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1  Preface
The recommendations contained in this document concern the terminology relating to concepts in chem-
ometrics. It recognises the existence of ISO Standards on terms used in statistics and probability [1] and 
applied statistics [2], and has not attempted to redefine basic concepts in statistics. See ISO 3454 [1, 2] and the 
IUPAC Green Book [3] for general rules on symbols and terminology in mathematics and statistics.

Generic quantities are denoted by upper-case letters, and individual values (‘best estimates’ in a math-
ematical framework) by the corresponding lower-case letter. In a measurement model, Y denotes the measur-
and, X1, …, XN the input quantities, and y, x1, …, xN the corresponding best estimates.

Article note: This work was started under project 2008-002-1-500: A glossary of concepts and terms in chemometrics, with 
membership D Brynn Hibbert, Pentti Minkkinen and Barry Wise. Public input was via an open wiki that was active from 2010 to 
2012 [D. B. Hibbert, P. Minkkinen, N. M. Faber, B. M. Wise. Anal. Chim. Acta 642, 3 (2009)].
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The compilation has drawn on existing standards and literature and has been the subject of consultation 
with the chemometrics community by the establishment of a wiki in 2010 (closed 2012) [4].

Where a definition from another work is used in its entirety the reference includes the item number (e.g. 
[5] 6.11 refers to entry 6.11 in ISO 18115-1:2010). When a specific item number is absent, the reference indicates 
the source of the inspiration for the present definition. However basic definitions from statistics given, for 
example, in ISO 3534 are not reproduced here.

These Recommendations will become part of a chapter in the revised Orange Book (Compendium of Ter-
minology in Analytical Chemistry, 3rd edition), which will include a complete list of definitions, and further 
elaboration of concepts.

2  Introduction
The term ‘chemometrics’ was first used by Svante Wold in 1971 and the International Chemometrics Society 
was formed in 1974 by Svante Wold (Umeå University, Sweden) and Bruce Kowalski (University of Washington, 
Seattle) [6, 7]. In a now historically-significant paper to the Journal of Chemical Information and Computer 
Sciences [8], Kowlski reproduced a letter, signed by himself and Wold to a “Prospective Chemometrician”. In 
it chemometrics is defined as “… the application of mathematical and statistical tools to chemistry.” The defi-
nition given below at 2.1 is the latest refinement, maintaining brevity and highlighting the practical nature of 
chemometrics (see Note 2 in 2.1).

There has been no complete vocabulary of chemometrics, the nearest being a web site, now defunct, by 
Vandeginste [9], and some extended glossaries in books. Terms have been defined as the subject evolved, 
sometimes leading to different terms for the same concept in different fields of chemistry (for example spec-
troscopy and bioinformatics). The approach taken here is to offer definitions that have gained some accept-
ance, not favouring any particular section of the chemometrics community.

2.1  chemometrics

The science of relating measurements made on a chemical system or process to the state of the system via 
application of mathematical or statistical methods.
Note 1:	 Data treated by chemometrics are often multivariate.
Note 2:	� Although in some cases the mathematical and statistical techniques used in chemometric applica-

tions might be the same as those used in theoretical chemistry, it is important to emphasize that 
chemometrics should not involve theoretical calculations, but should deal primarily with the extrac-
tion of useful chemical information from measured data.

Note 3:	� Chemometrics is widely applied outside chemistry, e.g. in biology, metabolomics, engineering as 
well as sub-disciplines such as forensics, cultural studies etc.

Reference: [10]

3  Data, sampling and data processing

3.1  autocorrelation

Correlation of a variable with itself over a successive time or space intervals (lags).
Note 1:	� If the mean of autocorrelated data is estimated the standard deviation of the mean depends on 

sampling mode.
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3.2  autoscaling

Variance scaling of mean-centered data.
Note:	 See mean centering

3.3  categorical data

Data, values of which are one of a fixed number of nominal categories.
Note 1:	 Data in a contingency table is categorical.

3.4  contingency table
cross tabulation

Type of table in a matrix format that displays the multivariate frequency distribution of variables.
Note:	 The entries in the cells of a contingency table can be frequency counts or relative frequencies. 

See: categorical data

3.5  data matrix

Measurement results on a system arranged in a m  ×  n matrix, with m objects and n variables.
Note 1:	 By convention a matrix is arranged with m rows and n columns.
Note 2:	� Objects are also called ‘samples’, but confusion with physical ‘test samples’ in analytical chemistry 

should be avoided.
Note 3:	 Variables are also called features, or explanatory variables.
Note 4:	� For multi-way data the data is arranged in a hypercube of m  ×  n1  ×  n2  ×  …, where n1, n2 … are the 

kinds of explanatory variable.

3.6  data pre-processing

Manipulation of raw data prior to a specified data analysis treatment.
Note 1:	 The term “pre-processing” is preferred to the term “pre-treatment” to reduce confusion with physi-

cal sample preparation or treatment prior to experimental analysis.
Note 2:	 Aside from the three main categories of data pre-processing methods (mean centering, scaling and 

transformation), data pre-processing can refer to any other procedures carried out on the raw data, 
including mass binning and peak selection. In the case of multivariate images, this can also include 
region-of-interest selection and image filtering or binning.

Note 3:	 All data pre-processing methods imply some assumptions about the nature of the variability in the 
data set. It is important that these assumptions are understood and appropriate for the data set 
involved.

Note 4:	 More than one data pre-processing method can be applied to the same data set. The order of data 
pre-processing is important and can affect assumptions made on the nature of variance in the data 
set.

Reference: [11] 6.3
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3.7  dynamic time warping

Process of synchronizing a data matrix so that it represents the same time shifts.
Note 1:	 The method is used in chromatography to align peaks by their retention times.

3.8  evaluation data
validation data
deprecated test data
deprecated test set
deprecated prediction data
deprecated prediction set

Data used to validate a model.
Note 1:	 Evaluation data should be independent of the data used to calibrate or train a model. See cross 

validation, training data.
Note 2:	 ‘Test data’ is also used for data from an unknown sample, and should not be used for ‘evaluation 

data’.

3.9  explanatory variable

Variable that influences the value of a response variable, and is used to build models of the response variable.

3.10  exploratory data analysis
initial data analysis
EDA

Summary of the main characteristics of data, often using graphical methods.
Note 1: Exploratory data analysis is recommended before deciding an approach to chemometric modelling.

Reference: [12]

3.11  mean centering
centering

Data pre-processing in which the mean value of a variable is subtracted from data across all objects.
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Note 1:	 Mean centering emphasises the differences between samples rather than differences between the 
samples and the variable’s origin (zero).

Note 2:	 Mean centering is generally recommended for principal component analysis, partial least squares 
and discriminant analysis of data, where relative values across the samples are more important than 
their absolute deviation from zero. Mean centering is not compatible with non-negativity constraints 
in, for example, multivariate curve resolution.

Note 3:	 Mean centering is generally applied with other data pre-processing methods. See scaling.

Reference: [11]
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3.12  multiplicative scatter correction
MSC
multiplicative signal correction

Data pre-processing in which a constant and a multiple of a reference data set is subtracted from data.
Note 1:	 MSC is typically used in near-infrared spectrometry to remove effects of non-homogeneous particle 

size [13].

3.13  multivariate data

Data having two or more variables per object.
Note 1:		  The measurements results are often of the same kind of quantity.
Example 1:	 Absorbances measured at 101 wavelengths in the range 200 nm atond 400 nm.
Example 2:	 Mass fractions of 10 elements measured by ICP-MS.

3.14  multi-way data
N-way data

Multivariate data having two or more kinds of explanatory variable per object.
Note 1:		  For two groups of explanatory variables the data is termed ‘three-way’.
Note 2:		  Models that decompose multi-way data include PARAFAC, Tucker3 model.
Example 1:	� Fluorescence intensities with excitation wavelength and emission wavelength representing 

the two variable axes, and the objects making the third direction.

3.15  noise

Response that gives no information.

3.16  normalization (in data pre-processing)
row scaling

Scaling method in which the scaling matrix consists of a single value for each object.
Note 1:	 The scaling value could be the value of a reference variable, the sum of selected variables or the sum 

of all variables for the sample.
Note 2:	 ‘Normalization’ has many meanings in statistics (see https://en.wikipedia.org/wiki/Normalization_

(statistics)). To resolve any ambiguity the nature of the scaling constant should be explained.

Reference: variance scaling, autoscaling [11]

3.17  random sampling

Sampling in which the sample locations are selected randomly from the whole population.
Note 1:	 The population defines the kind of quantity of the location. For example, in a time series, the quan-

tity giving the location is time, in QSAR the location is a point in design space.

https://en.wikipedia.org/wiki/Normalization_(statistics)
https://en.wikipedia.org/wiki/Normalization_(statistics)
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3.18  raw data
primary data

Data not yet subjected to analysis.
Note 1:	 Raw data can be an indication obtained from a measuring instrument or measuring system (VIM 4.1)

3.19  sampling

Selection of a subset of individuals from within a population to estimate characteristics of the whole 
population.

3.20  sampling error

The difference between an estimate of a parameter obtained from a sample and the population value.
Note 1:	 Unless the population values have been measured, sampling error cannot be directly estimated.

3.21  sampling unit

A defined quantity of material having a boundary which may be physical or temporal.
Note 1:	 Examples of physical boundaries are capsules, containers, and bottles.
Note 2:	 A number of sampling units may be gathered together, for example in a package or box.

3.22  scaling
weighting

Element-wise division of a data matrix by a scaling matrix.
Note:	 See variance scaling, autoscaling, normalization

3.23  smoothing

Transformation using an approximating function to capture important patterns in data, while removing noise 
or other fine-scale structures.
Note 1:	 Examples of smoothing functions are moving average, and Savitzky-Golay.

3.24  systematic sampling

Sampling in which individual samples are taken at equal intervals in location.
Note 1:	 In a time series, the quantity giving the location is time.
Note 2:	 The starting point may be assigned randomly within the first stratum.

3.25  take-it-or-leave-it data
TILI

Happenstance data that must be processed, or not processed, as is.
Reference: [14]
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3.26  training data
training set

Data used for creating a model in supervised classification.
Note:	 See evaluation data.

3.27  transformation

Application of a deterministic mathematical function to each point in a set of data.
Note 1:	 Mathematically each data point zi is replaced with the transformed value yi  =  f(zi), where f(.) is a 

mathematical function.
Note 2:	 Transforms may be applied so that the data appear to more closely meet the assumptions of a sta-

tistical inference procedure that is to be applied, or to improve the interpretability or appearance of 
graphs.

Note 3:	 Smoothing is an example of a transformation.
Example: f (x)  =  log(x).

3.28  variance scaling

Scaling in which the scaling matrix is the standard deviation of each variable across the objects.
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Note 1:	 A variable occupies a column of the data matrix
Note 2:	 Variance scaling equalizes the importance of each variable in multivariate data.
Note 3:	 When used with mean centering variance scaling is known as autoscaling.

Reference: [11] 6.20

4  Experimental design
Experimental design has become an important step in investigating the effects of factors on systems. Tradi-
tional approaches to optimisation in which one factor at a time is considered, while maintaining other factors 
constant, has been shown to be inefficient and, for correlated factors, incapable of producing the optimum 
[15]. The definitions here mostly differ from, but do not contradict, those in ISO 3534-3 [16]

4.1  alias structure

List of combinations of effects that are aliased (confounded).
Note:	 See aliased effects

4.2  aliased effects
confounded effects

In a fractional-factorial design, effects for which the information obtained are identical.
Note 1:	 In a two-level design, the product of the coded levels for the aliased effects are equal.
Example 1:	� If there are four factors in a design: A, B, C, D then the main effect of A can be aliased with the 

three way effect B  ×  C  ×  D. So for the run that has B  =  –1, C  =  –1, D  =  +1, then A must  =  +1.
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4.3  coded experimental design
coded design

Matrix of runs by factor levels in which each level is denoted by a code that represents the relative magnitude 
of the level.
Example 1:	 A two-level design is coded –1 and +1, a three level design is coded –1, 0 and +1.
Example 2:	 In a rotatable central composite design for 3 factors the coded levels are –√2, –1, 0, +1, +√2.

4.4  effect of a factor
effect

Coefficient of a term in a response model.
Note:	 See main effect, nth-order effect, interaction effect.

4.5  design matrix

Matrix with rows representing individual experimental treatments (possibly transformed according to the 
assumed model) which can be extended by deduced levels of other functions of factor levels.
Reference: [16] 3.2.25

4.6  dummy factor

Factor that is known to have no effect on the response, used in an experimental design, to estimate repeat-
ability standard deviation.
Example:	� A factor having levels ‘+’ singing the first verse of the National Anthem at the experiment, and 

‘–’ singing the second verse of the National Anthem at the experiment.

4.7  experimental design
design of experiments
DoE

Efficient procedure for planning combinations of values of factors in experiments so that the data obtained 
can be analyzed to yield valid and objective conclusions.
Note 1:	 Experimental design is applied to determine the set of conditions that are required to obtain a 

product or process with desirable, often optimal properties. A characteristic of experimental design 
is that these conditions are determined in a statistically-optimal way.

Note 2:	 Response surface methodology is considered an important part of experimental design.
Note 3:	 An ‘experimental design’ (noun) usually refers to a table giving the levels of each factor for each run. 

See coded experimental design.

Reference: [17, 18]

4.8  factor (experimental design)

Input quantity in a model.
Note 1:	 The term has a different meaning when used in factor analysis.
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4.9  factor level
level

Value of a factor in an experimental design.
Note 1:	 A design may be designated by the number of levels chosen for each factor, as in “two-level design”.
Note 2:	 When writing an experimental design the levels are usually coded. (See coded experimental design).

4.10  fractional-factorial design

deprecated: incomplete-factorial design

Experimental design obtained from a full factorial design in which experiments are systematically removed 
to fulfil stated statistical requirements.
Note 1:	 The aim of a fractional design is to reduce the number of experiments by confounding low-order 

effects (e.g. main effect, two-way interaction) with high order interactions, which are assumed to be 
small.

Note 2:	 A design, having Lk (see full factorial design) experiments, is fractionated to Lk − p experiments where 
p is an integer  < k.

Note 3:	 The choice of design is governed by an alias structure.
Note 4:	 A fractional factorial design is incomplete, but all incomplete designs are not fractional factorial. 

See Plackett Burman design.

4.11  full-factorial design

Experimental design with all possible combinations of factor levels.
Note 1:	 If there are k factors, each at L levels, a full factorial design has Lk runs.

4.12  interaction effect

Effect of a factor where the term is the product of two or more factors.
Example 1:	� The yield of a synthesis is modelled in terms of the temperature T and concentration of a 

reactant c
		�   β β β β β β= + + + + +2 2

0 1 2 11 22 12
ˆ ˆ ˆ ˆ ˆ ˆˆ .Y T c T c Tc  The estimated coefficient 12β̂  is the interaction effect 

of T and c.
Note:		  See main effect, nth-order effect.

4.13  main effect

Effect of a factor where the term is a single factor.
Example 1:	� The yield of a synthesis is modelled in terms of the temperature T and concentration of a 

reactant c
		�   β β β β β β= + + + + +2 2

0 1 2 11 22 12
ˆ ˆ ˆ ˆ ˆ ˆˆ .Y T c T c Tc  The estimated coefficients 1β̂  and 2β̂  are the main 

effects of T and c respectively.
Note:		  See nth-order effect, interaction effect.

4.14  model (experimental design)

Equation describing the response as a function of values of the factors.
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Note 1:		�  The model can be based on knowledge of the chemistry or physics of the system, but usually 
the model is empirical, being linear or quadratic with interaction terms.

Note 2:		�  To obtain information about the significance of effects, data is usually mean centered and 
assessed against a coded experimental design.

Example 1:	� The yield of a synthesis is modelled in terms of the temperature T and concentration of a 
reactant c

		  β β β β β β= + + + + +2 2
0 1 2 11 22 12

ˆ ˆ ˆ ˆ ˆ ˆŶ T c T c Tc
Note:		  See nth-order interaction effect, main effect

4.15  nth-order effect

Effect of a factor where the term is a factor raised to the power n.
Example 1:	� The yield of a synthesis is modelled in terms of the temperature T and concentration of a 

reactant c
		�   β β β β β β= + + + + +2 2

0 1 2 11 22 12
ˆ ˆ ˆ ˆ ˆ ˆˆ .Y T c T c Tc  The coefficients 11β̂  and 22β̂  are the second-order 

effects of T and c respectively.
Note:		  See main effect, interaction effect.

4.16  optimization

Minimization or maximization of a real function by systematically choosing the values of real or integer vari-
ables from within an allowed set.

4.17  Plackett-Burman design

Incomplete experimental design to estimate main effects for which each combination of factor levels for any 
pair of factors appears the same number of times.
Note 1:		�  Plackett-Burman designs are typically given for two levels, with a number of experiments that 

is a multiple of 4 but not a power of 2. (The latter case is a fractional factorial design).
Note 2:		  For 4  ×  N experiments, 4  ×  N – 1 main effects and the mean are estimated.
Note 3:		�  If less than 4  ×  N – 1 factors are being studied, dummy factors are inserted which allow estima-

tion of the repeatability standard deviation of the measurements.
Example:	� The coded experimental design for 4  ×  N  =  12, where +1 and –1 represent the two levels of 

factors X1 … X11 is given below. The order of performing the runs should be randomised.

Run Pattern X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

1 +++++++++++ +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1
2 –+–+++–––+– –1 +1 –1 +1 +1 +1 –1 –1 –1 +1 –1
3 ––+–+++–––+ –1 –1 +1 –1 +1 +1 +1 –1 –1 –1 +1
4 +––+–+++––– +1 –1 –1 +1 –1 +1 +1 +1 –1 –1 –1
5 –+––+–+++–– –1 +1 –1 –1 +1 –1 +1 +1 +1 –1 –1
6 –+––+–+++– –1 –1 +1 –1 –1 +1 –1 +1 +1 +1 –1
7 –––+––+–+++ –1 –1 –1 +1 –1 –1 +1 –1 +1 +1 +1
8 +–––+––+–++ +1 –1 –1 –1 +1 –1 –1 +1 –1 +1 +1
9 ++–––+––+–+ +1 +1 –1 –1 –1 +1 –1 –1 +1 –1 +1
10 +++–––+––+– +1 +1 +1 –1 –1 –1 +1 –1 –1 +1 –1
11 –+++–––+––+ –1 +1 +1 +1 –1 –1 –1 +1 –1 –1 +1
12 +–+++–––+–– +1 –1 +1 +1 +1 –1 –1 –1 +1 –1 –1
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4.18  resolution of a design
resolution

One more than the smallest nth-order interaction effect that some main effect is aliased with.
Note 1:		�  Resolution is used to describe the extent to which fractional factorial designs create aliased 

effects.
Note 2:		  The resolution is written as a Roman numeral.
Note 3:		  Full factorial designs have no effects that are aliased and therefore have infinite resolution.
Example 1:	� For resolution III designs the main effects are aliased with two-factor interactions. For res-

olution IV designs no main effects are aliased with two-factor interactions, but two-factor 
interactions are aliased with each other. For resolution V designs no main effect or two-factor 
interaction is aliased with any other main effect or two-factor interaction, but two-factor inter-
actions are aliased with three-factor interactions.

Reference: [19]

4.19  response

Measured or observed quantity in an experimental design.

4.20  response surface methodology

Experimental design in which the response is modelled in terms of one or more factor levels.
Note 1:	� Response surface methodology is usually associated with optimization. The model used is typically 

a quadratic function leading to a maximum or minimum response in the factor space.
Note 2:	 The term ‘surface’ implies two factors and a single response, when a plot of the modelled response 

as a function of values of the factors leads to a surface in the three dimensional space. This can be 
generalized to any number of factors.

Reference: [20]

5  Multivariate methods and related concepts

5.1  alternating least squares regression
alternating regression
ALS

Solution to the multivariate decomposition of a data matrix in which iteratively a solution of one output 
matrix is used to compute the second matrix, after the application of constraints.
Note:	 ALS is used to decompose multiple spectra (X) into concentration (C) and component spectra (S). 

X  =  C ST. Because spectra and concentrations cannot be negative at each iteration negative values 
are set to zero.

5.2  autoregression

A stochastic process in which future values are estimated based on a weighted sum of past values.
Note:	 A process called AR(1) is a first order process, meaning that the current value is based on the imme-

diately preceding value. An AR(2) process has the current value based on the previous two values.



418      D. B. Hibbert: Vocabulary of concepts and terms in chemometrics

5.3  biplot

Combination plot of a scores plot as points and loadings plot as vectors for common factors.
Note 1:	 The plots are scaled to facilitate interpretation.
Note 2:	 Points in the scores plot (objects) that fall on a loadings vector are considered to be characterised by 

the variable associated with the vector.

5.4  bootstrapping

Estimation of parameters by multiple re-sampling from measured data to approximate its distribution.
Note 1:		�  Multiple resamples of the original data allow calculation of the distribution of a parameter of 

interest, and therefore its standard error.
Example 1:	� The standard error of an estimate of parameter θ

		�   θ θ∗ ∗

=

= −∑ 2

1

1ˆ ( )
B

E i
i

s
B

 where B is the number of bootstrap samples, iθ∗  the i-th bootstrap estimate, 

and θ*̅ the mean value of the bootstrap estimates.
Note 2:		�  Random sampling with replacement is used when the data are assumed to be from an inde-

pendent and identically-distributed population.
Note 3:		  Bootstrapping is an alternative to cross validation in model validation.

Reference: [21, 22]

5.5  canonical variables

Linear combinations of data with the greatest correlation.
Note:	 See: canonical variate analysis.

5.6  canonical variate analysis
canonical analysis

Multivariate technique which finds linear combinations of two sets of data that are most highly correlated.
Note 1:	 The combinations with the greatest correlation, denoted U1 and V1 are known as the “first canonical 

variables”.
Note 2:	 The relationship between the canonical variables is known as the canonical function.
Note 3:	 The next canonical functions, U2 and V2 are then restricted so that they are uncorrelated with U1 

and V1. Everything is scaled so that the variance equals 1.

5.7  common factor analysis
exploratory factor analysis
factor analysis

Factor analysis in which latent variables are calculated that maximise the correlation with observed variables.
Note 1:	 The common factors are not unique. Typically factors are rotated so that the factors are more easily 

interpreted in terms of the original variables.

5.8  core consistency diagnostic (CONCORDIA)

Method to assess the appropriateness of a PARAFAC model.
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Note 1:	 An appropriate PARAFAC model is a model where the components primarily reflect low-rank, trilin-
ear variation in the data.

Note 2:	 The principle of the method is to assess the degree of superdiagonality of the model.

Reference: [23]

5.9  correspondence factor analysis
correspondence analysis

Factor analysis applied to categorical data in which orthogonal factors are obtained from a contingency table.

5.10  cross validation

A re-sampling procedure that predicts the class or property of objects from a classification or regression 
model that is obtained without those observations.
Note 1:	 When a single object is removed, the procedure is known as leave-one-out cross validation. When 

n/G objects are deleted, the procedure is known as G-fold cross validation.
Note 2:	 The procedure is iterated leaving out all the objects in turn.
Note 3:	 The model is assessed by calculation of the root mean square error of prediction for continuous vari-

ables, and by the misclassification probability for classification.
Note 4:	 Use of independent evaluation data is preferred to cross validation, when there is concern about the 

independence of the objects in the data set.
Note 5:	 Cross-validation can be used with bootstrapping, one to optimize a model (e.g. how many PCs are 

appropriate) and the other for validation.

5.11  evolving factor analysis (EFA)

Factor analysis that follows the change or evolution of the rank of the data matrix as a function of an ordered 
variable.
Note 1:	 The ordering variable may be time. (see [24])
Note 2:	 The changing rank is calculated by principal-component analysis on an increasing data matrix.

Reference: [25]

5.12  factor (factor analysis)
deprecated component
deprecated pure component

Axis in the data space of a factor analysis model, representing an underlying dimension that contributes to 
summarizing or accounting for the original data set.
Note 1:	 In principal component analysis each factor is called a principal component. It is deprecated when 

used outside this context. To avoid confusion “principal component factor” is recommend by 
ISO.

Note 2:	 In multivariate curve resolution each factor is called a “pure component”. The terms “component” 
and “pure component” are deprecated as they may be confused with chemical components of the 
system.

Note 3:	 Each factor is associated with a set of loadings and scores, which occupies a column in the loadings 
and scores matrices respectively.
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5.13  factor analysis

Matrix decomposition of a data matrix (X) into the product of a scores matrix (T) and the transpose of the 
loadings matrix (PT).
Note 1:	 Hence X  =  TPT + E, where E is a residual matrix.
Note 2:	 Factor analysis methods include common factor analysis (also called ‘factor analysis’) principal com-

ponent analysis, and multivariate curve resolution.
Note 3:	 The number of factors selected in factor analysis is smaller than the rank of the data matrix.
Note 4:	 Factor analysis is equivalent to a rotation in data space where the factors form the new axes. This is 

not necessarily rotation that maintains orthogonality except in the case of PCA.
Note 5:	 The residual matrix contains data that are not described by the factor analysis model, and is usually 

assumed to contain noise.

Reference: [11] 6.5

5.14  G-fold cross validation

Cross validation of a data set of N objects in which N/G objects are removed at each iteration of the procedure.
Note 1:	 Objects 1 to N/G are removed on the first iteration, then objects N/G + 1 to 2N/G after replacement of 

the first N/G objects, and so on.
Note 2:	 Because the perturbation of the model is larger than in leave-one-out cross validation, the predic-

tion ability of the G-fold cross validation is less optimistic than obtained with leave-one-out cross 
validation.

5.15  latent variable
latent construct
hidden variable

Variable that is inferred through a mathematical model from other variables that are observed.
Note 1:	 The factors obtain from common factor analysis are termed latent variables.
Note 2:	 A distinction can be made between ‘hidden variable’, which is considered to be an actual varia-

ble that is buried in the effects of other variables and noise, and a ‘latent variable’ that is entirely 
hypothetical.

5.16  leave-one-out cross validation (LOOCV)

Cross validation in which one object is removed in each iteration of the procedure.

5.17  loadings
deprecated principal component spectrum
deprecated pure component spectrum

Projection of a factor onto the variables.
Note 1:	 ‘Loadings’ (plural) refers to a column in the loadings matrix that relates to a particular factor. 

“loading” (singular) is the particular contribution of a variable in the original space to the factor.
Note 2:	 The loadings on a factor reflect the relationships between the variables on that factor. (See score)
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Note 3:	 In principal component analysis the loadings are also the cosine angles between the variables and a 
particular factor.

Note 4:	 In multivariate curve resolution the term “pure component spectrum” is interchangeable with the 
term “loading” and is therefore deprecated. The term, in spectroscopy, may be confused with the 
spectrum for a pure material.

Reference: [11] 6.7

5.18  loadings plot

Plot of one loading against variable number, or two or three loadings against each other.
Note 1:	 Usually the loadings associated with the early factors (1, 2, 3) are plotted to reveal relationships 

among the variables.
Note 2:	 See: loadings plot, biplot

5.19  maximum likelihood principal component analysis (MLPCA)

Principal component analysis that incorporates information about measurement uncertainty to develop 
models that are optimal in a maximum likelihood sense.
Reference: [26].

5.20  mean squared error of prediction (MSEP)
mean squared error of estimation (MSEE)

In multivariate calibration the average of the squared deviation of estimated values from the values of evalu-
ation data.
For N evaluation data where ci is an observed value and ˆ

ic  is the predicted value
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Note 1:	 mean squared error of prediction is the square of root mean squared error of prediction.

5.21  multivariate curve resolution (MCR)
deprecated self-modelling curve resolution (SMCR)
deprecated self-modelling mixture analysis (SMMA)

Factor analysis for the decomposition of multicomponent data into a linear sum of chemically-meaningful 
components when little or no prior information about the composition is available.
Note 1:	 MCR factors are extracted by the iterative minimization of the residual matrix using an alternating 

least squares approach, while applying suitable constraints, such as non-negativity, to the loadings 
and scores. MCR can be performed on the data matrix with or without data pre-processing.

Note 2:	 MCR factors are not unique but are dependent on initial estimates, the number of factors to 
be resolved, constraints applied and convergence criteria. MCR factors are not required to be 
orthogonal.



422      D. B. Hibbert: Vocabulary of concepts and terms in chemometrics

5.22  non-linear iterative partial least squares (NIPALS)

Iterative decomposition of a data matrix to give principal components.
Note 1:	 Writing the model as X  =  TPT + E, the first principal component is computed from a data matrix. The 

data explained by this PC are then subtracted from X and the algorithm applied again to residual 
data. The procedure is repeated until sufficient principal components are obtained.

Note 2:	 The algorithm is very fast if only a few principal components are required, because the covariance 
matrix is not computed.

5.23  nonlinear mapping (NLM)

Projection of objects defined in a multivariate space onto two- or three-dimensional space so that the dis-
tances between objects are preserved as well as possible.
Note 1:	 An often applied criterion for the mapping error (E) is the relative squared error between the true 

distance dij and mapped distance δij.
Note 2:	 Several iterative optimization procedures can be applied to minimize E, such as steepest descent.

5.24  parallel factors analysis (PARAFAC)
canonical decomposition (CANDECOMP)

Decomposition of a three-way data matrix into the sum of sets of two-way loadings matrices.
Note 1:	 The PARAFAC model is also known as Canonical Decomposition (CANDECOMP).

Note 2:	 A representation of PARAFAC is 
1

,
R

ijk ir jr kr ijk
r

x a b c e
=

= +∑  where xijk is i,j,k –th element of the data matrix, 

and air, bjr, ckr are the components of the loadings matrices. eijk is the i,j,k –th element of residual 
matrix.

Note 3:	 PARAFAC is a special case of the Tucker3 model (see Tucker tri-linear analysis) where the core matrix 
is the identity matrix, and r  =  s  =  t  =  R

Note 4:	 A schematic representation of the PARAFAC model is
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Reference: [27]

5.25  prediction error sum of squares (PRESS)
sum of squared errors of prediction (SSEP)
residual sum of squares (RSS)
sum of squared residuals (SSR)
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In multivariate calibration for a prediction set of N data where ci is an observed value and ˆ
ic  is the predicted 

value.
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Note:	 See root mean squared error of prediction

5.26  principal component– discriminant analysis (PC-DA)

Discriminant analysis on a multivariate data set that has been subject to principal component analysis.
Note 1:	 This procedure removes collinearity from the multivariate data and ensures that the new predictor 

variables, which are PCA scores, are distributed normally.

5.27  principal-component analysis (PCA)

Factor analysis in which factors are calculated that successively capture the greatest variance in the data set.
Note 1:	 The factors are orthogonal and are known as principal component factors.
Note 2:	 The factorization is written X  =  TPT + E, where T is the scores matrix, P is the loadings matrix and E 

is a residual matrix. See non-linear iterative partial least squares.

Reference: [11] 6.15

5.28  principal-component factor
principal component (PC)

Orthogonal factors obtained in a principal-component analysis.
Note 1:	 The successive factors explain reducing fractions of the variance of the data set, and are written PC1, 

PC2 …
Note 2:	 ISO recommends use of the term principal-component factor.

5.29  Procrustes analysis

Comparison of shapes of multi-dimensional objects by a series of geometrical transformations to minimise 
the sum of squared distances between the transformed and target structures while maintaining the internal 
structure of the objects.
Note 1:	 For two objects defined by X and Y the manipulation orthogonal rotation/reflection matrix R Pro-

crustes analysis minimises: ‖Y – XR ‖2 subject to RT R  =  RRT  =  1
Note 2:	 Ordinary, or classical, Procrustes analysis is when an object is compared to one other object, which 

may be a reference shape. Generalized Procrustes analysis compares three or more shapes to an 
optimally-determined mean shape.

Reference: [28] p 310

5.30  Quantitative structure-activity relationship (QSAR)
QSPR
QSA/PR

Relationships between chemical structure, or structural-related properties, and target property of studied 
compounds.
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Note 1:	 Typical target property is biological (or therapeutic) activity of a drug.
Note 2:	 Typical structural-related properties are Hammett electronic parameter, lipophilicity parameter, 

boiling and melting points, molecular weight and molar refractivity.
Note 3:	 Relationships are established by multivariate calibration.

Reference:[28] Ch 37.

5.31  root mean square error of cross validation (RMSECV)

Root mean square error of prediction when the predicted data is obtained by cross validation.

5.32  root mean squared error of prediction (RMSEP)

root mean squared error of estimation (RMSPE)
standard error of prediction (SEP)
standard error of estimation

In multivariate calibration or classification for N evaluation data where ci is an observed value and ˆ
ic  is 

the predicted value
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Note 1:	 RMSEP is related to the prediction error sum of squares (PRESS) by PRESSRMSEP
N

=

Note 2:	 For completely independent, normally distributed evaluation data, RMSEP is a measure of the bias 
of the calibration.

Note 3:	 When prediction is by cross validation RMSEP may be termed root mean square error of cross 
validation.

5.33  simple-to-use interactive self-modelling mixture analysis (SIMPLISMA)

Interactive method to obtain concentrations and pure spectra from spectra of mixtures using directly-meas-
ured variables.
Note 1:	 The directly-measured variables are called ‘pure variables’ in the method.
Note 2:	 A data matrix D  =  C  ×  PT + E where C is a concentration matrix, P pure spectra of mixture compo-

nents and E an error matrix. Pure spectra are estimated P̂  which allows projection of a concentra-
tion matrix C* from which the data matrix can be reconstructed and compared with the measured 
spectra.

	

T 1
T

reconT 1

ˆ ( ) ˆ then ˆ ˆ ˆ( )

T −
∗

∗ −

 = = ×
=

P D C C C
D C P

C DP P P

Note 3: Second derivatives of spectra can be used for modelling.

Reference: [30]

5.34  score
deprecated projections
deprecated pure-component concentration

Factor analysis projection of an object onto a factor.
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Note 1:	 In PCA, the factors are orthogonal and the scores are an orthogonal projection of the objects onto a 
factor.

Note 2:	 The scores on a factor reflect the relationships between objects for that factor. (See loading).
Note 3:	 The term scores (plural) refers to a whole column in the scores matrix that relates to a particular 

factor. The term score (singular) is the projection of a particular object onto the factor.

Reference: [11] 6.21

5.35  scores plot

Plot of one score against object number, or two or three scores against each other.
Note 1:	 Usually the scores associated with the early factors (1, 2, 3) are plotted to reveal relationships among 

the objects.
Note:	 See: loadings plot, biplot

5.36  simulated annealing

Generic probabilistic meta-heuristic to locate a good approximation to the global optimum of a given function 
in a large search space, in which there is a slow decrease in the probability of accepting worse solutions as 
the solution space is explored.
Note 1:	 The function E(s) to be minimized is analogous to the internal energy of the system in that state. 

The goal is to bring the system, from an arbitrary initial state, to a state with the minimum possible 
energy. At each step, the heuristic considers some neighbouring state s’ of the current state s, and 
probabilistically decides between moving the system to state s’ or staying in state s. These prob-
abilities ultimately lead the system to move to states of lower energy. Typically this step is repeated 
until the system reaches a state that is good enough for the application, or until a given computation 
budget has been exhausted.

Reference: [31], http://en.wikipedia.org/wiki/Simulated_annealing

5.37  singular value decomposition
SVD

A factorization of an m  ×  n matrix (M) such that M  =  UΣVT, where U is an m  ×  m matrix, Σ is a m  ×  n matrix 
and VT is a n  ×  n matrix.
Note 1:	 If M is a data matrix with m objects and n variables, the matrix U is the scores matrix, the diagonal 

of Σ contain the square roots of the eigenvalues and V is the loadings matrix.

5.38  Tucker tri-linear analysis
Tucker3 model

Decomposition of a three-way data matrix into a three-way core matrix, and three, two-way loadings matrices.

Note 1:	 A representation of the Tucker3 model is 
1 1 1

,
R S T

ijk ir js kt rst ijk
r s t

x a b c z e
= = =

= +∑∑∑  where xijk is the data matrix, 

air, bjs, ckt are the loadings matrices, and zrst is the core matrix. eijk is the residual matrix.
Note 2:	 A graphical representation of the Tucker3 model is

http://en.wikipedia.org/wiki/Simulated_annealing
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Note 3:	 See parallel factors analysis

6  Classification

6.1  artificial neural network (ANN)

Computing system made up of a number of simple, highly interconnected elements, which process informa-
tion by their dynamic state response to external inputs.
Note 1:	 An ANN is composed of layers of nodes with an input layer accepting data, one or more hidden 

layers computed from earlier layers, and an output layer giving the results of the classification.
Note 2:	 Nodes are connected by non-linear functions that calculate the contribution (weight) of an earlier 

node to a later node.

Reference: Definition adapted from [32] and quoted in [33] (See: http://pages.cs.wisc.edu/~bolo/shipyard/
neural/local.html)

6.2  backward chaining
back chaining

Inference method from hypothesis to data that supports the hypothesis
Note 1:	 Backward chaining is used in backward-propagation to train an artificial neural network.

6.3  backward propagation
back-propagation learning rule
back-propagation of errors

Supervised classification method for an artificial neural network in which weights of connections between 
nodes are calculated from the known output layer back to the input layer.

Reference: [34]

6.4  backward stepwise linear discriminant analysis

Linear discriminant analysis in which variables to build the discriminant functions are removed one at a time 
to minimise the loss of discrimination, until there is a significant loss.

http://pages.cs.wisc.edu/~bolo/shipyard/neural/local.html
http://pages.cs.wisc.edu/~bolo/shipyard/neural/local.html
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Note 1:	 Significant loss is tested by an F-test
Note 2:	 Interrelationships between variables that have not yet been selected are ignored, and variables already 

added, which may become largely redundant through subsequent additions, cannot be removed.
Note 3:	 See forward stepwise linear discriminant analysis.

6.5  Bayes classifier

Supervised classification that minimises the misclassification probability.
Note:	 Misclassification probability can be estimated as the frequency of misclassified objects, also known 

as the misclassification rate.

6.6  city-block distance
Manhattan distance
Hamming distance
taxi distance

Distance (di,j) between two objects (i and j) calculated as the sum of the absolute difference between k vari-
ables (x) that describe the objects.
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6.7  classification

Assignment of a series of objects to membership of groups.
Note 1:	 Classification is a particular example of pattern recognition. (See https://en.wikipedia.org/wiki/

Pattern_recognition).
Note 2:	 The groups may be pre-defined (see supervised classification), or not (see unsupervised classification)

Reference: [35]

6.8  cluster

Region of high density of objects in a space based on their characterising data.
Note 1:	 Measures of density are the distance between objects in variable space, or the (dis)similarity of 

objects. See Euclidean distance, city block distance, Tanimoto similarity index.
Note 2:	 Several such regions of high density may exist indicating that the objects form groups with similar 

properties.
Note 3:	 Cluster analysis is a synonym for classification.

Reference: [28] Chapter 30

6.9  complete linkage

Linkage criterion in hierarchical clustering in which the distance between two clusters is the distance between 
those two objects (one from each cluster) that are farthest apart.
Note 1:	 Complete linkage tends to find compact clusters of approximately equal size.

https://en.wikipedia.org/wiki/Pattern_recognition
https://en.wikipedia.org/wiki/Pattern_recognition
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6.10  dendrogram

Tree diagram used to illustrate the arrangement of clusters produced by hierarchical clustering.
Note 1:	 The objects are successively grouped (or un-grouped) in each layer of the dendrogram, where the 

length of the linking lines is proportional to the dissimilarity of the objects.

6.11  discriminant analysis (DA)
discriminant function analysis (DFA)

Supervised classification method in which functions of the observed variables are used to classify observa-
tions into designated groups.
Note 1:	 The classification functions are known as discriminant functions, discriminant criteria, or classifi-

cation criteria. They maximise the variance between different groups while minimizing the variance 
within each group. Loadings on DA factors can be used to provide information on the combination 
of variables is best for predicting group membership.

Note 2:	 When the distribution within each group is assumed to be multivariate normal, a parametric method 
can be used to develop a discriminant function. The discriminant function is determined by a gen-
eralized squared distance. The classification criterion can be based on either the individual within-
group covariance matrices (yielding a quadratic function) or the pooled covariance matrix (yielding 
a linear function).

Note 3:	 The model takes into account the prior probabilities of the groups, which can be taken as propor-
tional to the number in each group or equal across all groups.

Note 4:	 Linear discriminant analysis, quadratic discriminant analysis and regularized discriminant analysis 
are types of discriminant analysis used in chemometrics.

Reference [11] 5.4.

6.12  disjoint principal component analysis

Principal component analysis independently performed on each class as a step in classification.
Note 1:	 Soft independent modelling of class analogy is an example of the use of disjoint principal compo-

nent analysis.
Note 2:	 When a PCA model is obtained using all classes, it is known as conjoint PCA.

Reference: [36]

6.13  Euclidean distance

Distance (di,j) between two objects (i and j) calculated as the square root of the sum of the squared differences 
between k variables (x) that describe the objects.
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6.14  forward chaining

Inference method from data to hypothesis.
Note 1:	 In logic, forward chaining is the application of modus ponens (if P implies Q, given P then Q).
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6.15  forward stepwise linear discriminant analysis

Linear discriminant analysis in which variables to build the discriminant functions are introduced one at a 
time to maximise the discrimination, until there is no significant improvement.
Note 1:	 Significant improvement is usually tested by an F-test
Note 2:	 Interrelationships between variables that have not yet been selected are ignored, and variables 

already added, which may become largely redundant through subsequent additions, cannot be 
removed.

Note 3:	 See backward stepwise linear discriminant analysis.

6.16  fuzzy clustering

Classification in which membership of an object in each possible class is given a weight between zero and 
one.
Note 1:	 In so-called hard cluster algorithms membership of a group can only take values 0 or 1, but in fuzzy 

clustering any value between 0 and 1 is allowed subject to the sum of all memberships of an object 
being 1.

Reference: [37].

6.17  hidden layer

Group of nodes in an artificial neural network between input layer and output layer.

6.18  hierarchical clustering

Pattern recognition in which objects are linked together by use of an appropriate measure of distance between 
pairs of objects, and a linkage criterion, which specifies the dissimilarity of sets as a function of the pairwise 
distances between objects.
Note 1:	 Distance measures include Euclidean distance, Mahalanobis distance and city block distance.
Note 2:	 Linkage criteria include single linkage, complete linkage. See also Ward’s minimum variance 

method.

6.19  k-means clustering

Unsupervised classification method which partitions objects into k groups, in which each object belongs to 
the group with the nearest mean.
Note 1:	 Although k-means clustering is called unsupervised classification the value of k may be specified.

6.20  k-nearest neighbour (kNN)

Non-parametric supervised classification method for objects based on the closest training examples in the 
variable space.
Note 1:	 An object is classified by a majority vote of its k-nearest neighbours, with the object being assigned 

to the class most common.
Note 2:	 k is a small positive integer.
Note 3:	 When k  =  1 the method is known as ‘nearest neighbour’.
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6.21  Kohonen network

Type of self-organising map with low dimensional grid.

6.22  linear discriminant analysis (LDA)

Discriminant analysis in which the criterion function is based on the pooled covariance matrix.

6.23  Mahalanobis distance

Distance (di,j) between an object characterised by vector of variables xi and the centroid of a class μj with 
covariance matrix S calculated as

1
, ( ) ( ),T
i j i j i jd −= − −x S xµ µ  where S is the covariance matrix of the variables.

6.24  misclassification rate
misclassification frequency

Fraction of objects incorrectly assigned to a group in supervised classification.
Note 1:	 Misclassification rate may be calculated for an evaluation data set, or in leave-one-out cross 

validation.
Note 2:	 Misclassification rate is an estimate of the misclassification probability.

6.25  one-class classification
unary classification
independent classification

Classification identifying objects of a specific class amongst all objects, by learning from training data con-
taining only objects of the specific class.
Note 1:	 The assignment of an object to a group may be in the form of a probability of membership.

Reference: [38]

6.26  node

Locations in an artificial neural network that carry values that are calculated from values of connected nodes 
and weights by a transfer.
Note 1:	 Nodes are arranged in layers, input, hidden and output.
Note 2:	 The value of a node is used in the calculation of nodes in subsequent layers.

6.27  partial least squares discriminant analysis (PLS-DA)

Linear classification in which the criterion function is obtained by partial least squares analysis.
Note 1:	 PLS-DA can also be useful for exploratory data analysis.
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Note 2:	 PLS-DA results depend on data pre-processing and choice of parameters and so is believed to be 
more difficult to implement well than other forms of discriminant analysis such as linear discrimi-
nant analysis, quadratic discriminant analysis or regularized discriminant analysis.

Reference: [39]

6.28  pattern recognition

Assignment of a label to an object characterised by data.
Note 1:	 Pattern recognition is a broad term that includes classification, regression, sequencing, outlier 

detection, biomarker identification and parsing. In chemometrics pattern recognition is often used 
as a synonym for classification.

Note 2:	 As with classification, pattern recognition may be supervised or unsupervised. See supervised clas-
sification, unsupervised classification.

6.29  quadratic discriminant analysis (QDA)

Discriminant analysis in which the criterion function is based on the individual within-group covariance 
matrix.

6.30  regularized discriminant analysis

Discriminant analysis in which the criterion function is based on a combination of pooled covariance matrix 
and the individual within-group covariance matrix.
Note:	 The covariance matrix (Σk(λ)) is related to the class covariance matrix (Σk) and the pooled covariance 

matrix (Σpooled) by Σk(λ)  =  (1 – λ)Σk + λΣpooled

Reference: [40]

6.31  self-organising map (SOM)

Unsupervised classification algorithm that creates a projection of a set of given data items onto a regular grid, 
the nodes of which have a minimum distance from the data in some metric.
Note 1:	 The grid is usually two dimensional when it is also called a Kohonen network.
Note 2:	 A SOM is considered a type of artificial neural network.
Note 3:	 A SOM can be used to obtain a picture of the relationships among objects (analogous to a scores plot 

in principal component analysis).

Reference: [41]

6.32  similarity index
similarity distance

Quantity that describes the equivalence of two objects characterised by multivariate data.
Note 1:	 A similarity index may be in the interval [0,1], where 0 is complete dissimilarity and 1 is complete 

equivalence.
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Note 2:	 When the term ‘distance’ is used the quantity is some function of the differences of coordinates in 
the multivariate data space.

Note 3:	 See Tanimoto similarity index, city-block distance, Euclidean distance, Mahalanobis distance, Ward’s 
minimum variance method.

6.33  single linkage

Linkage criterion in hierarchical clustering in which the distance between two clusters is the distance between 
those two objects (one from each cluster) that are closest together.
Note 1:	 A drawback of this method is the so-called chaining phenomenon, which refers to the gradual 

growth of a cluster as one element at a time gets added to it. This may lead to impractically hetero-
geneous clusters and difficulties in defining classes that could usefully subdivide the data.

6.34  soft independent modelling of class analogy (SIMCA)

Supervised classification that performs a principal-components analysis on each class, and then an unknown 
is assigned to the class with which it has the lowest residual variance.
Note 1:	 The number of principal-component factors chosen for each class is determined by cross validation.
Note 2:	 SIMCA is an example of the use of disjoint principal component analysis.

6.35  supervised classification

Classification in which, in a first step, a model is built using data from objects of known classes, and in a 
second step, the model is applied to new data to assign a class to unknown objects.
Note 1:	 Algorithms for supervised classification include discriminant analysis, support vector machine, arti-

ficial neural network, Bayesian classifier

Reference: [28] Chapter 33

6.36  support vector machine (SVM)

Method of supervised classification in which decision boundaries (hyperplanes) are determined that maxim-
ise the separation of data in different classes.
Note 1:	 The principle guiding SVM classification is the mapping of the original data from the input space 

to a higher dimensional (which can be infinite) feature space such that the classification problem 
becomes simpler in the feature space.

Note 2:	 Linear and non-linear classification problems are treated by SVM.

Reference: [42]

6.37  Tanimoto similarity index
Tanimoto index

Fraction of variables that are considered to agree between two objects.
Note 1:	 The rules for agreement must be defined. For example in an elemental analysis, element concentra-

tions equivalent within 20 %.
Note 2:	 The Tanimoto index is used in drug discovery and QSAR for comparison of structures in large data 

bases in an efficient way.
Note 3:	 The Tanimoto index is essentially similar to the Jaccard index. (https://en.wikipedia.org/wiki/

Jaccard_index).

https://en.wikipedia.org/wiki/Jaccard_index
https://en.wikipedia.org/wiki/Jaccard_index
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6.38  unsupervised classification

Classification in which no prior information about membership of groups is known.
Note 1:	 The number of groups may be specified.
Note 2:	 Algorithms for unsupervised classification include k-means cluster analysis, hierarchical cluster 

analysis.

6.39  unweighted pair group method with arithmetic mean (UPGMA)
average linkage

Linkage criterion in hierarchical clustering in which the distance between two clusters is the average of all 
distances between pairs of objects.

6.40  Ward’s minimum variance method
Ward’s method

Linkage criterion in hierarchical clustering in which the within-cluster variance is minimized.
Note 1: The initial cluster distances in Ward’s minimum variance method are the squared Euclidean distance

7  Calibration and regression
In multivariate regression and calibration the problem is usually posed as a relation between the indications 
X (which are multivariate) and the property to be measured y. Note that this is a reversal of the traditional 
form, x (concentration)/y (indication) of linear calibration. Therefore in this section c is used in preference to 
‘y’ to remind the reader that it represents the quantity of interest (concentration, classifier). X is a vector of 
observations (indications).

In matrix form:

	 = +Xb c e � (1)

where b are the coefficients of the model and e a vector of errors. In the definitions that follow we use this 
terminology, and terms used in factor analysis to describe the different approaches. We start with the VIM 
definition of calibration, and note that regression represents the first part of calibration (establishing the 
relation between c and X).

7.1  calibration

Operation that, under specified conditions, in a first step, establishes a relation between the quantity values 
with measurement uncertainties provided by measurement standards and corresponding indications with 
associated measurement uncertainties and, in a second step, uses this information to establish a relation for 
obtaining a measurement result from an indication.

VIM 2.39 [43]

7.2  least squares regression (LSR)
LS regression

Regression that minimizes the sum of squared differences between observed values of a variable and the 
values predicted by a model.
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Note 1:	 Least squares regression is used as a synonym for ordinary least squares regression. The full term 
should be used if there is ambiguity about the kind of regression being performed.

7.3  errors-in-variables regression (EIV)
total least squares regression (TLS)

Least squares regression in which both the response variable and predictor variable have measurement error.

Note 1:	 The model for EIV regression is i i i

i i i

c x
x x

α β ε

η

∗

∗

 = + +
 = +

 where x* is the true value of the predictor variable, 
and ε and η are errors.

Note 2:	 When the errors ε and η have the same variance the method is called orthogonal regression and 
minimises the perpendicular distance of a point to the regression line.

Note 3:	 Total least squares regression is performed by singular value decomposition.

Reference: [29] page 213, [44], https://en.wikipedia.org/wiki/Errors-in-variables_models

7.4  mean squared error of calibration (MSEC)
mean residual sum of squares (MRS, MRSS)

In calibration for N calibration data where ci is an observed value and ˆ
ic  is the value predicted by the calibra-

tion function

2

1

ˆ( )
i N

i i
i

c c
MSEC

N

=

=

−
=

∑

Note 1:	 Mean squared error of calibration is the square of the root mean squared error of calibration.

7.5  multilinear least squares regression (MLSR, MLR)

Multivariate calibration in which the coefficients of the regression are calculated directly from the indications 
and values of standards.
Note 1:	 b  =  X+c, where X+ is the pseudo-inverse of X, calculated as X+  =  (XTX)−1XT

Note 2:	 It is assumed that XTX has full rank, i.e. there are more objects than variables, and the variables are 
independent.

Note 3:	 If XTX has full rank only because of noise, the solution can become unstable.

7.6  multivariate calibration

Calibration in which the indications are multivariate data.
Note 1:	 Regression establishes the coefficients b (see Equation 1) from given indications X, or some factori-

zation of X, and values c, or some factorization of c. Given indications Xu from an unknown sample, 
the quantity value cu can be calculated.

7.7  ordinary least squares regression (OLSR)
classical least squares regression

Least squares regression that minimizes the sum of squared differences between the known values of the 
dependent variable and the values predicted by a linear model.

https://en.wikipedia.org/wiki/Errors-in-variables_models
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Note 1:	 Assumptions of the model are that error is only in the dependent variable, Normally-distributed, and 
homoscedastic.

Note 2:	 OLSR is used for calibration and multivariate calibration.

7.8  overfitting of a calibration model
overfitting

Condition in which a model describes random error or noise instead of the underlying relationship.
Note 1:	 Overfitting generally occurs when a model is excessively complex, such as having too many para

meters relative to the number of observations. (See also underfitting)
Note 2:	 A model which has been overfit will generally have good fit of the calibration data, but poor predic-

tive performance. Overfitting can be detected by use of cross validation or evaluation data.

7.9  partial least squares regression (PLS)
partial least squares
PLSR (deprecated by ISO 18115)

Multivariate calibration which finds factors that maximise covariance between two blocks of data.
Note 1:	 PLS finds factors (latent variables) in observed variables X that explain the maximum variance in 

the variable(s) c, using the simultaneous decomposition of the two. It removes redundant informa-
tion from the regression, i.e. factors describing large amounts of variance in the observed data that 
does not correlate with the predictions.

Note 2:	 The decompositions are X  =  TkPk
T + E and C  =  UkQk

T + F, and X+  =  Wk (Pk Wk)−1(Tk
T Tk)−1Tk

T, where W are 
weights that maintain orthogonal scores.

Note 3:	 PLS1 refers to PLS for a single ‘c’ variable. PLS2 is PLS that simultaneously obtains values for two 
or more ‘c’ variables. Therefore in the equations of Note 2, PLS1 has vectors c and q and PLS2 has 
matrices C and Q.

Note 4:	 When used for multivariate calibration, evaluation data or cross validation may be used to choose the 
number of PLS factors and assess the accuracy of the prediction (although the same data must not 
be used to do both). This is important to guard against overfitting.

Note 5:	 PLS may also be used in classification. See partial least squares discriminant analysis.

Reference: [11] 6.12

7.10  principal components regression (PCR)

Multivariate calibration in which a dependent variable is regressed against the scores of a chosen number of 
factors obtained from principal component analysis of the predictor variable.
Note 1:	 PCA decomposes the predictor variable data X into k principal component factors Tˆ ,k k k=X T P  

where k may be determined by cross validation. The dependent variable c is then regressed against 
ˆˆ ˆ, .k k=X c X b

Note 2:	 The factorization gives orthogonal factors, but no information about the predicted variable c is used.
Note 3:	 See also partial least squares, multilinear regression
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7.11  ridge regression
damped regression analysis

Multivariate calibration in which damping factors are added to the diagonal of the correlation matrix prior to 
inversion.
Note 1:	 2 2

ridge
1 1

2 2
2 2

ˆ arg min ( )

arg min

pn
T

i i j
i j

c x

c X

β β λ β

β λ β
= =

= − +

= − +

∑ ∑
� � � �

	 where the second term is known as the penalty, and λ is a tuning parameter. When l is zero, the esti-
mate is a linear regression estimate.

Note 2:	 The new estimates are no longer unbiased, their expected values are not equal to the true values. 
However, the variance of this new estimate can be lower than that of the least-squares estimator, so 
that the total expected mean squared error is also less.

7.12  root mean squared error of calibration (RMSEC)
standard error of calibration (SEC)
deprecated: standard estimate of error (SEE)

In calibration for N calibration data where ci is an observed value and ˆ
ic  is the value predicted by the calibra-

tion function.

2

1

ˆ( )
i N

i i
i

c c
RMSEC

N

=

=

−
=

∑

Note 1:	 Overfitting results in a small RMSEC, but poor predictive ability.

7.13  underfitting of a calibration model
underfitting

Condition in which a model fails to describe the data adequately.
Note 1:		�  Underfitting generally occurs when a model is not sufficiently complex, such as having too 

few parameters. (See also overfitting)
Example 1:	 Fitting a first order equation to data that follows a quadratic polynomial.

7.14  weighted least squares regression (WLSR)

Least squares regression in which a nonnegative constant is associated with each value of the dependent 
variable.
Note 1:	 The nonnegative constants are called weights.
Note 2:	 If the only source of dispersion in the dependent variable is Normally distributed, the weights are 

the inverse of the variance of each value.
Note 3:	 It is assumed the weights are known exactly.

Reference: [45]
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8  Index of terms
alias structure 4.1
aliased effects 4.2
alternating least squares regression 5.1
alternating regression. See alternating least squares regression 5.1
artificial neural network 6.1
autocorrelation 3.1
Autoregression 5.2
autoscaling 3.2
average linkage. See unweighted pair group method with arithmetic mean 6.39
back chaining. See backward chaining 6.2
back-propagation learning rule. See backward propagation 6.3
back-propagation of errors. See backward propagation 6.3
backward chaining 6.2
backward propagation 6.3
backward stepwise linear discriminant analysis 6.4
Bayes classifier 6.5
biplot 5.3
bootstrapping 5.4
calibration 7.1
canonical analysis. See canonical variate analysis 5.6
canonical decomposition. See parallel factors analysis
canonical variables 5.5
canonical variate analysis 5.6
categorical data 3.3
centering. See mean centering 3.11
chemometrics 2.1
city-block distance 6.6
classical least squares regression. See ordinary least squares regression 7.7
classification 6.7
cluster 6.8
coded design. See coded experimental design 4.3
coded experimental design 4.3
common factor analysis 5.7
complete linkage 6.9
confounded effects. See aliased effects 4.2
contingency table 3.4
core consistency diagnostic 5.8
correspondence analysis. See correspondence factor analysis 5.9
correspondence factor analysis 5.9
cross tabulation. See contingency table 3.4
cross validation 5.10
damped regression analysis. See ridge regression 7.11
data matrix 3.5
data pre-processing 3.6
dendrogram 6.10
design matrix 4.5
design of experiments. See experimental design 4.7
discriminant analysis 6.11
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discriminant function analysis. See discriminant analysis 6.11
disjoint principal component analysis 6.12
dummy factor 4.6
dynamic time warping 3.7
effect of a factor 4.4
effect. See effect of a factor 4.4
errors-in-variables regression 7.3
Euclidean distance 6.13
evaluation data 3.8
evolving factor analysis 5.11
experimental design 4.7
explanatory variable 3.9
exploratory data analysis 3.10
exploratory factor analysis. See common factor analysis 5.7
factor (experimental design) 4.8
factor (factor analysis) 5.12
factor analysis 5.13
factor analysis. See common factor analysis 5.7
factor level 4.9
forward chaining 6.14
forward stepwise linear discriminant analysis 6.15
fractional-factorial design 4.10
full-factorial design 4.11
fuzzy clustering 6.16
G-fold cross validation 5.14
Hamming distance. See city-block distance 6.6
hidden layer 6.17
hidden variable. See latent variable 5.15
hierarchical clustering 6.18
independent classification. See one-class classification 6.25
initial data analysis. See explanatory data analysis 3.10
interaction effect 4.12
k-means clustering 6.19
k-nearest neighbour 6.20
Kohonen network 6.21
latent construct. See latent variable 5.15
latent variable 5.15
least squares regression 7.2
leave-one-out cross validation 5.16
level. See factor level 4.9
linear discriminant analysis 6.22
loadings 5.17
loadings plot 5.18
LS regression. See least squares regression 7.2
Mahalanobis distance 6.23
main effect 4.13
Manhattan distance. See city-block distance 6.6
maximum likelihood principal component analysis 5.19
mean centering 3.11
mean residual sum of squares. See mean squared error of calibration 7.4
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mean squared error of calibration 7.4
mean squared error of estimation. See mean squared error of prediction 5.20
mean squared error of prediction 5.20
misclassification frequency. See misclassification rate 6.24
misclassification rate 6.24
model (experimental design) 4.14
multilinear least squares regression 7.5
multiplicative scatter correction 3.12
multiplicative signal correction. See multiplicative scatter correction 3.12
multivariate calibration 7.6
multivariate curve resolution 5.21
multivariate data 3.13
multi-way data 3.14
node 6.26
noise 3.15
non-linear iterative partial least squares 5.22
nonlinear mapping 5.23
normalization (in data pre-processing) 3.16
nth-order effect 4.15
N-way data. See multi-way data 3.14
one-class classification 6.25
optimization 4.16
ordinary least squares regression 7.7
overfitting of a calibration model 7.8
overfitting. See overfitting of a calibration model 7.8
parallel factors analysis 5.24
partial least squares discriminant analysis 6.27
partial least squares regression 7.9
partial least squares. See partial least squares regression 7.9
pattern recognition 6.28
Plackett-Burman design 4.17
prediction error sum of squares 5.25
primary data. See raw data 3.18
principal component– discriminant analysis 5.26
principal component. See principal-component factor 5.28
principal components regression 7.10
principal-component analysis 5.27
principal-component factor 5.28
Procrustes analysis 5.29
quadratic discriminant analysis 6.29
Quantitative Structure-Activity Relationship 5.30
random sampling 3.17
raw data 3.18
regularized discriminant analysis 6.30
residual sum of squares. See prediction error sum of squares 5.25
resolution of a design 4.18
resolution. See resolution of a design 4.18
response 4.19
response surface methodology 4.20
ridge regression 7.11
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root mean square error of cross validation 5.31
root mean squared error of calibration 7.12
root mean squared error of estimation. See root mean squared error of prediction 5.32
root mean squared error of prediction 5.32
row scaling. See normalization (in data pre-processing) 3.16
sampling 3.19
sampling error 3.20
sampling unit 3.21
scaling 3.22
score 5.34
scores plot 5.35
self organising map 6.31
similarity distance. See similarity index 6.32
similarity index 6.32
simple-to-use interactive self-modelling mixture analysis 5.33
simulated annealing 5.36
single linkage 6.33
singular value decomposition 5.37
smoothing 3.23
soft independent modelling of class analogy 6.34
standard error of calibration. See root mean squared error of calibration 7.12
standard error of estimation. See root mean squared error of prediction 5.32
standard error of prediction. See root mean squared error of prediction 5.32
sum of squared errors of prediction. See prediction error sum of squares 5.25
sum of squared residuals. See prediction error sum of squares 5.25
supervised classification 6.35
support vector machine 6.36
systematic sampling 3.24
take-it-or-leave-it data 3.25
Tanimoto similarity index 6.37
taxi distance. See city-block distance 6.6
total least squares regression 7.3
training data 3.26
training set. See training data 3.26
transformation 3.27
Tucker tri-linear analysis 5.38
Tucker3 model. See Tucker tri-linear analysis 5.38
unary classification. See one-class classification 6.25
underfitting of a calibration model 7.13
underfitting. See underfitting of a calibration model 7.13
unsupervised classification 6.38
unweighted pair group method with arithmetic mean 6.39
validation data. See evaluation data 3.8
variance scaling 3.28
Ward’s method. See Ward’s minimum variance method 6.40
Ward’s minimum variance method 6.40
weighted least squares regression 7.14
weighting. See scaling 3.22
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9  Index of abbreviations
ALS. See alternating least squares regression 5.1
ANN. See artificial neural network 6.1
CANDECOMP. See parallel factors analysis 5.24
CONCORDIA. See core consistency diagnostic 5.8
DA. See discriminant analysis 6.11
DFA. See discriminant analysis 6.11
DoE. See experimental design 4.7
EDA. See explanatory data analysis 3.10
EFA. See evolving factor analysis 5.11
EIV. See errors-in-variables regression 7.3
kNN. See k-nearest neighbour 6.20
LDA. See linear discriminant analysis 6.22
LOOCV. See leave-one-out cross validation 5.16
LSR. See least squares regression 7.2
MCR. See multivariate curve resolution 5.21
MLPCA. See maximum likelihood principal component analysis 5.19
MLR. See multilinear least squares regression 7.5
MLSR. See multilinear least squares regression 7.5
MRS. See mean squared error of calibration 7.4
MRSS. See mean squared error of calibration 7.4
MSC. See multiplicative scatter correction 3.12
MSEC. See mean squared error of calibration 7.4
MSEE. See mean squared error of prediction 5.20
MSEP. See mean squared error of prediction 5.20
NIPALS. See non-linear iterative partial least squares 5.22
NLM. See nonlinear mapping 5.23
OLSR. See ordinary least squares regression 7.7
PARAFAC. See parallel factors analysis 5.24
PC. See principal-component factor 5.28
PCA. See principal-component analysis 5.27
PC-DA. See principal component– discriminant analysis 5.26
PCR. See principal components regression 7.10
PLS. See partial least squares regression 7.9
PLS-DA. See partial least squares discriminant analysis 6.27
PRESS. See prediction error sum of squares 5.25
QDA. See quadratic discriminant analysis 6.29
QSA/PR. See Quantitative Structure-Activity Relationship 5.30
QSAR. See Quantitative Structure-Activity Relationship 5.30
QSPR. See Quantitative Structure-Activity Relationship 5.30
RMSEC. See root mean squared error of calibration 7.12
RMSECV. See root mean square error of cross validation 5.31
RMSEP. See root mean squared error of prediction 5.32
RMSPE. See root mean squared error of prediction 5.32
RSS. See prediction error sum of squares 5.25
SEC. See root mean squared error of calibration 7.12
SEP. See root mean squared error of prediction 5.32
SIMCA. See soft independent modelling of class analogy 6.34
SIMPLISMA. See simple-to-use interactive self-modelling mixture analysis 5.33
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SOM. See self organising map 6.31
SSEP. See prediction error sum of squares 5.25
SSR. See prediction error sum of squares 5.25
SVD. See singular value decomposition 5.37
SVM. See support vector machine 6.36
TILI. See take-it-or-leave-it data 3.25
TLS. See errors-in-variables regression 7.3
UPGMA. See unweighted pair group method with arithmetic mean 6.39
WLSR. See weighted least squares regression 7.14
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