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Abstract: The search and exploration of new materials not found in nature is one of modern trends in pure 
and applied chemistry. In the present work, we report on experimental and ab initio density-functional study 
of the high-pressure-synthesized series of compounds Mn1−x(Co,Rh)xGe. These high-pressure phases remain 
metastable at normal conditions, therewith they preserve their inherent noncentrosymmetric B20-type struc-
ture and chiral magnetism. Of particular interest in these two isovalent systems is the comparative analysis 
of the effect of 3d (Co) and 4d (Rh) substitution for Mn, since the 3d orbitals are characterized by higher 
localization and electron interaction than the 4d orbitals. The behavior of Mn1−x(Co,Rh)xGe systems is traced 
as the concentration changes in the range 0 ≤ x ≤ 1. We applied a sensitive experimental and theoretical tech-
nique which allowed to refine the shape of the temperature dependencies of magnetic susceptibility χ(T) and 
thereby provide a new and detailed magnetic phase diagram of Mn1−xCoxGe. It is shown that both systems 
exhibit a helical magnetic ordering that very strongly depends on the composition x. However, the phase 
diagram of Mn1−xCoxGe differs from that of Mn1−xRhxGe in that it is characterized by coexistence of two helices 
in particular regions of concentrations and temperatures.
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Introduction
The design, fabrication and study of novel compounds not found in nature, with an emphasis on interrelation 
between their electronic structure and physico-chemical properties, provide a promising basis for the devel-
opment of technologically important materials [1–7]. Examples of such systems are transition-metal (TM) 
monogermanides with a cubic B20-type crystal structure, which are attractive for researchers in view of their 
exotic properties and hence, a variety of possible applications. Most of these materials have been obtained by 
the direct high-pressure synthesis from melted constituents and found to remain metastable under normal 
conditions [8].
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These systems are less studied than their isostructural analogues – B20-type TM monosilicides, because 
the latters are normal-pressure phases and as such, easier to grow and explore. However, the TM monoger-
manides generally exhibit a much wider spectrum of exotic magnetic phenomena than monosilicides. For 
example, in contrast to a number of TM monogermanides that possess chiral long-period magnetic structures 
at relatively high temperatures, the monosilicide systems that form continuous series of compounds in the 
composition range 0 ≤ x ≤ 1, are magnetic only in a limited interval of concentrations (Mn1−xFexSi) or tempera-
tures (Fe1−xCoxSi) [2]. This circumstance makes TM monogermanides good candidates to systematically study 
the effect of substituting one TM constituent by another, with the latter not necessarily being 3d magnetic 
element.

A nontrivial chiral magnetic ordering found in some B20-type TM monogermanides is determined by 
the competition between magnetic exchange and spin-orbit interactions, and the interplay of structural and 
magnetic chiralities. There is RKKY interactions between magnetic atoms in the system, while the noncen-
trosymmetric nature of the B20 lattice induces the Dzyaloshinskii–Moriya interaction (DMI) where its sign 
is correlated with the B20 structural chirality [9–11]. Experimental studies show that the period, sign, and 
number of occurring magnetic helices strongly depend also on the chemical composition, i.e. symmetry, the 
cell volume, the lengths and angles of chemical bonds, the concentration and type of dopant (3d or 4d, donor 
or acceptor, magnetic or nonmagnetic). Thus, the choice of TM constituents of monogermanides can strongly 
affect the sign of DMI [12], which is important for the search of candidate spintronics-related materials.

In the present work, we report on experimental and theoretical study of the high-pressure-synthesized 
chiral magnets Mn1−xCoxGe. The behavior of this system is traced as cobalt concentration changes in the range 
0 ≤ x ≤ 1. It should be noted that compositions belonging to the Mn-rich side (x ≤ 0.5) have been studied in [13] 
using the small-angle neutron scattering (SANS) and neutron powder diffraction techniques. More recently, 
the characterization of magnetic structure in Mn1−xCoxGe at 0 ≤ x ≤ 0.9 has been performed using the SQUID 
magnetometer and SANS measurements [14]. Here, we applied a more sensitive experimental technique, 
which allowed us to refine the shape of the χ(T) dependencies and thereby provide a new magnetic phase 
diagram of Mn1−xCoxGe. Our experimental data are theoretically analyzed on the basis of ab initio density-
functional calculations of Mn1−xCoxGe at various concentrations x.

Then we compare the theoretical and experimental results for two series of pseudobinary alloys, 
Mn1−xRhxGe [8] and Mn1−xCoxGe, to study the effect of 3d- and 4d-doping on the evolution of structural, elec-
tronic, magnetic, and transport properties. At high Co/Rh concentrations x ≥ 0.5, helimagnetic structures 
with long periods are observed: ~550 Å for Mn1−xRhxGe and ~380 Å for Mn1−xCoxGe [13], which are more than 
one order of magnitude larger than in pure MnGe and the Mn-rich side (x ≤ 0.25) of the Mn1−x(Co,Rh)xGe series 
[13, 14].

Methods

Experimental technique

Polycrystalline samples of the B20-type compounds Mn1−xCoxGe (0 ≤ x ≤ 1) were synthesized under pressure 
P = 8 GPa by melting Mn, Co and Ge in the toroidal high-pressure cell [15]. The obtained high-pressure phases 
remain metastable at normal conditions. The crystal structure was analyzed by X-ray diffraction (XRD) at 
room temperature and normal pressure using the diffractometer STOE IPDS-II (Mo-Kα). For details of the 
experimental procedure see paper [8] and references therein.

The electrical resistivity was measured on bulk polycrystalline samples with the help of lock-in detection 
technique (SR830 lock-in amplifier and SR554 preamplifier) in the temperature range 4–300 K. In this case, 
four Pt electrodes of 25 μm in diameter were spot-welded to the sample.

To obtain the temperatures of magnetic ordering in the entire range of concentrations x, the magnetic 
ac-susceptibilities (χ′ and χ″) were measured with SR830 lock-in amplifier and home-made coil system in the 
range 4–300 K. Signal of SR830 was normalized to the sample mass, and all measurements were performed 
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at fixed frequency and excitation field, so the susceptibilities in arbitrary units may be compared for differ-
ent samples on the absolute scale. The excitation field was of about 1 Oe that is much smaller than in SQUID 
measurements (1000 Oe) [14]. Our χ′(T) dependencies are very similar to χ(T) dependencies [14] obtained with 
SQUID, but small excitation field makes it possible to resolve double-peak features of these dependencies (see 
below) that are smeared out in higher fields. Later we will use the designations χ(T) and χ′(T) as equivalents.

Density functional calculations

Our ab initio computations are based on the density functional theory (DFT). We used the first-principles 
pseudopotential method as implemented in the Quantum Espresso package [16], with the exchange-corre-
lation functional taken within generalized-gradient approximation (GGA) by Perdew-Burke-Ernzerhof (PBE) 
[17]. We employed the projected-augmented-wave (PAW) type scalar-relativistic pseudopotentials from the 
Quantum Espresso database, with the valence electron configurations of 3s2p6d54s2, 3s2p6d74s2, and 3d104s2p2 
for Mn, Co, and Ge, respectively. The integration over the Brillouin zone (BZ) for the electron density of states 
computation was performed on a uniform grid of 24 × 24 × 24 k-points. For x = 1/4, 1/2, and 3/4, the due number 
of equivalent Mn atoms in the cubic B20 unit cell were replaced by Co atoms. The plane wave cutoff of 100 
Ry was chosen, which gives the total energy convergence better than 10−8 Ry. For each composition, the equi-
librium value of system‘s lattice constant a0 was defined as the one corresponding to zero pressure. The 
geometry relaxation was performed until the residual atomic forces were converged down to 3 meV/Å. The 
optimized internal atomic positions for MnGe are uMn = 0.135 and uGe = 0.843, while for CoGe uCo = 0.137 and 
uGe = 0.840 (experimental values are 0.128 and 0.834).

We made ab initio density-functional calculations of the compounds Mn1−xCoxGe at 0 ≤ x ≤ 1, with and 
without taking into account the spin polarization. Our spin-polarized calculations were done using a simple 
model of collinear ferromagnetism. With increasing Co concentrations, a change occurs from a relatively 
short-period helix (SPH) to a long-period (~550 Å) helix (LPH). The simple ferromagnetic alignment is a rea-
sonable approximation, because even the short period (~30 Å as in pure MnGe) of spiral magnetic structure 
is significantly longer than the unit-cell size ~4.5 Å. Both nonmagnetic and magnetic solutions are obtained 
at all concentrations, except for pure CoGe, which is nonmagnetic.

The calculated electron density of states (DOS) of Mn1−xCoxGe for the magnetic and nonmagnetic phases 
is presented in Fig. 1. Our calculations show that over the entire energy range, the DOS, N(E), of Mn1−xCoxGe 
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Fig. 1: (Color online) The results of non-spin-polarized (a) and spin-polarized (b) calculations of the density of states for 
Mn1−xCoxGe (x = 0.25, 0.5 and 0.75). The DOS of magnetic MnGe and nonmagnetic CoGe are also shown. The Co content x is 
indicated in corresponding panels. The DOS for the spin up (down) states in (b) is counted positive (negative). The Fermi level 
(EF) is set to zero and marked by the vertical line.
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is contributed mostly by TM 3d-states hybridized with germanium p-states with a dominating contribution 
from the former. As could be expected, the DOS of Mn1−xCoxGe is very similar to that of isovalent Mn1−xRhxGe 
calculated in our paper [8].

Crystal structure of Mn1−x(Co,Rh)xGe

Powder X-ray diffraction

High-pressure-synthesized binary monogermanides composed of TM and Ge atoms crystallize in the 
B20 structure as confirmed by powder XRD measurements. For example, Fig. 2 shows our simulated powder-
diffraction data for RhGe in comparison with the experiment [18]. The theoretical XRD pattern (Fig. 2, bottom 
panel) is generated using the VESTA (Visualization for Electronic and Structural Analysis) software package 
[19] that processes results of DFT computations. Here, our calculated parameters of the B20-RhGe structure 
were fully relaxed at P = 0 with Quantum Espresso and then used as input data for VESTA. It is worth noting 
that the theoretical and experimental diffraction graphs are very similar to each other in positions and rela-
tive height of the peaks (one should bear in mind that the experimental XRD has been measured on polycrys-
talline samples).

When a particular compound contains both the Mn and Co/Rh atoms, a symmetry-breaking distortion of 
the B20 lattice takes place. Hence, at x = 0.25, 0.5 and 0.75, the lattice can be only approximately considered 
as B20-type. It is clear that the compounds Mn0.5(Co,Rh)0.5Ge possess maximal lattice distortion among the 
other compositions considered. However, the distortion from B20 is not large. To illustrate that we show in 
Fig. 3 the XRD pattern calculated for Mn0.5Co0.5Ge, and pure B20 binaries MnGe and CoGe. As follows, the 
diffraction peaks of Mn0.5(Co,Rh)0.5Ge split due to symmetry-breaking distortions, but they do not deviate far 
from the positions corresponding to the B20 lattice. This is also seen in experimental diffraction patterns of 
Mn0.5(Co,Rh)0.5Ge.

Vegard’s and non-Vegard’s behavior

The XRD measurements of the structure of Mn1−xCoxGe were made at many x values in the range of 0 ≤ x ≤ 1. 
A comparison of variation in the lattice parameter a with 3d-Co/4d-Rh concentration x is presented in Fig. 4. 
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Fig. 2: (Color online) Experimental (top panel) and simulated (bottom panel) X-ray powder-diffraction data for RhGe. Theoretical 
graph in bottom panel is obtained using the VESTA software that processes DFT-calculated data. We used as input to VESTA the 
B20-RhGe lattice parameters fully relaxed at normal pressure using the Quantum Espresso package.
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The results for Mn1−xRhxGe are taken from our paper [8]. As is seen in the figure, the cubic lattice parameter 
a of Mn1−xCoxGe decreases with increasing Co content, because the atomic radius of cobalt is a few percent 
smaller than that of manganese. In case of Mn1−xRhxGe the situation is reversed.

As is well known, the lattice parameter a of a solid solution of two constituents with the same crystal 
structure [here, MnGe and (Co,Rh)Ge] obeys Vegard’s law (blue straight lines), i.e. a changes almost linearly 
with concentration x of substituting atom. However, for Mn1−xRhxGe there is a strong positive deviation of the 
experimentally measured a(x) from linear Vegard’s law (left panel in Fig. 4), while Mn1−xCoxGe demonstrates 
much smaller deviation if any (right panel in Fig. 4). Similar practically linear a(x) curve has been already 
observed for Mn1−xCoxGe in papers [14, 20]. The linear dependence a(x) has been also reported for other solid 
solutions of B20-type 3d-metal monogermanides: Mn1−xFexGe [11, 21] and Fe1−xCoxGe [22].

Noteworthy, in case of Mn1−xRhxGe, the dependence a(x) is a more or less regular convex curve with a 
maximum at x = 0.5, while small deviations of both signs in case of Mn1−xCoxGe resemble random variations 
and can be ascribed to uncertainty of experimental data. As mentioned above, a chemical-doping-induced 
distortion of B20 lattice is largest at x = 0.5 (see Fig. 3). However, substitution of 3d-Mn for 3d-Co, an element 
of the same period, does not lead to appreciable deviation from Vegard’s law, in contrast to substitution for 
4d-Rh, which is different from 3d-elements in atomic size, the space distribution of d-orbitals, the depth of 
potential well. A significant excess of the lattice parameter of Mn0.5Rh0.5Ge over the linear curve implies that 
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Fig. 3: (Color online) The X-ray powder diffraction patterns calculated for Mn0.5Co0.5Ge, and B20-type binaries MnGe and CoGe. 
As follows, the diffraction peaks of Mn0.5Co0.5Ge split due to symmetry-breaking distortions, but they do not deviate far from the 
positions corresponding to the B20 lattice.
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Fig. 4: (Color online) The measured and calculated concentration dependence of the lattice parameter a for Mn1−xCoxGe in 
comparison with Mn1−xRhxGe [8].



946      N. M. Chtchelkatchev et al.: Theoretical and experimental study of high-pressure

this compound possesses a noticeably looser structure than Mn0.5Co0.5Ge, which can be explained by a higher 
degree of disorder in case of 4d-doping.

Our DFT calculations give an almost linear function a(x) for both Mn1−xCoxGe and Mn1−xRhxGe (green line 
in Fig. 4). The strong deviation from Vegard’s law found for Mn1−xRhxGe [8] is not explained by theory, because 
we did not take account of structural disorder. However, a is underestimated for MnGe and overestimated 
for RhGe, so for Mn1−xRhxGe, slope of the theoretical curve a(x) differs essentially from the experimental one.

Nevertheless, as a whole, a disagreement between the theoretical and experimental curves does not 
exceed 0.7 % for Mn1−xCoxGe at all x and for Mn1−xRhxGe at x ≤ 0.6. The largest disagreement (~1.4 %) in case of 
RhGe is within uncertainty of measurements and calculations. We tried to change the slope of the theoretical 
curve for Mn1−xRhxGe using the GGA + U procedure (with different U for Rh and Mn). However, together with 
improving a(x) with U-procedure we always increased at the same time the deviation between experimental 
and theoretical magnetic moments. Here, it should be noted that DFT explains quite well the evolution of 
experimental magnetic moment with concentration x, see Fig. 8.

Magnetic susceptibility of Mn1−xCoxGe and the processing of 
experimental data

Measurement results

At low temperatures, the compounds Mn1−xCoxGe are found to be magnetically ordered at concentrations of 
0 ≤ x ≤ 0.9. In order to obtain the magnetic transition temperature (Tm) of Mn1−xCoxGe as a function of con-
centration x, we measured the temperature dependencies of the magnetic susceptibility, χ(T), for some rep-
resentative concentrations. The obtained susceptibility–temperature curves in the regions 0 ≤ x ≤ 0.5 and 
0.5 ≤ x ≤ 0.9 are displayed respectively in the left and right panels of Fig. 5.

The main feature of the χ(T) curve is a broad maximum whose position marks temperature where a chiral 
magnetic ordering emerges. In the Mn-rich side, the χ(T) curve is similar to that of MnGe. With increasing 
Co concentration, the main peak is gradually shifted to lower temperatures. The exception is the region of 
0.3 ≤ x ≤ 0.5, where the peak position goes up. Thus, we found the highest Tm = 165 K for MnGe, the lowest one 
(≈50 K) for x ≈ 0.3, and a local maximum of ≈70 K for x ≈ 0.5.

As is seen in Fig. 5, the χ(T) curve at x ≥ 0.3 looks such that instead of one broad maximum, two overlap-
ping peaks can be distinguished. This implies that in this concentration range, there are two successive phase 
transitions to different helimagnetic states (short-period or long-period). We scanned the temperatures of 
these smeared peaks to prepare the phase diagram (Fig. 9b) described below.
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Fig. 5: (Color online) The experimental temperature dependence of magnetic susceptibility for Mn1−xCoxGe.



N. M. Chtchelkatchev et al.: Theoretical and experimental study of high-pressure      947

Theoretical procedure for extracting the magnetic transition temperatures

One of the methods to identify the temperatures of magnetic phase transitions in Mn1−x(Co,Rh)xGe compounds 
(see Fig. 9) is related to investigation of the peak positions in the susceptibility curves. However, the peaks 
are strongly smeared as follows from temperature – susceptibility curves in Fig. 5. The smearing of the peaks 
exhibits the appearance of intense helical fluctuations in a wide temperature range. Technically that strongly 
complicates the definition of magnetic transition temperatures.

We developed the procedure for peak-extraction that removes the ambiguity with the definition of the 
transition temperature especially when the peaks strongly overlap or hidden behind the helical fluctuations. 
The idea is to maximally accurately approximate the temperature dependence of the susceptibility using the 
Pade-approximant, Pd(T), built on top of the experimental data-table. The calculation procedure is described 
in detail in Refs. [23–25]. Then we formally perform the analytic continuation of the susceptibility approximant 
Pd(T) into the region of complex T. Pole-singularities in the complex plain of T help to find the peak location in 
χ(T) (with real-valued T, of cause). Mathematically, it should be understood that the peak in χ(T) shows itself 
as the Lorentzian L(T) (any smooth peak can be in fact approximated like that at least near the peak top):
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As follows, the Lorentzian in complex plane produces a pole singularity. The width of the Lorentzian, Γ (the 
imaginary part of the pole position) is the estimate of the peak width; the real part – the peak position.

Building the analytical continuation on top the raw-data is from the first glance quite risky approach 
that may produce highly unstable results. However it is not so; similar procedure has been recently success-
fully applied for peak separation of radial distribution function g(r) of liquid alloys where the analytical 
continuation has been done over the radial coordinate r, see Refs. [23–25]. To ensure the validity of the peak 
separation procedure, here we use the following trick that helps to avoid instabilities caused by the data 
inaccuracy: we randomly remove about 10–15 % of data used to build Pd(T) and then average Pd(T) over the 
samples of data with randomly extracted points. Each random extraction of data may result in some shift of 
the pole-singularities in Pd(T). After the sample-averaging procedure the pole-singularities smooth in 〈Pd(T)〉 
and look like the “domes” in |〈Pd(T)〉 |  surface in complex plane of T. The position of the dome in |〈Pd(T)〉 |  we 
attribute to the most probable position of the pole. It should be noted, that this procedure has been tested 
on a number of toy-functions with well known analytical continuation where we artificially added noise to 
input data and checked how accurately our method with averaging predicts the position of singularities in 
the complex plain [23–25].

Fig. 6: (Color online) Illustrating example of the analytical continuation method applied for χ(T, x = 0.9) of Mn1−xCoxGe (a,b) and 
χ(T, x =0.7) (c). The thick pink curves are experimental χ(T, x) (from Fig. 5) interpolated by the Pade-approximant. The surface in 
(a) is the absolute value of the analytically continued χ(T, x = 0.9). The front view of the surface is shown in (b), where the peak 
positions are now clearly seen. Figure (c) shows the analytical continuation of χ(T) for x = 0.7: two peaks corresponding to the 
temperatures Tc1 and Tc2 of the magnetic transitions are clearly seen.
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Illustrating example of the analytical continuation method is given in Fig. 6 where the method was 
applied for χ(T, x = 0.9) of Mn1−xCoxGe (Fig. 6a, b) and χ(T, x = 0.7) (Fig. 6c). The pink thick curves are experi-
mental χ(T, x) (from Fig. 5) interpolated by the Pade-approximant. The surface in Fig. 6a shows the absolute 
value of the analytically continued χ(T, x = 0.9). The front view of the surface is shown in Fig. 6b where the 
peak-positions are now clearly seen. Similarly, Fig. 6c shows the analytical continuation of χ(T) for x ≈ 0.7: two 
peaks corresponding to the temperatures Tc1 and Tc2 of the magnetic transitions are clearly seen.

Comparative discussion of 3d- and 4d-substitution

Correlation between the chemical composition and the magnetic properties

At each particular value of concentration, Mn1−xCoxGe and Mn1−xRhxGe are isostructural and isovalent com-
pounds. According to the rigid band approximation (RBA), the shape of the bands and their positions relative 
to the Fermi energy (EF) are analogous for the two compounds. As is seen in Fig. 1, the peak positions in the 
magnetic and nonmagnetic DOS of Mn1−xCoxGe (x = 0.25, 0.5, 0.75, and 1) are alike to those of Mn1−xRhxGe (see 
Figures 12 and 13 in [8]). Correspondingly, the concentration evolution of the DOS at the Fermi level, N(EF, x), 
is very similar for both systems (Fig. 7).

In line with the RBA, the magnetization (m) per unit cell should be the same for the both compounds, 
because it is determined as a difference between the number of spin-up and spin-down electrons. This is the 
case, which one can see in Fig. 8, where the dependencies m(x) for Mn1−xCoxGe and Mn1−xRhxGe practically 
coincide. Here, the results for Mn1−xRhxGe are obtained in paper [8].

The good agreement between the measured and calculated m(x) for Mn1−xRhxGe demonstrates that the 
itinerant ferromagnetism model quite well explains the evolution of experimental magnetization with con-
centration x. A small systematic excess of the calculated values over the measured ones can be probably 
ascribed to the noncollinearity of experimental magnetic arrangement. Unfortunately, there are no magneti-
zation measurements for Mn1−xCoxGe. The available SANS results [13] obtained for Co/Rh doping up to x ≤ 0.5 
produce only the magnetic moment at Mn site (μMn) on the assumption that Co/Rh and Ge atoms bear no 
moment.

Our calculations show that the total magnetization in unit cell is mainly localized at Mn atoms and actu-
ally proportional to their number. At 0 ≤ x ≤ 0.5, the manganese moment (μMn ≈ 2μB) only slightly depends on 
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concentration x. Much smaller moments at Co/Rh atom are parallel to μMn, while a small μGe (less than 0.1 μB) 
is antiparallel to μMn. Figure 8 displays Mn moment as a function of concentration at 0 ≤ x ≤ 1 (the Co/Rh and 
Ge moments not shown).

It is seen that μMn decreases/increases upon the Co/Rh substitution. This is clear, because the increas-
ing Co/Rh concentration results in compression/expansion of the lattice. At higher x, the values of μMn for 
Mn1−xCoxGe and Mn1−xRhxGe are significantly different, so the equal magnetization per cell is preserved at 
the expense of different moments at the Co and Rh sites. For example, at x ≈ 0.94, μCo and μRh are equal to 
0.38 μB and 0.045 μB, correspondingly. Here, it should be noted that the calculation results for the Rh and 
Ge moments are consistent with the measured sign and x-dependence of the XMCD signal for Rh and Ge [8]. 
Presently, there is no experimental information on the Co and Ge moments in Mn1−xCoxGe.

Magnetic phase diagrams

The magnetic phase diagrams of Mn1−x(Co,Rh)xGe (0 ≤ x ≤ 0.5) have been studied using the SANS technique, 
and for both systems, double long-period structures have been observed at higher doping levels [13]. The 
authors [13] assume that a strong disorder inherent in these high-pressure phases partially destroys the 
“ordinary” spin-spiral structure and stabilizes a state with numerous localized defects, which they call 
a “twist grain boundary” (TGB) phase. The TGB state involves magnetic screw dislocations and is topo-
logically similar to defect networks in smectic liquid crystals. The low-temperature SANS measurements 
show that transitions from a simple SPH- to LPH-state occur at x ≈ 0.25 for Mn1−xRhxGe and at x ≈ 0.45 for 
Mn1−xCoxGe [13].

Mn1−xRhxGe

Figure 9a displays the T–x magnetic phase diagram for Mn1−xRhxGe constructed using the results of our 
previous susceptibility measurements at 0 ≤ x ≤ 1 [8], with taking account of the SANS results at 0 ≤ x ≤ 0.5 
[13]. Two main regions of dissimilar magnetic behavior are filled with different colours. To be more specific, 
between x = 0.2 and 0.3, a change occurs from a SPH (~30 Å as in pure MnGe) to a combination of a LPH 
(~380 Å) and a TGB phase. According to paper [13], the LPH + TGB state exists in the composition range 
0.25 ≤ x ≤ 0.5.
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Fig. 8: (Color online) Concentration dependence of magnetization per unit cell (μcell) and magnetic moment at the Mn atom (μMn) 
for Mn1−xCoxGe in comparison with the case of Mn1−xRhxGe [8]. The lines are a guide for the eye.



950      N. M. Chtchelkatchev et al.: Theoretical and experimental study of high-pressure

Our measurements [8] demonstrate similar temperature and pressure behavior of magnetic susceptibil-
ity over the range 0.5 ≤ x ≤ 0.975. In this region, the magnetic transition temperature Tm only slowly changes 
with increasing x and increases with increasing pressure (p), while in the Mn-rich end, the dependence Tm(p) 
decreases. So we suppose that the LPH + TGB state is preserved above x = 0.5 and up to x = 0.975 (this region 
in Fig. 9a is painted over with light pink color). This assumption remains to be checked in the future SANS 
experiments.

A strikingly nonmonotonic concentration dependence of magnetic transition temperature, Tm(x), 
observed in Fig. 9 might be qualitatively explained as follows. In paper [26], a very simple model for alloys 
with localized magnetic moments has been proposed, which assumes interaction of the RKKY type mediated 
by the conduction electrons of the alloy. This approach relates the magnetic transition temperature Tm and 
the dopant concentration:

	

2
alloy

1= ( ) ( 1) .
3B m F a a a a

a
k T N E S S j c+∑ � (2)

Herein, a labels the type of component, ca and Sa are respectively the concentration and total spin of the 
component, ja is the effective exchange matrix element, specific to the magnetic component atom and nearly 
independent of its surroundings, and Nalloy(EF) is the concentration-weighted average alloy density of states 
at EF. Equation (2) is quite accurate, e.g. it has allowed to correctly reproduce the experimental dependence 
of Tm(x) in the alloys Gd(Al1−xMx)2 [27].

a

b

Fig. 9: (Color online) T–x phase diagram of the magnetic structure of Mn1−xRhxGe (a) and Mn1−xCoxGe (b). The inset in the figure 
(b) shows the magnetic susceptibility value at transition temperatures.
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Figuratively, the relation like Eq. (2) should be applicable also for the 3d Mn-based alloys in hand. If so, 
kBTm ∝(1 − x)N(EF, x), which suggests a correlation between the experimental transition temperature Tm(x) of, 
e.g. Mn1−xRhxGe (Fig. 9a), and the nonmonotonic curve N(EF, x) in Fig. 7 (red line).

Mn1−xCoxGe

Compared to the case of Rh substitution, the magnetic phase diagram of Mn1−xCoxGe is expected to be more 
complicated, due to combination of two magnetic 3d-elements (4d-Rh is paramagnetic). Actually, it repre-
sents a complex sequence of different magnetic orders and crossovers (Fig. 9b). The analysis above allowed 
us to reliably resolve the double-peak features of experimental χ(T) dependencies and produce this T − x 
phase diagram. Here, it should be mentioned that the results of our high-sensitive measurements of χ(T) 
confirm and supplement the data [14] obtained with the SQUID magnetometer. The SANS results [13, 14] are 
also taken into account.

As is seen in Fig. 9, instead of two composition ranges of different magnetic behavior distinguished for Rh 
substitution, we observe four such ranges for Mn1−xCoxGe. Another sharp distinction from Mn1−xRhxGe is the 
presence of two temperature intervals, whose upper borders are denoted as Tc1(x) and Tc2(x).

It is seen in Fig. 9b that in the Mn-rich side (x < 0.25), a SPH with a period of ~30 Å exists in a wide range 
of temperatures up to 165 K (painted blue in the figure). Next interval of concentrations is 0.25 < x < 0.5, where 
a low-temperature SPH coexists with a LPH up to Tc2 ~ 40 K. Within this region, the helix period increases with 
x up to ~120 Å (see paper [14], where Fig. 10 displays the x-dependence of the helix wave vector Q measured 
at T = 5 K). For the coexisting LPH, the temperature of transition to paramagnetic state Tc1 > Tc2, so the LPH 
extends up to Tc1 ~ 70 K. With regard to Co concentration, this LPH extends up to x ≈ 0.85. The 5 K helix period 
continues to increase with increasing concentration and at x ~ 0.8 reaches values on the order of ~550 Å. 
Further increase in concentration x results in the stabilization at x > 0.9 of ferromagnetic-like ordering (green 
region) – so to speak, the limit of extremely long spiral – and nonmagnetic state for pure CoGe.

The region [0.5 < x < 0.85; Tc2 < T < Tc1] is of special interest: although the SPH does not exist there, the 
double-peak shape of χ(T) dependencies is preserved. In paper [14], the analysis of the experimental data for 
two compositions, Mn0.4Co0.6Ge and Mn0.5Co0.5Ge, has also demonstrated the presence of two-peak feature of 
SANS intensity in the temperature range from 5 K to 80 K. This feature has been described in [14] as consist-
ing of main and satellite peaks. The authors [13], however, explain the second peak as a manifestation of the 
TGB phase. We join the latter opinion and consider the magnetic structure of Mn1−xCoxGe in this region as the 
LPH + TGB coexistence.

Thus, the entire domain where the LPH is observed covers the concentrations from 0.25 to about 0.9 and 
temperatures below Tc1(~70 K). At lower Co concentrations (0.25 < x < 0.5) and below Tc2 (~40 K), it coexists 
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with the low-temperature SPH. Then, at 0.5 < x < 0.85, the LPH coexists with the high-temperature TGB state 
whose temperature region of stability is between Tc2(x) and Tc1(x).

Transport properties
The transport properties of Mn1−xCoxGe show unusual behavior on going from x = 0 to 1. Figure 10 displays the 
x-dependencies of the experimental Seebeck coefficient [8] and the DOS at the Fermi level for Mn1−xRhxGe. 
Here, we present only a positive part of the curve S(x) (Seebeck coefficient of the Rh-rich end is negative). 
We observe a rough correlation between the nonmonotonic curves S(x) and N(EF, x) with respect to extrema 
positions.

The electrical resistivity ρ of Mn1−xCoxGe and its temperature dependence ρ(T) also strongly change 
with x. The end members, MnGe and CoGe, are metal-like conductors with residual resistivity ρres ~ 250 μΩ cm 
and room-temperature resistivity ρ300K ~ 450 μΩ cm. As is seen in Fig. 11a, for CoGe, MnGe, and two Mn-rich 
compositions x = 0.1 and 0.2, the temperature dependence of resistivity is similar to that of metals. In con-
trast, at intermediate x values, there appears a “semiconducting” behavior of ρ(T) (Fig. 11b) quite typical of 
disordered and partially ordered alloys, see, e.g. Refs. [28, 29].

Figure 11 (right) shows the x-dependence of resistivity for Mn1−x(Co,Rh)xGe. Contrary to the case of 
Mn1−xRhxGe, the dependence ρ(x) for Mn1−xCoxGe exhibits strong oscillations, which seemingly reflects the 
more complicated magnetic phase diagram of the latter. In the case of Rh substitution, the “semiconduct-
ing” behavior, ρres > ρ300K, is observed in the range 0.2  x  0.5 (Fig. 11c), where the existence of LPH is proved 
in SANS experiments. For Co substitution, ρres exceeds ρ300K between x  0.25 and x  0.95 (Fig. 11d), i.e. also 
in the domain of the LPH existence (see Fig. 9). This can be accounted for by the conjecture that magnetic 
fluctuations contribute to electron scattering [30] in the transitive region between the SPH behavior in the 
MnGe-rich end and the ferro/paramagnetic state in the (Co,Rh)-rich end.

In the present context, some comments may be added: Even in the regions of metallic behavior of ρ(T), 
the residual resistivity ρres of Mn1−x(Co,Rh)xGe substantially exceeds the temperature-dependent contribution, 
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ρ300K–ρres, which suggests a large number of crystallographic defects in polycrystalline samples of these meta-
stable high-pressure phases. So a difference in the resistivity values for pure MnGe obtained in two batches 
of measurements (Fig. 11c and d) is apparently related to the quality of experimental samples. The measured 
ρ(x) dependence for the Co-substituted system raises questions, but we still bring it in for completeness. We 
believe this issue needs further study.

Conclusions
To conclude, we performed experimental and theoretical study of the high-pressure-synthesized chiral 
magnets Mn1−xCoxGe (0 ≤ x ≤ 1). The high-sensitive experimental technique was applied to measure the mag-
netic ac-susceptibilities χ from 4 K to 300 K. The use of low excitation field of about 1 Oe allowed us to resolve 
the double-peak shape of χ(T) smeared out in higher fields and thereby provide a new T–x magnetic phase 
diagram of Mn1−xCoxGe.

Our experimental data were theoretically analyzed on the basis of ab initio DFT calculations of Mn1−xCoxGe. 
The results of measurements and calculations were compared with the data on Mn1−xRhxGe obtained in our 
previous study [8] and reprocessed and summarized in the present paper. This allowed us to trace the effect 
of progressive 3d/4d-substitution on the structural, electronic, magnetic, and transport properties of the two 
continuous series of solid solutions Mn1−x(Co,Rh)xGe.

The results of DFT computations were processed using the VESTA software package and the resulting 
simulated XRD patterns were compared with our experimental powder-diffraction data for MnGe, RhGe, 
CoGe, and Mn0.5Co0.5Ge. As follows, at intermediate concentrations 0 < x < 1, a symmetry-breaking distortion 
of the B20 lattice takes place. So the pseudobinary compounds can be only approximately considered as B20-
type (the experimental B20 reflections in the pseudobinaries are slightly broadened). However, even in the 
case of maximal distortion, Mn0.5(Co,Rh)0.5Ge, deviation from the B20 symmetry is not large.

We also show that the experimentally measured concentration dependence of the lattice constant a(x) 
for Mn1−xCoxGe is practically linear, i.e. obeys Vegard’s law. This observation confirms the available structural 
studies of Mn1−xCoxGe and is consistent with the results for other B20-type 3d-metal monogermanides.

For Mn1−xRhxGe, however, a strong positive deviation from Vegard’s law was found, namely the depend-
ence a(x) is a convex curve with a maximum at x = 0.5. A significant excess of a(x) over the linear curve for 
Mn0.5Rh0.5Ge suggests a noticeably looser structure than in case of Mn0.5Co0.5Ge. This is a consequence of 
higher lattice disorder in case of 4d-substitution, because the atomic radius of 4d-Rh is larger than that of 
3d elements. In addition, compared to 3d, the 4d elements are characterized by deeper potential wells, more 
even space distribution of d-orbitals, etc.

Our calculated a(x) is almost linear for both systems Mn1−x(Co,Rh)xGe. The positive deviation from lin-
earity in case of Rh-substitution is not reproduced by theory, probably, because we did not take account 
of structural disorder. Anyway, the largest disagreement between the theoretical and experimental a(x)  
(~1.4 % for RhGe) is within uncertainty of measurements and calculations.

We found a good agreement between the measured and calculated magnetization m(x) for Mn1−xRhxGe, 
which demonstrates that the itinerant ferromagnetism model quite well explains the evolution of experi-
mental magnetization with concentration x. According to calculations, the total magnetization in unit cell 
is mainly localized at Mn atoms and actually proportional to their number, with the manganese moment 
μMn ~ 2μB. Much smaller moments at Co/Rh atoms are parallel to μMn, while the small Ge moment (μGe < 0.1μB) 
is antiparallel to μMn. The results for the Rh and Ge moments are consistent with the measured sign and 
x-dependence of the XMCD signal for Rh and Ge. Presently, there is no experimental information on the total 
magnetization per cell, μCo, and μGe in Mn1−xCoxGe.

Our measured χ(T) curves for Mn1−xCoxGe look such that at x ≥ 0.3, instead of one broad maximum, two 
overlapping peaks can be distinguished. This implies that at these concentrations, there are two successive 
phase transitions to different helimagnetic states (short-period or long-period). We developed theoretical pro-
cedure for extracting the magnetic transition temperatures from χ(T). It is based on the Pade approximation 
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of χ(T) and the analytical continuation into complex T plane. It has been shown that the study of pole-singu-
larities allows to extract the peak position – transition temperature – even when the peaks strongly overlap 
and are “hidden” in χ(T).

Based on χ(T) measurements, with regard to available SANS data, we provide the new magnetic phase 
diagram of Mn1−xCoxGe and compare it with that of Mn1−xRhxGe constructed using our previous experimental 
data. The both phase diagrams are consistent in general outline: they are characterized by a minimum of Tm(x) 
between x = 0.2 and 0.3, where the fraction of substituting atoms becomes more appreciable. In this region, 
a SPH-to-LPH crossover takes place. Symmetrically, there is a dip of Tm(x) in the Rh-rich end in Mn1−xRhxGe 
(x  0.75). For both systems, Tm(x) has a maximum around x = 0.5, which corresponds to the highest lattice 
disorder. According to the SANS data, near the composition Mn0.5Co0.5Ge, a change occurs from LPH + SPH to 
LPH + TGB state. Then, a narrow range of ferromagnetic-like behavior is observed for Mn1−xCoxGe above x = 0.9, 
and finally, both pure RhGe and CoGe are nonmagnetic.

Thus, the nonmonotonic behavior of Tm(x) is analogous for both systems and roughly correlates with the 
x-dependence of the density of states at the Fermi level, N(EF, x), with respect to extrema positions. Quali-
tatively similar correlation is also observed for the x-dependence of Seebeck coefficient S(x). As a matter of 
fact, the function N(EF, x) gives the number of d-electrons near the Fermi energy, which defines electronic and 
magnetic properties at particular concentration x.

It should be also noted that the electrical resistivity for Mn1−x(Co,Rh)xGe exhibits the “semiconducting” 
behavior of ρ(T) at 0.25  x  0.5. It is a transitive region from the SPH to LPH order, where the helix period as 
a function of x rises most steeply.

In general, the concentration x of substituting element determines such characteristics of the system 
as symmetry, lattice parameters, structural disorder, magnetic order, transport properties, etc. Actually, at 
each particular value of 3d-Co (4d-Rh) concentration x, the compounds Mn1−x(Co,Rh)xGe are isostructural 
and isovalent, with their ground-state properties well described within the rigid band approximation. The 
Vegard’s and non-Vegard’s behavior of lattice constant a(x) on Co- and Rh-substitution, respectively, can 
be explained by the larger atomic size of 4d-Rh, which leads to a larger degree of lattice disorder at inter-
mediate concentrations. Another noticeable difference is the more complicated magnetic phase diagram of 
Mn1−xCoxGe related to the fact that, unlike rhodium, cobalt is magnetic 3d-element.
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