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Abstract: Relationships between the various physical and chemical properties of isostructural compounds 
take place according to the Periodic Table that is a fundamental basis of Chemistry. The systematization of 
this approach, data vs. the Periodic Table, will contribute to further development of the solid state chemistry 
theory. The lanthanides and the actinides make up the f block of the Periodic Table. The lanthanides are the 
elements produced as the 4f sublevel is filled with electrons and the actinides are formed while filling the 
5f sublevel. In this paper, we analyze some classes of compounds formed by the lanthanides with other ele-
ments of the Periodic Table, which can count into the thousands of binary compounds. The special place of 
lanthanides in the Periodic System of Elements made it possible to establish strict nonlinear relationships 
between the standard entropy and the lanthanide atomic number of the compounds Ln2X3 (X = O, S, Se, Te), 
LnN, LnB4, and LnF3 in the solid state. This relationship, based on tetrad-effect, can be applied to other physi-
cal and chemical properties of the isostructural compounds. The thermodynamic properties of actinides have 
been studied much less than lanthanides, but the similarity of physicochemical properties makes it possible 
for us to estimate, with sufficient accuracy, unexplored properties using fundamental laws. One of these laws 
is the tetrad-effect concept that is an effective tool to predict missing thermodynamic values for lanthanide 
and actinide compounds and to rationally plan experiments.
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Introduction
Before to share our ideas we would like to cite the words of well-known American scientist Gschneidner [1]. 
“Systematics is a powerful tool for understanding the physical and chemical nature of materials. In addition, 
systematics allows one to predict properties and behaviors with a reasonable confidence level in the absence 
of experimental data”.

Previous review articles evidenced the relation of thermodynamic data with Periodic Law [2–5] and estab-
lished a strict relationship between the enthalpy of formation, melting point and the atomic numbers of 
components in the semiconductor AIIIBV phases, with diamond-like structure of sphalerite and wurtzite types. 
The proposed model was used for the critical assessment of the thermodynamic properties of isostructural 
compounds. The relationship between the reduced enthalpy o

298( / ),f mH T∆  standard entropy o
298( ),S  reduced 
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Gibbs energy and the sum of the atomic numbers (Zi = ZA + ZB) has been used for a critical assessment of the 
thermodynamic properties of AIIIBV phases.

The Similarity Method was used for the critical analysis of specific heat ( )o
pC T  for solid state AIIIBV iso-

structural phases. A critical analysis of heat capacities ( )o
pC T  was carried out for the pure elements of the 

Periodic System fourth group (C, Si, Ge, Sn) and isostructural phases AIIIBV and AIIBVI. More than 3000 experi-
mental data have been analyzed. One part of the material, concerning the AIIIBV phases was presented in 
[2, 3]. Another part, related to the fourth group and AIIBVI compounds, will be published later.

It was found that the dependence of the heat capacities ( )o
pC T  from 0 to 1500 K follows certain regularity. 

Phases with the same sum of atomic numbers of elements (Zi), such as BN (hex) Zi = 12 and glassy pure carbon 
Z = 6; BP and AlN (Zi = 20); AlP (Zi = 28) and pure Si (Z = 14); BAs and GaN (Zi = 38); AlAs and ZnS (Zi = 46); AlSb, 
GaAs, InP, CdS (Zi = 64) and pure Ge (Z = 32); GaSb, InAs, and CdSe (Zi = 82); InSb, CdTe (Zi = 100) and pure 
gray Sn (Z = 50); have the same heat capacity experimental values in the solid state within the experimental 
uncertainty.

Another approach of heat capacity analysis with the use of a hybrid model was earlier presented by 
Pässler [6] for the fourth group AIIIBV and AIIBVI compounds from absolute zero up to room temperature. In this 
publication there is a full set of 96 bibliographic references up to 2010.

It is also necessary to cite the Ref. [7] that deals with heat capacity of GaBV and InBV (BV = P, As, Sb) above 
298 K. The slight differences in the dependence of ( )o

pC T  for certain groups of the AIIIBV, AIIBVI phases and pure 
elements may be due to both impurities and isotopic composition effects [8–10]. The “tetrad-effect” phenom-
enon was also used for the analysis, correction and prediction of thermodynamic data for the lanthanide (Ln) 
compounds. It is connected to the 4f-electrons of the lanthanide elements (Ln: La–Lu; their atomic numbers 
are 57–71).

The most sensitive to the tetrad-effect thermodynamic functions of lanthanide compounds are stand-
ard entropies and entropies of formation, because they are the most susceptible to the influence of the 4f-
electrons of the lanthanides. We analyzed some classes of lanthanides with other elements of the Periodic 
Table, which account for only a sampling of the thousands of similar binary compounds possible. As an 
example, we use the tetrad-effect concept for the analysis and prediction of the standard entropies of Ln2X3 
(X=O, S, Se, Te), solid phases, but this approach can also be applicable to other classes of the Ln compounds 
as LnN, LnB2, LnB4, LnB6, LnF3 and other compounds. The tetrad-effect concept gives us the ability to develop 
a solid state chemistry theory for lanthanide alloys.

We have demonstrated that the concept of the tetrad effect and symmetric function: a0 + a1 x + a2 x2 + a4 x4 (ai 
are the fitting parameters and x = | N–NGd |, where N and NGd, the lanthanide and gadolinium atomic numbers 
respectively, can be used successfully to analyze and predict the standard entropies of solid lanthanide com-
pounds at 298 K.

The tetrad-effect concept can be also applied to the actinides.

Tetrad-effect
For the first time, the term “tetrad-effect” was proposed by Peppard et al. in 1969 [11]. They found that the 
plot of log K (K is the ratio of the lanthanide concentration in the organic phase to that in the aqueous phase) 
vs. Z (the atomic number of the lanthanide) consists of four separate curves, each encompassing four points 
(La–Ce–Pr–Nd, Pm–Sm–Eu–Gd, Gd–Tb–Dy–Ho and Er–Tm–Yb–Lu). So, four tetrads are formed, with Gd 
being an element common to the second and third tetrads.

The theoretical explanation of the tetrad-effect was given by Nugent [12] who showed that this effect 
originates from the interelectronic interaction energy of the n electrons in 4fn configuration and is connected 
to the E1 and E3 Racah’s parameters dependence on the quantum numbers L and S for the ground electronic 
state of each Ln3+ ion. The coefficient of E1 is responsible for the 1/2-filled shell effect and the coefficient of E3 
is responsible for the 1/4 and 3/4-filled shell effects. The quantum numbers S and L for the ground electronic 
state of Ln3+ ions are presented in Fig. 1 [13].
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In accordance with [14], the magnetic properties of the rare earth metals can be understood in terms of 
what we will call the standard model; herewith the magnetic 4f electrons in the metal have the same angular-
momentum quantum numbers as in the free ion. They interact, however, with the surrounding electric field 
of the crystal, and with each other through an indirect exchange mediated by the conduction electrons.

So, the tetrad-effect of pure lanthanides results from an interaction of the spin angle moments and orbital 
quantum numbers. Spin entropy increases the degree of magnetic order and reduces magnetic entropy of the 
spin system. Under the same conditions, the standard entropies of pure lanthanides depend mainly on the 
spin and orbital magnetic components. See Fig. 1.

Later Lefevre et al. [15] synthesized the phases in the R2Co2I series (R = La, Y, Pr, Nd, Tb–Ho) and studied 
their structural and magnetic properties. Ferromagnetic ordering was observed for all compounds. For R2Co2I 
(R = La, Y) band-type ferromagnetism was concluded. For R2Co2I (R = Pr, Nd, Tb–Ho) the values of TC suggest 
that a polarization of the 5d electrons enhances the 4f-4f exchange interaction as is well known e.g. in the 
case of the behaviors of GdI2 [16]. A deviation from the de Gennes rule [17] for the light rare earth metal com-
pounds was ascribed to a polarization of the 5d electrons. A similar deviation had been observed for the R2T2X 
series [18] and also explained in terms of a polarization of the 5d electrons by the 4f moments.

If we take in consideration the standard entropies of pure lanthanides at 298 K (Fig. 2), we can observe the 
convex tetrad-effect for two Ln branches. The right branch (heavy lanthanides) is sufficiently well-formed, 
while a similar regularity of the left branch (light lanthanides) is broken.

In our opinion the behavior of thermodynamic functions must be close (according to the tetrad-effect) 
to the symmetric function relative to gadolinium. We used this rule in the thermodynamic analysis of the 
lanthanide tellurides [5]. Therefore, having a reasonably accurate description of the standard entropies in the 
right branch (heavy lanthanides), we can reconstruct the description of the left branch (light lanthanides) 
using the equation:

	

1 1 2 4 2 4
0 1 2 4

G

o
298

d

, J mol K  68.51 4.469 0.5200 0.009(  ) 577  
2 3.16;  |N N |,Ln

Ln a a x a x a x x x x
x

S
σ

− − = + + + = + − −
= ± = −

� (1)

where NLn is the atomic number of the Ln element, NGd is the atomic number of Gd (NGd = 64) and σ is the 
standard error.

The whole description of standard entropies was made for the hexagonal unit cell of Ln pure lanthanides. 
Additional references related to the tetrad-effect concept can be taken from [5, 19–21]. If we compare the 
standard entropies of pure lanthanides and those of their chalcogenides (sulfides, selenides and tellurides), 
we can see a similarity of these entropies vs. N-NGd. It is obvious that this similarity between the chalcoge-
nides is due to the influence of lanthanides, a principal part of these compounds.

Fig. 1: Quantum numbers S and L for the ground electronic state of Ln3+ ions as derived from Hund’s rules. The spin- and the 
orbital moments are always maximized [13].
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The description of the lanthanide chalcogenides was created without taking into account the differences 
in structures. The influence of structural factors can be considered insignificant (within the error of entropy 
determination).

The standard thermodynamic parameters of the pure lanthanide and binary lanthanide compounds with 
other elements of the Periodic Table in the solid state also follow the tetrad-effect concept [4, 5]. In this case 
the structural factor is decisive. 

If the tetrad-effect is observed to be the structural parameters of the isostructural compounds (such as 
a unit cell volume or the shortest distance between the Ln and second element atoms), (see Figs. 3, 4), this 
phenomenon should also be extended to the other physicochemical properties of solids [5].
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Fig. 2: Shortest interatomic distances as a function of N (N is an atomic number of the pure lanthanides) (P63/mmc) [22].
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Fig. 3: Shortest distances between Ln and In atoms of Ln2In phases as a function of an atomic number of lanthanides (N) 
(P63/mmc) [22].
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If the tetrad-effect of the physical and chemical properties is not observed in the isostructural lanthanide 
compounds, this indicates an experimental inaccuracy in the determination of these properties. The reduc-
tion of the lanthanide atomic fraction in the compound leads to a leveling of this rule. 

The available information on the thermodynamic properties of lanthanide compounds is usually limited 
due to great experimental difficulties caused by the high reactivity of lanthanides (especially light lantha-
nides) and their instability in the air. Typically, lanthanide alloys decompose into Ln2O3 and free nanoparticles 
of the second component when coming into contact with atmospheric air.

In our recent paper [5], we demonstrated how we can apply the tetrad-effect to correct the available 
standard entropies of pure lanthanides. The standard entropies of heavy lanthanides were obtained with 
a smaller experimental error than for light rare earth metals. If we apply the tetrad-effect concept, we can 
correct the entropies of light rare earth metals using the symmetric function.

Standard entropies at 298 K of the chalcogenide Ln2X3 compounds 
(X = S, Se, Te)
The available information on the structures and standard entropies at 298 K of the solid Ln2S3, Ln2Se3 Ln2Te3 
compounds [4, 18–24] is presented in Tables 1–3.

As can be seen, the structural data for most of the Ln2S3 are contradictive, making it impossible to deter-
mine the real structures at 298 K. However, despite the difference in reported structures, the entropy data 
of Ln2S3 at 298 K are often close to each other. So, the attempt to describe all of the entropy data for Ln2S3 
without identifying them as definite structures seems to be reasonable in this case. The following equation 
was obtained:

	
o 1 1 4 4
298 0.4 0.6 0 1 4( S , J mol K ) 35.22 0.976 0.003804 ; 2 2.32S Ln a a x a x x x σ− − = + + = + − = ± � (2)

where x = | NLn–NGd |; a0, a1, and a4 are fitting parameters. The calculated entropy values for the Ln0.4S0.6 at 298 
K are listed in Table 1 and presented in Fig. 5.
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Fig. 4: Volume of the elementary cell of the LnB4 phases as a function of an atomic number of lanthanides (N) (P4/mbm) [29] 
and a prediction of unknown volume parameters.
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Table 1: The crystal structures of the Ln2S3 compounds and their standard entropies at 298 K.

Ln  
 

Lattice system  
 

Space group  
 

298S°  (Ln0.4S0.6, J mol − 1 K − 1)

[21–25]   [19]   Calc. (this 
work)

La   ortho [19, 20]
cubic [21]

  Pnma [19, 20]
I4̅3d [21]

  32.443   32.995   32.92

Ce   ortho [19, 20]
cubic [21]

  Pnma [19, 20]
I4̅3d [21]

  35.486   36.066   36.15

Pr   ortho [19, 20]
cubic [22]

  Pnma [20]
I4̅3d [22]

  37.880   38.158   37.72

Nd   ortho [19]
cubic [21]

  Pnma [19, 20]
I̅d [21]

  37.215   37.070   38.15

Pm   cubic [24]   I̅3d [24]   38.945   37.489   37.84
Sm   ortho [19]

cubic [23]
  Pnma [19, 20]

I4̅3d [24]
  35.752   35.899   37.11

Eu   cubic [24]
ortho [20]

  Pnma [20]
I4̅3d [25]

  36.301   –   36.19

Gd   cubic [19, 21]
ortho [20]

  Pnma [20, 21]
Pnma [20]

  33.341   36.066   35.22

Tb   cubic [22]
ortho [20]

  Pnma [20, 23]
Pnma [20]

  38.130   –   36.19

Dy   cubic [23]
ortho [20]

  Pnma [20, 23]
Pnma [20]

  38.845   –   37.11

Ho   ortho [20]   Pnma [20]   –   –   37.84
Er   monocl [20]   P21/m [20]   –   –   38.15
Tm   monocl [20]

hex [20]
  P21/m [20]

R3̅c [29]
  –   –   37.72

Yb   hex [19, 20, 25]   R3̅c [19, 20, 25]   37.864   –   36.15
Lu   hex [20, 25]   R3̅c [20, 25]   32.825   –   32.92

Table 2: The crystal structures of the Ln2Se3 compounds and their standard entropies at 298 K.

Ln  
 

Lattice system  
 

Space group  
 

298S°  (Ln0.4Se0.6, J mol − 1 K − 1)

[20]   [19]   Calc. (this work)

La   cubic [19]   I4̅3d [22]   40.44   40.083   40.41
Ce   cubic [19]   I4̅3d [22]   –   44.35   43.91
Pr   cubic [19]   Ia3̅ [22]   –   46.024   45.35
Nd   cubic [19]   Ia3̅ [22]   44.82   44.852   45.49
Pm  cubic [19]   Ia3̅ [22]   –   45.354   44.95
Sm  ortho [19]   Pnma [20]   44.24   43.765   44.23
Eu   –   –   –   –   43.65
Gd   cubic [19]

ortho [20]
  Ia3̅ [22]

Pnma [20]
  –   43.932   43.44

Tb   ortho [20]   Pnma [20]   –   –   43.65
Dy   ortho [20]   Pnma [20]   –   –   44.23
Ho   ortho [20]   Fddd [20]   –   –   44.95
Er   ortho [20]   Fddd [20]   –   –   45.49
Tm   ortho [20]   Fddd [20]   –   –   45.35
Yb   ortho [20]   Fddd [20]   –   –   43.91
Lu   ortho [20]   Fddd [20]   –   –   40.41
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The information on the structures of the solid Ln2Se3 compounds and their standard entropies at 298 K 
[18–21] is presented in Table 2. The entropy data for Ln2Se3 were described by the equation:

	
1 1 2 4 2 4

0.4 0.6 0 1 4
o
298 Se , J mol K 43.44 0.( 2201 0.005753 ; 2 1.40 )Ln a a x a x xS x σ− − = + + = + − = ± � (3)

The available data on the structures of the solid Ln2Te3 compounds and their standard entropies at 298 K 
are presented in Table 3. The entropies of the Ln2Te3 were described by the equation:

Table 3: The crystal structures of the Ln2Te3 compounds and their standard entropies at 298 K.

Ln  
 

Lattice system  
 

Space group  
 

298S°  (Ln0.4Te0.6, J mol − 1 K − 1)

[20]   Calc. (this work)

La   cubic [19]   I4̅3d [22]   46.325   46.61
Ce   cubic [19]   I4̅3d [22]   50.208   49.80
Pr   cubic [19]   Ia3̅ [22]   51.882   51.11
Nd   cubic [19]

ortho [20]
  Ia3̅ [22]

Pnma [20]
  49.790   51.22

Pm   cubic [22]   Ia3̅ [22]   51.212   50.72
Sm   ortho [19, 20]   Pnma [20]   49.622   50.05
Eu       –   49.52
Gd   ortho [20]   Pnma [20]   49.790   49.32
Tb   ortho [20]   Fddd [20]   –   49.52
Dy   ortho [19, 20]   Fddd [20]   –   50.05
Ho   ortho [20]   Fddd [20]   –   50.72
Er   ortho [20]   Fddd [20]   –   51.22
Tm   ortho [20]   Fddd [20]   –   51.11
Yb   ortho [20]   Fddd [20]   –   49.80
Lu   ortho [20]   Fddd [20]   –   46.61
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Fig. 5: Comparison of the standard entropies of pure lanthanides (1) and their compounds with tellurium (Ln0.4Te0.6) (2), 
selenium (Ln0.4S0.6) (3), sulfur (Ln0.4S0.6) (4) vs. (N-NGd), where N is lanthanide number [19–25].



886      V. P. Vassiliev et al.: Relationship of thermodynamic data with Periodic Law

	
1 1 2 4

0.4 0 6
o

8 .29 Te , J mol K 49.32 0.2034 0.005280 ; 2 1. 86( )Ln x xS σ− − = + − = ± � (4)

The results of the calculation using eq. (4) are given in Table 3 and plotted in Fig. 5.

Standard entropies of formation of the Ln2X3 chalcogenide 
compounds (X = S, Se, Te)
Since standard entropy values are available for compounds of rare-earth elements with other elements of the 
Periodic Table (at a given temperature), we can estimate the standard entropy of formation of these binary 
compounds with the formula:

	 1 1( ) ( ) ( ( ) (1 ) ( ))o o o o
f T x x T x x T TS A B S A B xS A x S B∆ − −= − + − � (5)

where x is the atomic fraction of A component. The formation entropy of the sesquichalcogenides of lantha-
nides (Ln0.4Te0.6, Ln0.4Se0.6, Ln0.4S0.6) vs. the atomic number of lanthanides was calculated and presented in 
Fig. 6. The standard entropies of the pure lanthanides and chalcogenide were taken from [18, 19]. The graphs 
of the formation entropies are W-shaped in the case of lanthanide sesquichalcogenides.

Also the formation entropy graph of the LnIn3 intermetallic compounds has an inclined S-shape [3] Fig. 7. 
The use of the tetrad-effect concept helps with the standardization of thermodynamic data, both for pure lan-
thanides, and their compounds with other elements, and the development of the solid state chemistry theory.

Standard entropies at 298 K of the solid Ln2O3 compounds
We used the data reported in the review [18] and in the electronic database [19] as a source of information on 
the structures and standard entropies of the Ln2O3 at 298 K (see Table 4). As can be seen from Table 4, the stand-
ard entropy values of Ln2O3 change in accordance with the M-type of the tetrad-effect. There are local maxima 
at the points corresponding to Nd, Ho, and local minima at the points corresponding to La, Lu and Eu (Gd).
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Fig. 6: Calculated standard entropies of formation of the lanthanide tellurides (Ln0.4Te0.6) (1), lanthanide selenides (Ln0.4Se0.6) 
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The shape of an M is symmetrical relative to its centre, so we used the symmetrical function (with Gd is 
the central point) to describe the standard entropies of Ln2O3:

	
2 4

0 1 2 4( ) ;S x a a x a x a x= + + + � (6)

where x = | NLn–NGd |  and a0, a1, a2, a4 are fitting parameters.
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Fig. 7: Calculated entropies of formation ΔfS = f (T, N) of LnIn3 [3].

Table 4: The crystal structures of the Ln2O3 compounds and their standard entropies at 298 K.

Ln  
 
 

Lattice system  
 
 

Space group  
 
 

298S°  (Ln0.4O0.6, J mol − 1 K − 1)

[19]  
 

[20]  
 

Calc. (this work)

Ln0.4O0.6 (cubic)   Ln0.4O0.6 (hex)

La   hex [19, 20]   P3̅m1 [22]
Ia3̅ [22]

  25.464   25.464   21.78   25.54

Ce   hex [19, 20]   P3̅m1 [22]
Ia3̅ [22]

  29.62   29.623   26.58   29.37

Pr   hex [19, 20]   P3̅m1 [22]
Ia3̅ [22]

  30.54   31.129   29.19   31.15

Nd   hex [19, 20]   P3̅m1 [22]
Ia3̅ [22]

  31.74   31.715   30.33   31.61

Pm  cubic [19] monocl 
[20]

  P3̅m1 [22]
Ia3̅ [22]

  31.6   31.464   30.60   31.34

Sm   monocle [19, 20]   P3̅m1 [22]
Ia3̅ [22]

  30.12   30.208   30.47   30.82

Eu   cubic [19, 20]   Ia3̅ [22]   27.28   29.288   30.25   30.38
Gd   cubic [19]   Ia3̅ [22]   30.12   30.125   30.16   30.21
Tb   cubic [19, 20]   Ia3̅ [22]   31.84   31.38   30.25   30.38
Dy   cubic [19, 20]   Ia3̅ [22]   29.96   29.957   30.47   30.82
Ho   cubic [19, 20]   Ia3̅ [22]   31.276   31.631   30.60   31.34
Er   cubic [19, 20]   Ia3̅ [22]   30.626   30.878   30.33   31.61
Tm   cubic [19, 20]   Ia3̅ [22]   27.94   27.95   29.19   31.15
Yb   cubic [19, 20]   Ia3̅ [22]   26.62   26.61   26.58   29.37
Lu   cubic [19, 20]   Ia3̅ [22]   21.992   21.991   21.78   25.54
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According to Table 4, the entropy values of the Ln2O3 with a hexagonal structure (Ln = La, Ce, Pr, Nd) 
exceed those with a cubic structure (Ln = Lu, Yb, Tm, Er), although these lanthanides have a symmetrical 
disposition relative to Gd. This indicates that the function S(x) is closely related with Ln2O3 structure, so dif-
ferent functions S(x) must be used to describe the entropies of the hexagonal and cubic Ln2O3. Using the least 
squares method, the following equations were obtained:

	
1 1 2 4

0.4 0.6298 O cub , J mol K 30( .16 0.0989 –0.005508 ; 2 2( ) . ) 22Ln x xS σ− − = + = ±� � (7)

	
1 1 2 4

0.4 0.6298 O hex , J mol K 30( .21 0.1758 –0.005533 ; 2 0( ) . ) 66Ln x xS σ− − = + = ±� � (8)

The calculated entropy values of the hexagonal and cubic Ln0.4O0.6 are listed in Table 4 and are presented 
in Fig. 8. Some of these values refer to metastable structures and their knowledge is important for the thermo-
dynamic modeling of the phase equilibria.

The difference between the hexagonal and cubic forms of the Ln0.4O0.6 compounds gives the entropies of 
transformation (ΔStr).

Supplementary information on the tetrad-effect is available in [25–28]. It is easy to calculate the standard 
entropies and entropies of formation for the isostructural LnN, LnB2, LnB4, LnB6, LnF3 [18–22, 27–34] and other 
compounds, using a similar procedure.

Standard entropies at 298 K of the LnN, LnB4 and LnF3 solid 
compounds
All LnN solid compounds have a cubic structure (space group Fm3̅m) [18–20]. The data [19] for the standard 
entropies of LnN at 298 K are described by the equation:

	
1 1 2 4

0.5 0.5298 N , J mol  K 33.64 0.3297 0.010988 ; 2 2.( 1) 1Ln x xS σ− − = + − = ±� � (9)
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Fig. 8: Experimental points and calculated curves of the standard entropies at 298 K for the cubic (1) and hexagonal (2) forms of 
solid lanthanide oxides (Ln0.4O0.6);  – [18],  – [19]; N is the atomic number of a lanthanide.
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This description, shown in Fig. 9 (line 1), demonstrates the validity of the tetrad-effect for the standard entro-
pies of lanthanide nitrides. The LnB4 solid compounds all have a tetragonal structure (space group P4/mbm) 
[18]. The data [28] for the standard entropies of LnB4 (Ln = Gd–Tm, Lu) at 298 K are described by the equation:

	
1 1 4

0.2 0.298 8B , J mol  K 16.74 0.596 0.002721 ( ; 2 0) .74Ln x xS σ− − = + − = ±� � (10)

This description, presented in Fig. 9 (line 2), shows that the standard entropies of heavy lanthanide borides 
(LnB4) at 298 K change in accordance with the tetrad-effect (right branch). So, it is easy to reconstruct the left 
branch for the light lanthanide tetraborides.

The solid LnF3 compounds have two possible structures: hexagonal (space group P3̅c1) for Ln = La–Eu 
and orthorhombic (space group Pnma) for Ln = Sm–Lu [20]. Both crystalline forms of the LnF3 were found 
for La, Sm, Eu, Gd, Ho, Tm, Lu [29–35]. The experimental data [29–35] for the standard entropies at 298 K of 
hexagonal LnF3 (Ln = La–Nd) and orthorhombic LnF3 (Ln = Gd, Dy, Er, Lu) were described by the equations:

	
1 1 4

0.25 0.75298 F hex , J mol K 27.58 0.861 0.002879 ; 2( ( ) 4) 0.6Ln x xS σ− − = + − = ±� � (11)

	
1 1 4

0.252 098 .75( ( )  )F ortho , J mol K 28.76 0.335 0.003081 ; 2 0.36Ln x xS σ− − = + − = ±� � (12)

The data [29–35] and results of the calculation using eqs. (11), (12) and Fig. 10 confirm the validity of the 
tetrad-effect for the standard entropies of lanthanide fluorides. The difference of the 298S�  values from eqs. 
(11) and (12) gives us the 298S∆ �  values, which refer to the transformation of one crystalline form of LnF3 into 
another.

Actinides, 5f elements
The thermodynamic properties of actinides have been studied much less than lanthanides, but the similar-
ity of physicochemical properties makes it possible for us to estimate, with sufficient accuracy, unexplored 
properties using fundamental laws.
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Fig. 9: The experimental points and calculated curves of standard entropies at 298 K of the solid lanthanide compounds: 
Ln0.5N0.5 (1) [19] and Ln0.2B0.8 (2);  – [19],  – [28]; N is the atomic number of lanthanide.
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So, the “tetrad-effect” phenomenon can be also used for the analysis, correction and prediction of ther-
modynamic data for the actinides (An) compounds. It is connected to the 5f-electrons of the actinide elements 
(Ac–Lr; their atomic numbers are 227–266).

The Table 5 presents the crystal structure, half-life, standard entropies and densities of the solid pure 
actinides at 298 K. 
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Fig. 10: Experimental points and calculated curves of the standard entropies at 298 K for the hexagonal (1) and orthorhombic 
(2) forms of the solid lanthanide fluorides (Ln0.25F0.75); N is the atomic number of a lanthanide [29–35].

Table 5: Crystal structure, half-life, standard entropies and densities of the solid pure actinides at 298 K.

An   N  Space 
group [20]

  Half-life 
[36]

  d g/cm3 
[36]

  d g/cm3 
[37]

  d g/cm3 
calc.

  298S°  J/mol K 

[20]

  298S°  J/mol K 

[19]

  298S°  J/mol K 

calc.

Ac-227   89  Fm3̅m   21.77 year   10.07   10.7   10.02   56.48 ± 6   61.9 ± 0.8   59.57
Th-232   90  Fm3̅m   1.40 · 1010 

year
  11.72   11.78   14.76   53.39 ± 0.5   51.8 ± 0.5   53.75

Pa-231   91  I4/mmm   3.25 · 104 
year

  15.37   15.37   17.82   51.88 ± 4.2   51.6 ± 0.8   50.29

U-238   92  Fm3̅m   4.47 · 109 
year

  19.05   19.05   19.19   50.21 ± 0.2   50.2 ± 0.2   49.2

Np-237   93  Im3̅m   2.14 · 106 
year

  20.45   20.25   18.87   50.46 ± 1.1   50.45 ± 0.4   50.48

Pu-244   94  Fm3̅m   2.41 · 104 
year

  19.86   19.84   16.87   56.02 ± 0.84   54.46 ± 0.8   54.11

Am-243   95  Fm3̅m   7370 year   13.67   11.7   13.19   54.64 ± 2.7   55.4 ± 2   60.12
Cm-244   96  Fm3̅m   17.6 year   13.51   7.0   7.81   72.0 ± 3   70.8 ± 3   68.48
Bk-247   97  P63mmc   1380 year   –   –   13.19   –   –   60.12
Cf-251   98  P63mmc   898 year   –   –   16.87   –   –   54.11
Es-252   99  Fm3̅m   472 year   –   –   18.87   –   –   50.48
Fm-257   100  –   100 day   –   –   19.19   –   –   49.2
Md-258   101  –   51 day   –   –   17.82   –   –   50.29
No-259   102  –   58 min   –   –   14.76   –   –   53.75
Lr-266   103  –   11 h   –   –   10.02   –   –   59.57
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The standard entropies of the actinides [19] and [20] can be described (see Fig. 11) by an equation

	
2

298 An Cm68.49–9.551 1.1826 ; |N –N |, 2 2.72S x x x= + = σ = ±� � (13)

The density of the actinides [36] and [37] can be described (see Fig. 12) by an equation

	
2

An Cmd 7.99 6.462 | |–0.9137 ; |N –N |, 2 2.14x x x σ= + = = ± � (14)
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Fig. 11: The experimental points and calculated curves of standard entropies at 298 K of the solid pure actinides; + [19], ○ [20]; 
N is the atomic number of actinide.
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Fig. 12: The experimental points and calculated curves of density at 298 K of the solid pure actinides; + [36], ○ [37]; N is the 
atomic number of actinide.
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Conclusion
1.	 A new relationship of thermodynamic data with Periodic Law was established.
2.	 The tetrad-effect concept is an effective tool in predicting the missing thermodynamic values for lantha-

nide compounds.
3.	 The combination of the tetrad-effect concept with the symmetric function a0 + a1x + a2 x2 + a4 x4 permits 

the analysis of the available experimental data for the standard entropies of the solid lanthanide com-
pounds at 298 K and the prediction of the missing ones.

4.	 The standard entropies of transformation between different crystalline structures of lanthanide com-
pounds can be evaluated.

5.	 Using the standard entropies of the lanthanide compounds and the initial pure elements gives the pos-
sibility to calculate the standard entropies of formation of the lanthanide compounds. These entropies, 
combined with the experimental Gibbs energies of formation, yield the standard enthalpies of formation 
of the lanthanide compounds.

6.	 For the first time more then 80 standard entropies at 298 K of Ln2S3, Ln2Se3, Ln2Te3, LnB4, and LnF3 solid 
compounds were evaluated for different crystalline forms.

7.	 The standardization of thermodynamic data for both pure lanthanides and their compounds with other 
elements serves for the development of the solid state chemistry theory.

8.	 The tetrad-effect concept can be also applied to the actinides.

Highlight
–– The physicochemical properties of pure lanthanides, as well as actinides and their compounds with 

other elements of the periodic system, are subject to a certain law.
–– This law can be called a “tetrad-effect” and it works best for the isostructural phases.
–– The tetrad-effect concept is an effective tool for predicting missing thermodynamic values for lanthanide 

and actinide compounds.
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