 5), because in this case the nitrogen atom cannot act as a bridge centre in the bicycle 4.

The structures of all synthesized compounds were confirmed by IR, ¹H, ¹⁹F, ¹³C NMR spectroscopy and highresolution mass spectrometry. Based on 2D 1H-13C HSQC and HMBC experiments, full correlation of signals in 1H and ¹³C NMR spectra was carried out. The relative configuration of substituents at stereocenters was determined by homonuclear 2D 1H-1H NOESY experiments. The structures of diastereomers 4 and 5 are shown in schemes 2-4. The relative configurations are given with respect to a hydroxyl group. Diastereomers 4 and 5 are racemates.

A direct confirmation of the trans-position of hydroxyl oxygen and oxazole or oxazine cycle oxygen is the cross-peak in the NOESY spectra between the OH-group proton and the substituent protons at the nodal carbon atom observed for all *trans*-isomers of type 4 and 5 structures. The spectra of *cis*-isomers show no cross-peak (OH, R); and the relative configuration is established on the basis of a set of other NOE correlations (see Supplementary).

Some diagnostic features of *cis*- and *trans*-configuration were established using the ¹H, ¹⁹F NMR spectra analysis of hexahydrooxazolo[3,2-a]pyridine-5-ones 4 isomers. In the 'H spectra, the most striking differences are related to the value of the nonequivalence (Δ_{6AB}) of diastereotope protons at C-6 and to the value of the geminal constant between them (${}^{2}J_{6AB}$). Cis-isomers **4**^{cis} is characterized with a significant value $\Delta_{6AB} = 0.33 - 0.48$ ppm, whereas in trans-isomers the value Δ_{6AB} < 0.07 ppm up to the degeneration of AB-system to spin system A_2 $(\Delta_{6AB} = 0)$. Besides, the constant ${}^{2}J_{6AB}$ in the transition from *cis*- to *trans*-isomers increases in absolute value from 15 to 17.8 Hz.

The presence of long-range spin-spin interaction between the protons of the methylene groups of the pyridinone cycle in compounds 4 and 5 with a characteristic value of the constant ${}^4J_{H,H} = 1.3 - 3.5$ Hz indicates a pseudo-equatorial position of the interacting protons. The identification of axial and equatorial protons was used in the analysis of 2D NOESY spectra and for determining the relative configuration.

In the ¹⁹F NMR spectra of compounds 4, 5 having a trifluoromethyl substituent, the ¹⁹F signals of trans-diastereomers are observed in a stronger field of $\delta \sim 79.8$ ppm as compared to *cis*-diastereomers with $\delta \sim 80.4 - 80.8$ ppm.

The structures of compounds $4a^{trans}$, $4a^{cis}$, $4c^{cis}$, $4h^{trans,trans}$, $5a^{trans}$, 7c were confirmed by X-ray diffraction analysis data (Fig. 1 and Fig. 2).

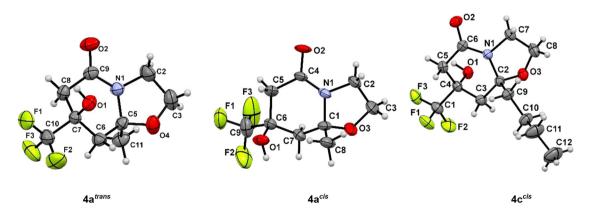


Fig. 1: ORTEP diagrams of compounds 4a^{trans}, 4a^{cis}, 4c^{cis}.

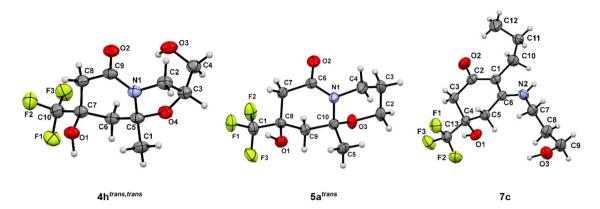


Fig. 2: ORTEP diagrams of compounds 4htrans, trans, 5atrans, 7c.

For the reactions under consideration, it can be assumed that both bicycles **4**, **5** and cyclohexenones **6**, **7** are obtained via the enaminoester **Y** as a key intermediate. We can offer two ways to generate **Y**: (1) through enamine **X** formed from ketone **1** and amine **3** (pathway **a**) by the known enamine mechanism [69] or (2) through aldol **8** (pathway **b**) (Scheme 6). In the aprotic medium we observed the predominant formation of bicycles **4**, **5**. Probably, these heterocycles are obtained as a result of intramolecular cyclization of the intermediate **Y'** due to nucleophilic addition of the hydroxyl group to the C=N bond (route **c**) to form the cycle **Z**, which further underwent intramolecular amidation of the ester fragment to give a bicyclic backbone **4**, **5**. In ethanol, the reaction can proceed through the alternative pathway **d**, which becomes the main pathway for 3-aminopropanol **3b**. Most likely, in this case hydroxyl reaction centre of the intermediate **Y''** is blocked due to its solvation by solvent molecules (ethanol), resulting in intramolecular cyclization of enaminoketone **Y''** coming along the path **d** with the formation of aminocyclohexanones **6**, **7** via the condensation ethoxycarbonyl fragment with an activated methylene group. For a spatially distant hydroxypropyl group, more efficient solvation is possible, which is the reason for the preferred formation of cyclohexenones **7**. Preparation of

Scheme 6: The proposed mechanism for the formation of bicycles 4, 5 and cyclohexenones 6, 7.

hexahydrooxazolopyridinones 4 from aldol 8 in abs. ethanol can be explained by the possible intermediate formation of dihydroxycyclohexenone \mathbf{W} (the pathway \mathbf{e}) followed by its interaction with aminoethanol $\mathbf{3a}$. All processes are autocatalysed, because amino alcohols 3a, b act not only as reagents but also as base catalysts.

Conclusions

DE GRUYTER

In summary, based on the three-component reaction of commercially available reagents, such as polyfluoroalkyl-3-oxo esters, methyl ketones and amino alcohols, the approaches are offered to obtaining hexahydrooxazolo[3,2-a]pyridin-5-ones, hexahydropyrido[2,1-b][1,3]oxazin-6-ones and cyclohexenones functionalized with amino alcohol fragment. It was found that the cyclization of 3-oxo ester and methyl ketone reagents with 3-aminopropanol in ethanol leads mainly to 3-hydroxypropylaminocyclohex-2-enones, whereas in 1,4-dioxane the main products are hexahydropyrido[2,1-b][1,3]oxazine-6-ones in the form of trans-diastereomers. In contrast to that, similar cyclization with aminoethanol and its analogues, regardless of the reaction conditions, yields hexahydrooxazolo[3,2-a]pyridine-5-ones mainly. In this case, the reaction with alkyl methyl ketones in 1,4-dioxane proceeds stereoselectively to form trans-diastereomers, while a mixture of cis-and trans-diastereomers is generated in ethanol, which allows the cis-isomer to be isolated. In the case that acetophenone is introduced in the cyclization with both amino alcohols, cis-diastereomer heterocycles are the predominant products. The synthesis of 3-hydroxyethylaminocyclohex-2-enones is possible in rare cases only.

Acknowledgements: Analytical studies were carried out using the equipment of the Center for Joint Use "Spectroscopy and Analysis of Organic Compounds" at the Postovsky Institute of Organic Synthesis of the Russian Academy of Sciences (Ural Branch).

Funding: This research was financially supported by Russian Foundation for Basic Research (grant no. 18-03-00342) and the State project AAAA-A19-119011790132-7.

References

- [1] J. Zhu, H. Bienayme (Ed.), Multicomponent Reactions, Wiley-VCH Weinheim, Germany (2005).
- [2] A. Domling. Chem. Rev. 106, 17 (2006).
- [3] B. Ganem. Acc. Chem. Res. 42, 463 (2009).
- [4] A. Domling, W. Wang, K. Wang. Chem. Rev. 112, 3083 (2012).
- [5] J. Liu, J. Li, L. Zhang, L. Song, M. Zhang, W. Cao, S. Zhu, H. Deng, M. Shao. Tetrahedron Lett. 53, 2469 (2012).
- [6] W. Wang, J. Li, L. Zhang, L. Song, M. Zhang, W. Cao, H. Deng, M. Shao. Synthesis 44, 1686 (2012).
- [7] K. Karnakar, K. Ramesh, K. H. V. Reddy, B. S. P. Anil Kumar, J. B. Nanubonula, Y. V. D. Nageswar. New J. Chem. 39, 8978 (2015).
- [8] N. N. Gibadullina, D. R. Latypova, R. A. Novikov, Y. V. Tomilov, V. A. Dokicheva. Arkivoc 222 (2017).
- [9] L. Zhou, F. Yuan, Y. Zhou, W. Duan, M. Zhang, H. Deng, L. Song. Tetrahedron 3761 (2018).
- [10] J. D. Bhatt, T. S. Patel, C. J. Chudasama, K. D. Patel. ChemistrySelect 3, 3632 (2018).
- [11] C. Dayakar, B. C. Raju, ChemistrySelect 3, 9388 (2018).
- [12] X.-X. Du, Q.-X. Zi, Y.-M. Wu, Y. Jin, J. Lin, S.-J. Yan, Green Chem. 21, 1505 (2019).
- [13] K. I. Pashkevich, V. I. Saloutin. Russ. Chem. Rev. 54, 1185 (1985).
- [14] S. Zhu, L. Song, G. Jin, B. Dai, J. Hao. Curr. Org. Chem. 13, 1015 (2009).
- [15] Y. Wu, Y. Wang, M. He, X. Tao, J. Li, D. Shan, L. Lv. Mini-Rev. Org. Chem. 14, 350 (2017).
- [16] Y. L. Liu, T. D. Shi, F. Zhou, X. L. Zhao, X. Wang. J. Zhou. Org. Lett. 13, 3826 (2011).
- [17] D. O'Hagan, Chem. Soc. Rev. 37, 308 (2008).
- [18] A. Rahman, E. Xie, X. Lin. Org. Biomol. Chem. 16, 1367 (2018).
- [19] B. Jeffries, Z. Wang, J. Graton, S. D. Holland, T. Brind, R. D. R. Greenwood, J.-Y. Le Questel, J. S. Scott, E. Chiarparin, B. Linclau. J. Med. Chem. 61, 10602 (2018).
- [20] K. Koroniak-Szejn, J. Tomaszewska, J. Grajewski, H. Koroniak. J. Fluorine Chem. 219, 98 (2019).
- [21] F. Giornal, S. Pazenok, L. Rodefeld, N. Lui, J. P. Vors, F. R. Leroux. J. Fluorine Chem. 152, 2 (2013).
- [22] B. Romana-Souza, J. Salles dos Santos, L. G. Bandeira, A. Monte-Alto-Costa. Life Sci. 153, 82 (2016).
- [23] V. K. Sthalam, A. K. Singh, S. Pabbaraja. Org. Process Res. Dev. 23, 1892 (2019).

- [24] V. I. Saloutin, Y. V. Burgart, O. G. Kuzueva, C. O. Kappe, O. N. Chupakhin. J. Fluor. Chem. 103, 17 (2000).
- [25] M. V. Pryadeina, O. G. Kuzueva, Y. V. Burgart, V. I. Saloutin, K. A. Lyssenko, M. Yu. Antipin. J. Fluor. Chem. 117, 1 (2002).
- [26] M. V. Pryadeina, Y. V. Burgart, V. I. Saloutin, M. I. Kodess, E. N. Ulomskii, V. L. Rusinov. Russ. J. Org. Chem. 40, 902 (2004).
- [27] M. V. Pryadeina, Y. V. Burgart, V. I. Saloutin, O. N. Chupakhin. Mendeleev Commun. 18, 276 (2008).
- [28] M. V. Goryaeva, Ya. V. Burgart, V. I. Saloutin, E. V. Sadchikova, E. N. Ulomskii. Heterocycles 78, 435 (2009).
- [29] M. V. Goryaeva, Ya. V. Burgart, V. I. Saloutin. J. Fluorine Chem. 147, 15 (2013).
- [30] Y. S. Kudyakova, D. N. Bazhin, M. V. Goryaeva, Ya. V. Burgart, V. I. Saloutin. Russ. Chem. Rev. 83, 120 (2014).
- [31] M. V. Goryaeva, Y. V. Burgart, M. A. Ezhikova, M. I. Kodess, V. I. Saloutin. Beilstein J. Org. Chem. 11, 385 (2015).
- [32] V. I. Saloutin, Y. S. Kudyakova, M. V. Goryaeva, Y. V. Burgart, O. N. Chupakhin. Pure Appl. Chem. 89, 1209 (2017).
- [33] O. G. Khudina, E. V. Shchegol'kov, Y. V. Burgart, N. P. Boltneva, E. V. Rudakova, G. F. Makhaeva, V. I. Saloutin. J. Fluor. Chem. 210, 117 (2018).
- [34] L. V. Politanskaya, G. A. Selivanova, E. V. Panteleeva, E. V. Tretyakov, V. E. Platonov, P. V. Nikul'shin, A. S. Vinogradov, Y. V. Zonov, V. M. Karpov, T. V. Mezhenkova, A. V. Vasilyev, A. B. Koldobskii, O. S. Shilova, S. M. Morozova, Y. V. Burgart, E. V. Shchegolkov, V. I. Saloutin, V. B. Sokolov, A. Y. Aksinenko, V. G. Nenajdenko, M. Y. Moskalik, V. V. Astakhova, B. A. Shainyan, A. A. Tabolin, S. L. Ioffe, V. M. Muzalevskiy, E. S. Balenkova, A. V. Shastin, A. A. Tyutyunov, V. E. Boiko, S. M. Igumnov, A. D. Dilman, N. Y. Adonin, V. V. Bardin, S. M. Masoud, D. V. Vorobyeva, S. N. Osipov, E. V. Nosova, G. N. Lipunova, V. N. Charushin, D. O. Prima, A. G. Makarov, A. V. Zibarev, B. A. Trofimov, L. N. Sobenina, K. V. Belyaeva, V. Y. Sosnovskikh, D. L. Obydennov, S. A. Usachev. Russ. Chem. Rev. 88, 425 (2019).
- [35] S. Tyndall, K. F. Wong, M. A. Van Alstine-Parris. J. Org. Chem. 80, 895 (2015).
- [36] W. Shi, Y. Wang, Y. Zhu, M. Zhang, L. Song, H. Deng. Synthesis 48, 3527 (2016).
- [37] Y. M. Lin, G. P. Lu, R. K. Wang, W. B. Yi. Org. Lett. 18, 6424 (2016).
- [38] K. Rajkumar, T. R. Murthy, A. Zehra, P. S. Khursade, S. V. Kalivendi, A. K. Tiwari, R. S. Prakasham, B. C. Raju. Chemistry Select 3, 13729 (2018).
- [39] M. V. Goryaeva, Y. V. Burgart, Y. S. Kudyakova, M. A. Ezhikova, M. I. Kodess, P. A. Slepukhin, V. I. Saloutin. Eur. J. Org. Chem. 6306 (2015).
- [40] M. V. Goryaeva, Y. V. Burgart, Y. S. Kudyakova, M. A. Ezhikova, M. I. Kodess, V. I. Saloutin. Eur. J. Org. Chem. 3986 (2017).
- [41] M. V. Goryaeva, S. O. Kushch, O. G. Khudina, Y.V. Burgart, Y. S. Kudyakova, M. A. Ezhikova, M. I. Kodess, P. A. Slepukhin, L. S. Sadretdinova, N. P. Evstigneeva, N. A. Gerasimova, V. I. Saloutin. Org. Biomol. Chem. 17, 4273 (2019).
- [42] T. Someno, S. Kunimoto, H. Nakamura, H. Naganawa, D. Ikeda. J. Antibiot. 58, 56 (2005).
- [43] R. M. Vilar, J. Gil-Longo, A. H. Daranas, M. L. Souto, J. J. Fernandez, S. Peixinho, M. A. Barral, G. Santafé, J. Rodrigueza, C. Jiménez. Bioorg. Med. Chem. 11, 2301 (2003).
- [44] S. Gang, S. Ohta, H. Chiba, O. Jhodo, H. Nomura, Y. Nagamatsu, A. Yoshimoto, J. Antibiot. 54, 304 (2001).
- [45] Y. Asai, N. Nonaka, S.-I. Suzuki, M. Nishio, K. Takahashi, H. Shima, K. Ohmori, T. Onuki, K. Komatsubara, J. Antibiot. 52, 607
- [46] E. Martin, A. Moran, M. L. Martin, L. S. Roman, P. Puebla, M. Medarde, E. Caballero, A. San Feliciano. Bioora, Med. Chem. Lett. 10, 319 (2000).
- [47] M. Amat, M. Pérez, J. Bosch. Synlett. 143 (2011).
- [48] M. P. Dwyer, J. E. Lamar, A. I. Meyers. Tetrahedron Lett. 40, 8965 (1999).
- [49] C. Escolano, M. Amat, J. Bosch. Chem. Eur. J. 12, 8198 (2006).
- [50] M. D. Groaning, A. I. Meyers. Tetrahedron 56, 9843 (2000).
- [51] M. Amat, N. Llor, R. Griera, M. Pérez, J. Bosch. Nat. Prod. Commun. 6, 515 (2011).
- [52] P. Aeberli, W. J. Houlihan. J. Org. Chem. 34, 165 (1969).
- [53] P. Aeberli, J. H. Gogerty, W. J. Houlihan, L. C. Iorio. J. Med. Chem. 19, 436 (1976).
- [54] A. I. Meyers, M. A. Sturgess. Tetrahedron Lett. 30, 1741 (1989).
- [55] M. Jida, R. Deprez-Poulain, S. Malaquin, P. Roussel, F. Agbossou-Niedercorn, B. Depreza, G. Laconde. Green Chem., 12, 961 (2010).
- [56] M. Amat, N. Llor, R. Griera, M. Pérez, J. Bosch. Nat. Prod. Commun. 6, 515 (2011).
- [57] S. Malaquin, M. Jida, J. Courtin, G. Laconde, N. Willand, B. Deprez, R. Deprez-Poulain. Tetrahedron Lett. 54, 562 (2013).
- [58] S. M. Allin, C. I. Thomas, J. E. Allard, M. Duncton, M. R. J. Elsegooda, M. Edgar. Tetrahedron Lett. 44, 2335 (2003).
- [59] S. M. Allin, L. J. Duffy, P. C. Bulman Page, V. McKeea, M. J. McKenzie. Tetrahedron Lett. 48, 4711 (2007).
- [60] O. Bassas, N. Llor, M. M. M. Santos, R. Griera, E. Molins, M. Amat, J. Bosch. Org. Lett. 7, 2817 (2005).
- [61] M. Amat, M. M. M. Santos, O. Bassas, N. Llor, C. Escolano, A. Gomez-Esque, E. Molins, S. M. Allin, V. McKee, J. Bosch. J. Org. Chem. 72, 5193 (2007).
- [62] J. C. Hubert, J. B. P. A. Wijnberg, W. N. Speckamp. Tetrahedron 31, 1437 (1975).
- [63] M. Amat, N. Llor, J. Bosch. Tetrahedron Lett. 35, 2223 (1994).
- [64] E. Airiau, N. Girard, A. Mann, J. Salvadori, M. Taddei. Org. Lett. 11, 5314 (2009).

- [65] J. Salvadori, E. Airiau, N. Girard, A. Mann, M. Taddei. Tetrahedron 66, 3749 (2010).
- [66] M. A. Estiarte, M. Rubiralta, A. Diez, M. Thormann, E. Giralt. J. Org. Chem. 65, 6992 (2000).
- [67] M. Weber, S. Jautze, W. Frey, R. Peters. J. Am. Chem. Soc. 132, 12222 (2010).
- [68] J. Jiang, R J. DeVita, G. A. Doss, M. T. Goulet, M. J. Wyvratt. J. Am. Chem. Soc. 121, 593 (1999).
- [69] W. Notz, F. Tanaka, C. F. Barbas. Acc. Chem. Res. 37, 580 (2004).

Supplementary Material: The online version of this article offers supplementary material (https://doi.org/10.1515/pac-2019-1216).