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Abstract: Computational philosophy is the use of mechanized computational techniques to unearth 
philosophical insights that are either difficult or impossible to find using traditional philosophical methods. 
Computational metaphysics is computational philosophy with a focus on metaphysics. In this paper, we 
(a) develop results in modal metaphysics whose discovery was computer assisted, and (b) conclude that 
these results work not only to the obvious benefit of philosophy but also, less obviously, to the benefit of 
computer science, since the new computational techniques that led to these results may be more broadly 
applicable within computer science. The paper includes a description of our background methodology and 
how it evolved, and a discussion of our new results.

Keywords: Computational Metaphysics, Abstract Object Theory, Shallow Semantic Embedding, Gödel’s 
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1  The basic computational approach to higher-order modal logic
The application of computational methods to philosophical problems was initially limited to first-order 
theorem provers. These are easy to use and have the virtue that they can do proof discovery. In particular, 
Fitelson and Zalta1 both (a) used Prover9 to find a proof of the theorems about situation and world theory2 
and (b) found an error in a theorem about Plato’s Forms that was left as an exercise in a paper by Pelletier 
& Zalta.3 And, Oppenheimer and Zalta discovered,4 using Prover9, that 1 of the 3 premises used in their 
reconstruction of Anselm’s ontological argument5 was sufficient to derive the conclusion. Despite these 
successes, it became apparent that working within a first-order theorem-proving system involved a number 
of technical compromises that could be solved by using a higher-order system. For example, in order to 
represent modal claims, second-order quantification, and schemata, etc., in Prover9, special techniques 
must be adopted that force formulas which are naturally expressed in higher-order systems into the less-
expressive language of multi-sorted first-order logic. These techniques were discussed in the papers just 

1  Fitelson & Zalta, “Steps toward a computational metaphysics”.
2  Zalta, “Twenty-five basic theorems”.
3  Pelletier & Zalta, “How to say goodbye to the Third Man”.
4  Oppenheimer & Zalta, “A computationally-discovered simplification of the ontological argument”.
5  Oppenheimer & Zalta, “On the logic of the ontological argument”.
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mentioned and outlined in some detail in a paper by Alama, Oppenheimer, and Zalta.6 The representations 
of expressive, higher-order philosophical claims in first-order logic is therefore not the most natural; 
indeed, the complexity of the first-order representations grows as one considers philosophical claims that 
require greater expressivity. And this makes it more difficult to understand the proofs found by the first-
order provers.

1.1  The move to higher-order systems

Ways of addressing such problems were developed in a series of papers by Benzmüller and colleagues. 
Using higher-order theorem provers, they brought computational techniques to the study of philosophical 
problems and, in the process, they (along with others) developed two methodologies:

•	 Using the syntactic capabilities of a higher-order theorem prover such as Isabelle/HOL (a) to represent 
the semantics of a target logic and (b) to define the original syntax of the target theory within the 
prover. We call this technique Shallow Semantic Embeddings (SSEs).7 These SSEs suffice for the 
implementation of interesting modal, higher-order, and non-classical logics and for the investigation 
of the validity of philosophical arguments. By proving that the axioms or premises of the target system 
are true in the SSE, one immediately has a proof of soundness of the target system.

•	 Developing additional abstraction layers to represent the deductive system of philosophical theories 
with a reasoning system that goes beyond the deductive systems of classical modal logics.

Early papers focused on the development of SSEs. These papers show that the standard translation from 
propositional modal logic to first-order logic can be concisely modelled (i.e., embedded) within higher-
order theorem provers, so that the modal operator □, for example, can be explicitly defined by the λ-term 
λφ.λw.∀v.(Rwv → φv), where R denotes the accessibility relation associated with □. Then one can construct 
first-order formulas involving □φ and use them to represent and prove theorems. Thus, in an SSE, the 
target logic is internally represented using higher-order constructs in an automated reasoning environment 
such as Isabelle/HOL. Benzmüller and Paulson8 developed an SSE that captures quantified extensions of 
modal logic (and other non-classical logics). For example, if ∀x.φx is shorthand in functional type theory for  
Π(λx.φx), then □∀xPx would be represented as □Π′(λx.λw.Pxw), where Π′ stands for the λ-term λϕ.λw.Π(λx.
ϕxw), and the □ gets resolved as described above.9

The SSE technique was also the starting point for a natural encoding of Gödel’s modern variant 
of the ontological argument in second-order S5 modal logic. Various computer formalizations and 
assessments of recent variants of the ontological argument in higher-order theorem provers emerged 

6  Alama, Oppenheimer & Zalta, “Automating Leibniz’s theory of concepts”. For example, to represent the T schema ◻ϕ → ϕ, 
one begins with the intermediate representation ∀p(◻p → p). Then one introduces two sortal predicates Proposition(x) 
and Point(x), where the latter represent the possible worlds. In addition, a distinguished point W must be introduced, as 
well as a truth predicate True(x,y). Then one can represent ∀p(◻p → p) as: all x (Proposition(x) -> (all y 
(Point(y) -> True(x,y)) -> True(x,W))).
7  This is to be contrasted with a deep semantic embedding, in which the syntax of the target language is represented using an 
inductive data structure (e.g., following the BNF of the language) and the semantics of a formula is evaluated by recursively 
traversing the data structure. Shallow semantic embeddings, by contrast, define the syntactic elements of the target logic while 
reusing as much of the infrastructure of the meta-logic as possible.
8  Benzmüller & Paulson, “Quantified multimodal logics”.
9  To see how these expressions can be resolved to produce the right representation, consider the following series of reductions:

□∀xPx ≡ □Π′(λx.λw.Pxw)

≡ □((λϕ.λw.Π(λx.ϕxw))λx.λw.Pxw))

≡ □(λw.Π(λx.(λx.λw.Pxw)xw))

≡ □(λw.Π(λx.Pxw))
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in work by Benzmüller and colleagues. Initial studies10 investigated Gödel’s and Scott’s variants of the 
argument within the higher-order automated theorem prover (henceforth ATP) LEO-II.11 Subsequent work 
deepened these assessment studies.12 Instead of using LEO-II, these studies utilized the higher-order proof 
assistant Isabelle/HOL,13 a system that is interactive and supports strong proof automation. Some of these 
experiments were reconstructed in the proof assistant Coq.14 Additional follow-up work contributed similar 
studies15 and includes a range of variants of the ontological argument proposed by other authors, such 
as Anderson, Hájek, Fitting, and Lowe.16 Moreover ultrafilters have been used17 to study the distinction 
between extensional and intensional positive properties in the variants of Scott, Anderson and Fitting. This 
ongoing work will be sketched in Section 2.

The other main technique (i.e., the one in the second bullet point above), was developed by Kirchner 
and Benzmüller to re-implement, in a higher-order system, the work by Fitelson and Zalta.18 In order to 
develop a more general implementation of Abstract Object Theory (henceforth AOT or ‘object theory’), it 
doesn’t suffice to just develop an SSE for AOT. The SSE of Gödel’s ontological argument relies heavily on 
the completeness of second-order modal logic with respect to Kripke models. Given these completeness 
results, the computational analysis at the SSE level accurately reflects what follows from the premises of 
the argument. Since such completeness results aren’t available for AOT with respect to its Aczel models, 
some other way of investigating the proof system computationally is needed. To address this, Kirchner 
extended the SSE by introducing the new concept of abstraction layers.19 By introducing an additional proof 
system (as a higher abstraction layer, on top of the semantic embedding) that involves just the axioms of 
the target logic, one can do automated reasoning in the target logic without generating artifactual theorems 
(i.e., theorems of the model that aren’t theorems of the target logic), and without requiring the embedding 
to be complete or even provably complete. So the additional abstraction layer makes interactive and 
automated reasoning in Isabelle/HOL possible in a way that is independent of the model structure used 
for the semantic embedding itself. Whereas the SSE serves as a sound basis for implementing the abstract 
reasoning layer, the embedding with abstraction layers provides the infrastructure for a deeper analysis of 
the semantic properties of the target logic, such as completeness. We’ll expand upon this theme on several 
occasions below.

≡ (λφ.λw.∀v.(Rwv → φv))(λw.Π(λx.Pxw))

≡ (λφ.λw.Π(λv.Rwv → φv))(λw.Π(λx.Pxw))

≡ (λw.Π(λv.Rwv → (λw.Π(λx.Pxw))v))

≡ (λw.Π(λv.Rwv → Π(λx.Pxv)))

≡ (λw.∀v.Rwv → ∀x.Pxv)

≡ (λw.∀vx.Rwv → Pxv)

Thus, we end up with a representation of □∀xPx in functional type theory. 
10  Benzmüller & Woltzenlogel Paleo, “Automating Gödel’s ontological proof”.
11  Benzmüller, Sultana, Paulson & Theiß, “The higher-order prover LEO-II”.
12  Benzmüller & Woltzenlogel Paleo, “The inconsistency in Gödel’s ontological argument”. Benzmüller & Woltzenlogel Paleo, 
“Object-logic explanation for the inconsistency in Gödel’s ontological theory”.
13  Nipkow, Paulson & Wenzel, “Isabelle/HOL”.
14  Bertot & Casteran, “Interactive Theorem Proving”. Benzmüller & Woltzenlogel Paleo, “Interacting with modal logics in the 
Coq proof assistant”.
15  Benzmüller, Weber & Woltzenlogel Paleo, “Analysis of the Anderson-Hájek controversy”. Fuenmayor & Benzmüller, 
“Automating emendations of the ontological argument”. Fuenmayor & Benzmüller, “A case study on computational 
hermeneutics”. Bentert, Benzmüller, Streit & Woltzenlogel Paleo, “Analysis of an ontological proof proposed by Leibniz”.
16  Anderson, “Some emendations of Gödel’s ontological proof”. Anderson & Gettings, “Gödel’s ontological proof revisited”. 
Hájek, “Magari and others on Gödel’s ontological proof”. Hájek, “Der Mathematiker und die Frage der Existenz Gottes”. Hájek, 
“A new small emendation of Gödel’s ontological proof”. Fitting, “Types, Tableaus, and Gödel’s God”. Lowe, “A modal version 
of the ontological argument”.
17  Benzmüller & Fuenmayor, “Can computers help to sharpen our understanding of ontological arguments?”.
18  Fitelson & Zalta, “Steps toward a computational metaphysics”.
19  Kirchner, “Representation and Partial Automation of the PLM in Isabelle/HOL”.
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Kirchner reconstructs not only AOT’s fundamental theorems about possible worlds, but arrives at meta-
theorems about the correspondence between AOT’s syntactic possible worlds and the semantic possible 
worlds used in its models.20 In particular, Kirchner shows, using the embedding of AOT in Isabelle/HOL, 
that for each syntactic possible world w of AOT, there exists a semantic possible world w in the embedding, 
such that all and only propositions derivably true in w (using AOT’s definition of truth in possible worlds) 
are true in w, and vice-versa. The shallow semantic embedding with abstraction layers made it possible 
to reason both within the target logic itself (i.e., in the higher-level abstract reasoning layer) and about 
the target logic (i.e., using the outer logic of HOL as metalogic and the embedding as a definition of the 
semantics of the target logic).

To illustrate, as simply as possible, some of the technical details involved in the two basic techniques 
described above, we now turn to the development of an SSE for propositional modal logic, and show how 
an abstraction layer can be added on top of that.

1.2  Propositional S5 with abstraction layers

Our computational method can be illustrated with the simple example of a shallow semantic embedding 
of a propositional S5 logic with abstraction layers. In order to map modal logic to non-modal higher-order 
logic we use Kripke semantics. To that end we introduce a (non-empty) domain i for possible worlds in 
terms of a type declaration. In Isabelle/HOL:

typedecl i

Then we define a type for propositions, which are represented by functions mapping possible worlds to 
booleans. The right-hand side of the following in Isabelle/HOL represents the complete set of all (UNIV) 
functions from type i to type bool. This set is used to define a new abstract type o, whose objects are 
represented by elements of this set.21

typedef o = “UNIV::(i⇒bool) set” ..

Given these definitions we then lift the already defined connectives of our meta-logic HOL to the newly 
introduced type o of propositions in the target logic:

lift_definition S5_not :: “o ⇒ o” (“¬_” [54] 70)
is “λp. λw. ¬(p w)” .

lift_definition S5_impl :: “o ⇒ o ⇒ o” (infixl “→” 51)
is “λp. λq. λw. (p w) ⟶ (q w)” .

The first defines the new operator S5_not (with the convenient syntax of a bold negation ¬) on the abstract 
type o using the given λ-function on the representation type (functions from possible worlds to booleans). 
In λp. λw. ¬(p w), the λ-bound p is a function from possible worlds to booleans (type i⇒bool) and w is 
a possible world. The λ-term maps p and w to the negation of: w applied to p. So it defines a function of 
type (i⇒bool)⇒i⇒bool, which is exactly the representation type of the desired signature o ⇒ o. The 
implication connective S5_impl with syntax → is defined in a similar manner.

Using the same mechanism the unique operators of modal logic can be defined in accordance with their 
Kripke semantics:

lift_definition S5_box :: “o ⇒ o” (“◻_” [62] 63)
is “λp. λw. ∀v. p v” .

20  Kirchner, “Representation and Partial Automation of the PLM in Isabelle/HOL”.
21  To introduce a new type the representation set has to be non-empty. The fact that it is non-empty here can be trivially 
proven, which is indicated by the two dots at the end of the line.
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lift_definition S5_dia :: “o ⇒ o” (“◊_” [62] 63)
is “λp. λw. ∃v. p v” .

To formulate statements about our newly defined target logic, we still have to define what it means for a 
formula of the target logic to be valid. There are two options for defining validity, i.e., either as truth relative 
to a designated actual world or as truth in all possible worlds. Thus, to define validity, we first need a 
definition of truth relative to a possible world:

lift_definition S5_true_in_world :: “i ⇒ o ⇒ bool” (“[_ ⊨ _]”)
is “λp. λw. p w” .

It turns out that this is sufficient for reasoning about validity; so we don’t need to choose between the 
following two alternative definitions22 of global validity:

lift_definition S5_valid_nec :: “o ⇒ bool” (“◻[_]”)
is “λp. ∀w. p w” .

consts w0 :: i

lift_definition S5_valid_act :: “o ⇒ bool” (“[_]”)
is “λp. p w0” .

What we have so far is a shallow semantical embedding of an S5 modal logic, implemented using an 
abstract type in Isabelle/HOL.23 We can already formulate and prove statements in our target logic at this 
stage by initiating what Isabelle/HOL calls a transfer of a given statement to its counterpart with respect to 
the representation types, in accordance with the lifting definitions.24 So to prove the K◊-lemma, we simply 
give the following command:

lemma “[w ⊨ ◻ (p → q) → (◊p → ◊q)]”
apply transfer by auto

The proof of this lemma uses the transfer method and is shown to be valid in the semantics, so the proof 
doesn’t reveal which particular axioms, or axiom system, of S5 are needed to derive it in the traditional 
sense. In the case of propositional S5 modal logic this doesn’t constitute a problem, since it is known that 
it is complete with respect to Kripke semantics. So everything that is derivable from the semantics will also 
be derivable from the standard axioms of S5. However, for more complex target systems like AOT, this is not 
the case a priori.

We could, at this point, show how the additional abstraction layers needed for the proof theory of 
AOT can be developed, but that would introduce complexity that isn’t really needed for this discussion. 
So, instead, we shall illustrate how an abstraction layer can be added to the above SSE for propositional 
modal logic. For the remainder of this section, then, we proceed as if the completeness results for Kripke 
semantics aren’t known. For the analysis of the proof theory of propositional S5 logic, the first step is to 
simultaneously show that the system of propositional S5 logic is sound with respect to our semantics and 
construct the basis of our abstraction layer by deriving the standard S5 axioms from the semantics:

lemma ax_K: “[w ⊨ ◻(p → q) → (◻p → ◻q)]”
apply transfer by auto

lemma ax_T: “[w ⊨ ◻p → p]”
apply transfer by auto

22  It has been argued that the second option is more philosophically correct, see Zalta, “Logical and analytic truths that are 
not necessary”.
23  For the shallow semantical embedding alone, we could have skipped the introduction of a new abstract type o, but instead 
used the representation type i⇒bool directly in the definitions; however, using the abstract type makes it easier to introduce 
the abstraction layer in the following paragraphs.
24  Huffman & Kuncar, “Lifting and transfer”.
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lemma ax_5: “[w ⊨ ◊p → ◻◊p]”
apply transfer by auto

Furthermore, we need axioms for the classical negation and implication operators, e.g.,

lemma ax_pl_1: “[w ⊨ p → (q → p)]”
apply transfer by auto

and so on for the other axioms of propositional logic.
Next, we need to derive the two inference rules, i.e., modus ponens and necessitation.

lemma mp: assumes "[w ⊨ p]" and “[w ⊨ p → q]”
shows “[w ⊨ q]”
using assms apply transfer by auto

lemma necessitation: assumes “∀v. [v ⊨ q]”
shows “[w ⊨ ◻p]”
using assms apply transfer by auto

Unfortunately, in our implementation we are lacking structural induction, i.e., induction on the complexity of 
a formula. For that reason, we also have to derive meta-rules for our target system from the semantics, e.g.,

lemma deduction: assumes “[w ⊨ p] ⇒ [w ⊨ q]”
shows “[w ⊨ p → q]”
using assms apply transfer by auto

Together, the axioms, the inference rules and our meta-rules now constitute the abstraction layer in our 
embedding. Subsequent reasoning can be restricted so that it doesn’t use the semantic properties of the 
embedding (i.e., so that it won’t transfer abstract types to representation types or unfold the semantic 
definitions). In this way, proofs can be constructed that only rely on the axioms and rules themselves.

Given a sane choice of inference rules and meta-rules, every theorem derived in this manner is 
guaranteed to be derivable from the axiom system. While simple propositional S5 modal logic is known to be 
complete with respect to its semantic representation, one can still construct abstraction layers to reproduce 
and analyze the deductive reasoning system of a particular formalization of S5. The abstraction layer can 
help a user in interactive reasoning, since it enables the same mode of reasoning as the target system with 
identical rules. More generally, whenever the focus of an investigation is derivability rather than semantic 
truth,25 introducing abstraction layers is either necessary (if there are no completeness results) or at least 
helpful (even if there are completeness results), since they alleviate the need for a translation process from 
semantic facts to actual derivations.

A reasonable analysis of AOT is not possible without abstraction layers. For one, AOT is more 
expressive than propositional modal logic and uses foundations that are fundamentally different from 
HOL.26 Therefore a representation of the semantics and a model structure of AOT in HOL is more complex 
and it becomes more difficult to reason about AOT solely by unfolding semantic definitions. Furthermore, 
there are as yet no results about the completeness of the canonical Aczel models of AOT, so there is no 
guarantee that theorems valid in the semantic embedding are in fact derivable using the axioms and 
derivation system of AOT itself. Lastly, although the original motivation for constructing an SSE of AOT 
was mainly to investigate the feasibility of a translation between functional and relational type theory and 
to gain insights about possible models of the theory, it turned out that an SSE with abstraction layers can 
be used as a means to analyze the effects of variations in the axiomatization of AOT itself. This led to an 
evolution of AOT, parts of which are described in Section 3.

25  This is generally the case when investigating an entire logical theory, rather than a logical argument that might not even 
specify a fixed axiom system against which it is formulated.
26  AOT is formulated in relational type theory, whereas HOL is based on functional type theory. A translation between the two 
is known to be challenging, e.g. see Oppenheimer & Zalta, “Relations versus functions”.



236   D. Kirchner et al.

The remainder of the paper is structured as follows. In Section 2, we explain how the SSE technique 
led to insights about Gödel’s ontological argument. In Section 3, we discuss the various insights into AOT 
that emerged as a result of the addition of the abstraction layer to the SSE for AOT. Finally, in Section 4, we 
discuss how our techniques may be generalized, and how cross-pollination between computer science and 
philosophy works to the benefit of both disciplines.

2  Implementation of Gödel’s ontological argument
This section outlines the results of a series of experiments in which the SSE approach was successfully 
utilized for the computer-supported assessment of modern variants of the ontological argument for the 
existence of God. The first series of experiments, conducted by Benzmüller and Woltzenlogel-Paleo, focused 
on Gödel’s higher-order modal logic variant,27 as emended by Dana Scott28 and others; the detailed results 
were presented in the literature.29 This work had a strong influence on the research mentioned above, since its 
success motivated the question of whether the SSE approach would eventually scale for more ambitious and 
larger projects in computational metaphysics. The computer-supported assessments of Gödel’s version of the 
ontological argument and its variants revealed several novel findings some of which will be outlined below.

2.1  Inconsistency and other results about Gödel’s argument

In the course of experiments,30 the theorem prover Leo-II detected that the unedited version of Gödel’s 
formulation of the argument31 was inconsistent, and that the emendation introduced by Scott32 while 
transcribing the original notes was essential to preserving consistency. The Scott version was verified for 
logical soundness in the interactive proof assistants Isabelle/HOL33 and Coq.34 In Figures 1 and 2, the axioms 
causing the inconsistency in Gödel’s manuscript are highlighted. The inconsistency, which was missed by 
philosophers, is explained in detail in related publications.35

The problem Gödel introduced in his scriptum36 is that essence is defined as:

•	 A property Y is the essence of an individual x iff all of x’s properties are entailed by Y, i.e., iff ∀Z(Zx → 
Y ⇒ Z),

where Y ⇒ Z means that ◻∀x(Yx → Zx). We’ll see below that this definition doesn’t require that an individual x 
exemplify its essence, something we would intuitively expect of the notion of an essence. Scott, in contrast, 
added a conjunct to the definition of essence:

•	 A property Y is the essence of an individual x iff x has property Y and all of x’s properties are entailed by Y.

This simple emendation by Scott preserved consistency of the axioms Gödel introduced as premises of the 
argument.

27  Gödel, “Appendix A. Notes in Kurt Gödel’s Hand”.
28  Scott, “Appendix B: Notes in Dana Scott’s Hand”.
29  Benzmüller & Woltzenlogel Paleo, “The inconsistency in Gödel’s ontological argument”. Benzmüller & Woltzenlogel 
Paleo, “Automating Gödel’s ontological proof”. Benzmüller, Weber & Woltzenlogel Paleo, “Analysis of the Anderson-Hájek 
controversy”. Fuenmayor & Benzmüller, “Types, Tableaus and Gödel’s God”.
30  Benzmüller & Woltzenlogel Paleo, “Automating Gödel’s ontological proof”.
31  Gödel, “Appendix A. Notes in Kurt Gödel’s Hand”.
32  Scott, “Appendix B: Notes in Dana Scott’s Hand”.
33  Nipkow, Paulson & Wenzel, “Isabelle/HOL”.
34  Bertot & Casteran, “Interactive Theorem Proving”.
35  Benzmüller & Woltzenlogel Paleo, “Object-logic explanation for the inconsistency in Gödel’s ontological theory”. 
Benzmüller & Woltzenlogel Paleo, “The inconsistency in Gödel’s ontological argument”.
36  Gödel, “Appendix A. Notes in Kurt Gödel’s Hand”.
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The inconsistency in Gödel’s original version already appears when the argument is formulated in the 
quantified modal logic K (with and without the Barcan formulas), and thus also appears in the stronger 
logics KB and S5, which are both extensions of K.37 By proving a simple lemma, one can demonstrate how 
the inconsistency arises. The simple lemma is:

37  Though in S5, the Barcan formulas are derivable.

Figure 1: Page 1 of Gödel's Manuscript. The axioms causing the inconsistency in Gödel's modal logic variant of the ontologi-
cal argument for the existence of God are highlighted (by us) in blue. (Unpublished works of Kurt Gödel are Copyright Institute 
for Advanced Study and are used with permission. All rights reserved by Institute for Advanced Study.)
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EmptyEssenceLemma
An empty property (e.g., being non-self-identical) is an essence of any individual x.

This lemma, in combination with the other highlighted axioms and definitions in Figures 1 and 2,  
implies a contradiction.38 The inconsistency was detected automatically by the ATP Leo-II,39 and in  

38  Benzmüller & Woltzenlogel Paleo, “Object-logic explanation for the inconsistency in Gödel’s ontological theory”.
39  Benzmüller, Sultana, Paulson & Theiß, “The higher-order prover LEO-II”.

Figure 2: Page 2 of Gödel's Manuscript. The axioms causing the inconsistency in Gödel's modal logic variant of the ontologi-
cal argument for the existence of God are highlighted (by us) in blue. (Unpublished works of Kurt Gödel are Copyright Institute 
for Advanced Study and are used with permission. All rights reserved by Institute for Advanced Study.)
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the course of the proof, it used the fact that an empty property obeys the above lemma to derive the 
contradiction.40

The investigation using ATPs also yielded other noteworthy results:

•	 it determined which axioms were otiose,
•	 it determined which properties of the modal operator were required for the argument, and
•	 it determined that the argument, even as emended by Scott, implies modal collapse, i.e., that φ ≡ ◻φ, 

so that there can only be models of the premises to the argument in which there is exactly one possible 
world.

The modal collapse was already noted by Sobel41 but quickly confirmed by the ATP. One might conclude, 
therefore that the premises of Gödel’s argument imply that everything is determined (we may even say: that 
there is no free will).

Further variants of Gödel’s argument, in which his premises were weakened to address the above 
issues, were proposed by Anderson, Hájek, Fitting, and Bjørdal.42 The modal collapse problem was the 
key motivation for the contributions of Anderson, Hájek, and Bjørdal (and many others), and these have 
also been investigated computationally.43 Moreover, ATPs have even contributed44 to the clarification of an 
unsettled philosophical dispute between Anderson and Hájek. In the course of this work, different notions 
of quantification (actualist and possibilist) have been utilized and combined within the SSE approach.45

2.2  Emendations by Anderson and Fitting

The emendations proposed by C. Anthony Anderson46 and Melvin Fitting47 to avoid the modal collapse are 
rather distinctive and merit special consideration. In order to rationally reconstruct Fitting’s argument, an 
SSE of the richer logic underlying his argument was constructed. This same SSE was used to reconstruct 
Anderson’s argument. By introducing the mathematical notion of an ultrafilter, the two versions of the 
argument can be compared. This enhanced SSE technique shows that their variations of the argument are 
closely related.

2.2.1 Anderson’s variant

Anderson’s central change was to modify a premise that governs the primitive notion of a positive property, 
which was originally governed by the axiom: Y is positive if and only if the negation of Y is non-positive 
(cf.  axiom A2 in Figure 1 where an exclusive or is utilized). Anderson suggests that one direction of the 
biconditional should be preserved, namely, that:

•	 If a property is positive, then its negation is not positive.

40  It is interesting to note here that during the course of its discovery of the inconsistency, Leo-II engaged in blind-guessing. 
That is, it used a primitive substitution rule to instantiate a predicate quantifier ∀Y with the λ-expression [λx x ≠ x]. This is a 
method that is not unification-based. See Andrews, “On connections and higher-order logic”.
41  Sobel, “Gödel’s ontological proof”. Sobel, “Logic and Theism”.
42  Anderson, “Some emendations of Gödel’s ontological proof”. Anderson & Gettings, “Gödel’s ontological proof revisited”. 
Hájek, “Magari and others on Gödel’s ontological proof”. Hájek, “Der Mathematiker und die Frage der Existenz Gottes”. Hájek, 
“A new small emendation of Gödel’s ontological proof”. Fitting, “Types, Tableaus, and Gödel’s God”. Bjørdal, “Understanding 
Gödel’s ontological argument”.
43  Benzmüller & Woltzenlogel Paleo, “The modal collapse”.
44  Benzmüller, Weber & Woltzenlogel Paleo, “Analysis of the Anderson-Hájek controversy”.
45  Benzmüller & Woltzenlogel Paleo, “Higher-order modal logics”.
46  Anderson, “Some emendations of Gödel’s ontological proof”. Anderson & Gettings, “Gödel’s ontological proof revisited”.
47  Fitting, “Types, Tableaus, and Gödel’s God”.
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As expected, this has an effect on the argument’s validity, and in order to render the argument logically 
valid again, Anderson proposes modifications to premises governing other notions of the argument — in 
particular, to those governing the definition of essence (which Anderson revises to essence*) and a modified 
notion of Godlikeness (Godlike*):

essence*
A property E is an essence* of an individual x if and only if all of x’s necessary/essential properties are 
entailed by E and (conversely) all properties entailed by E are necessary/essential properties of x.

Godlike*
An individual x is Godlike* if and only if all and only the necessary/essential properties of x are positive, i.e., 
G*x ≡ ∀Y (◻Yx ≡ P(Y)).

These two amended definitions render the argument logically valid again. This was verified 
computationally.48 However, the validity comes at the cost of introducing some vagueness in the 
conception of Godlikeness, since the new definition allows for there being distinct Godlike entities, 
which differ only by properties that are neither positive nor non-positive.

2.2.2 Fitting’s variant

Fitting suggests that there is a subtle ambiguity in Gödel’s argument, namely, whether the notion of a 
positive property applies to extensions or intensions of properties. In order to study the difference, Fitting 
formalizes Scott’s emendation in an intensional type theory that makes it possible for him to encode and 
compare both alternatives. On Fitting’s interpretation, the property of being Godlike would be represented 
by the λ-expression [λx ∀Y (Y → Yx)], where  is the second-order property of being a positive property. 
On Fitting’s understanding, the variable Y in the λ-expression ranges over properties whose extensions 
are fixed from world to world,49 while  is a second-order property whose extension among the first-order 
properties can vary from world to world. Thus, the λ-expression that defines the being Godlike is a first-
order property whose extension varies from world to world.

In Gödel’s original version of the argument, positiveness and essence are second-order properties, but 
Fitting suggests that the expressions denoting the first-order properties to which positiveness and essence 
apply are not rigid designators; such expressions might have different extensions at different worlds. So 
in Fitting’s variant, positiveness and essence apply only to the extensions of first-order properties, where 
the expressions denoting these extensions are rigid designators. If a property is positive at a world w, its 
extension at every world is the same as its extension at w. If we utilize the notion of a rigid property, that is, 
a property that is exemplified by exactly the same individuals in all possible circumstances, then we can say 
that, on Fitting’s understanding, only rigid properties can be positive.

It should be noted that this technical notion of a positive property departs from the ordinary notion; for 
example, a property like being honest is something a person could have in one world but lack in another, 
and in those worlds where he or she has that property, it would be considered ‘positive’ in so far as it is 
contributory to a good moral character. But, on the above conception, when a property like being honest 
is designated a positive property, then for any actually honest individual x, an alternative world in which 
x is not honest would be inconceivable (i.e., honesty would be an indispensable, identity-constitutive 
character trait of x). In this sense, being self-identical is a prototypical positive property. By restricting the 

48  Fuenmayor & Benzmüller, “Types, Tableaus, and Gödel’s God”.
49  Thus, the variable Y ranges over properties such that ∀x(Yx ≡ ◻Yx). For example one group of such properties can be 
defined in terms of an actuality operator: properties of the form [λx φ], i.e., being an x that is actually such that φ, satisfy the 
condition just stated.
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notions in Gödel’s argument in this way, Fitting thus leaves Scott’s variant of Gödel’s argument largely 
unchanged but is able to prevent the modal collapse. This was confirmed computationally.50

2.3  Assessment and comparison using ultrafilters

These emendations proposed by Anderson and Fitting were further investigated and assessed 
computationally51 by extending the SSE approach in the spirit of Fitting’s book. Experiments using Isabelle/
HOL that interactively call the model finder Nitpick confirm that the formula expressing modal collapse is 
not valid. The ATPs were still able to find proofs for the main theorem not only in S5 modal logic but even 
in the weaker logic KB.

In order to compare all the variant arguments by Scott, Anderson, and Fitting, the notion of an 
ultrafilter was formalised in Isabelle/HOL. On the technical level, ultrafilters were defined on the set of 
rigid properties, and on the set of non-rigid, world-dependent properties. Moreover, in these formalizations 
of the variants, a careful distinction was made between the original notion of a positive property () that 
applies to (intensional) properties and a restricted notion of a positive property (′) that applies to the 
rigidified extensions of properties that would otherwise count as positive. Using these definitions, the 
following results were proved computationally:

•	 In Scott’s variant both  and ′ coincide, and both have ultrafilter properties.
•	 In Anderson’s variant  and ′ do not coincide, and only ′ constitutes an ultrafilter.
•	 In Fitting’s variant,  is not considered an appropriate notion and so not defined. However, ′ is an 

ultrafilter.

Our computational experiments thus reveal an intriguing correspondence between the variants of the 
ontological argument by Anderson and Fitting, which otherwise seem quite different. The variants of 
Anderson and Fitting require that only the restricted notion of a positive property is an ultrafilter.

2.4  Future research

The above insights suggest an alternative approach to the argument, namely, one that starts out with 
semantically introducing  or ′ as ultrafilters and then reconstructs variants of the formal argument on 
the basis of this semantics. This could lead to an alternative reconstruction in which some of the axioms of 
the variants described above could be derived as theorems.

The experimental setup described above also provides a basis for interesting research about how to 
prove that there is a unique object that exemplifies the property being God. Gödel’s original premise set 
guarantees that there is a unique such object, but on pain of modal collapse. The emendations prevent the 
modal collapse but at the loss of a unique object that exemplifies being God. So it is important to study how 
various notions of equality in the context of the various logical settings described above might help one to 
restore uniqueness. One particular motivation is to assess whether different notions of equality do or don’t 
yield monotheism. Formal results about this issue would be of additional interest theologically.

3  Implementation of Object Theory
Whereas the last section described the analysis of philosophical arguments using plain SSEs without 
abstraction layers, the focus of this section is the analysis of full philosophical theories by using SSEs 

50  Fuenmayor & Benzmüller, “Types, Tableaus, and Gödel’s God”.
51  Benzmüller & Fuenmayor, “Can computers help to sharpen our understanding of ontological arguments?”.
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with abstraction layers. Section 1.2 already illustrated a simple example of this. We now examine a more 
complicated case, namely, the analysis of AOT.

Though AOT has been developing and evolving since its first publication,52 the basic idea, namely, of 
distinguishing a new mode of predication and postulating a plenitude of abstract objects using the new 
mode of predication, has remained constant. In all the publications on object theory, we find a language 
containing the new mode of predication ‘x encodes F’ (‘xF’), in which F is a 1-place predicate. This new 
mode extends the traditional second-order modal predicate calculus, which is based on a single mode of 
predication, namely, x1,...,xn exemplify Fn (‘Fn x1...xn’). The resulting language allows complex formulas built 
up from the two modes of predication and the system allows the two modes to be completely independent 
of one another (neither xF → Fx nor Fx → xF is a theorem).

Using such a language (extended to include definite descriptions and λ-expressions), the basic 
definitions and axioms of AOT have also remained constant. If we start with a distinguished predicate E! to 
assert concreteness, then the basic definitions and axioms of AOT are:

1.	 Definition: Being ordinary is (defined as) being possibly concrete: O! = [λx◊E!x]
2.	 Axiom: Ordinary objects necessarily fail to encode properties. O!x → ◻¬∃F(xF)
3.	 Definition: Being abstract is (defined as) not possibly being concrete. A! = [λx¬◊E!x]
4.	 Axiom: If an object possibly encodes a property it necessarily does. ◊xF → ◻xF
5.	 Comprehension Schema for Abstract Objects: Where φ is any condition on properties, there is an 

abstract object that encodes exactly the properties such that φ, i.e., ∃x(A!x & ∀F(xF ≡ φ)), where φ has 
no free occurrences of x.

In AOT, identity is not a primitive notion, and so the above definitions and axioms are supplemented by a 
definition of identity for objects and a definition of identity for properties, relations and propositions. The 
three most important definitions are:

•	 Objects x and y are identical if and only if either x and y are both ordinary objects that necessarily exemplify 
the same properties or x and y are both abstract objects that necessarily encode the same properties.

•	 Properties F and G are identical if and only if they are necessarily encoded by the same objects.
•	 Propositions p and q are identical just in case the properties [λx p] and [λx q] are identical.

While this basis has remained stable, other parts of the theory have been developed and improved over the 
years. The most recent round of improvements, however, has been prompted by computational studies. 
Some of these improvements have not yet been published. Nevertheless, we’ll describe them here.

For example, in earlier versions of object theory, λ-expressions of the form [λx1…xn φ] in which φ 
contained encoding subformulas were simply not well-formed. That’s because certain well-known 
paradoxes of encoding could arise for λ-expressions like [λx ∃F(xF & ¬Fx)].53 But Kirchner’s computational 
studies54 showed that unless one is extremely careful about the formation rules, such paradoxes could arise 
again by constructing λ-expressions in which the matrix φ included descriptions with embedded encoding 
formulas (encoding formulas embedded in descriptions don’t count as subformulas, and thus were allowed). 
A natural solution to avoid the re-emergence of paradox is to no longer assume that all λ-expressions have a 
denotation. Given that AOT already included a free logic to handle non-denoting descriptions, its free logic 
was extended to cover λ-expressions. This allowed us to suppose that λ-expressions are well-formed even if 
they include encoding subformulas; the paradoxical ones simply don’t denote.

Other changes to object theory that have come about as a result of computational studies include:

52  Zalta, “Abstract Objects”.
53  An instance of Comprehension for Abstract Objects that asserted the existence of an object that encodes just such a property 
would provably exemplify that property if and only if it did not.
54  Kirchner, “Representation and Partial Automation of the PLM in Isabelle/HOL”.
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•	 the notion of encoding was extended to n-ary encoding formulas and these allow one to define the 
logical notion of term existence directly by way of predication instead of by way of the notion of identity,

•	 the comprehension principle for propositions has been extended to cover all formulas of the language, 
so that even encoding formulas denote propositions, and

•	 the application of AOT to the theory of possible worlds, in which the latter are defined as abstract 
objects of a certain sort, was enhanced: the fundamental theorem for possible worlds, which asserts 
that a proposition is necessarily true if and only if it is true at all possible worlds, was extended to cover 
the new encoding propositions.

These will be explained further below, as we show how AOT was first implemented computationally and 
how this led to refinements both of the theory and its implementation.

3.1  Construction of an SSE of AOT in Isabelle/HOL

The first SSE of AOT that introduced abstraction layers can be found in Kirchner’s work.55 A detailed 
description of the structure of this SSE is beyond the scope of this paper, however, we can nevertheless 
illustrate some of its features and the challenges it had to overcome.

In order to construct an SSE, one has to represent the general model structure of AOT in Isabelle/
HOL. The most general models of AOT are Aczel models,56 an enhanced version of which we now describe. 
Aczel models consist of a domain of Urelements that is partitioned into ordinary Urelements and special 
Urelements. The ordinary Urelements represent AOT’s ordinary objects, whereas the special Urelements 
will act as proxies for AOT’s abstract objects and determine which properties abstract objects exemplify. 
In addition, a domain of semantic possible worlds (and intensional states) is assumed, and propositions 
are represented either as intensions (i.e., functions from possible worlds to Booleans) or more generally 
as hyperintensions (i.e., functions from intensional states to intensions). This way the relations of 
AOT can be introduced before specifying the full domain of AOT’s individuals: AOT’s relations can be 
modeled as functions from Urelements to propositions (as the latter were just represented). Since this 
already fixes the domain of properties, a natural way to represent AOT’s abstract objects that validates 
their comprehension principle is to model them as sets of properties (i.e., as sets of functions from 
Urelements to propositions). The domain of AOT’s individuals can now be represented by the union of 
the set of ordinary Urelements and the set of sets of properties. In order to define truth conditions for 
exemplification formulas involving abstract objects, a mapping σ that takes abstract objects to special 
Urelements is required.57 With the help of this proxy function σ, the truth conditions of AOT’s atomic 
formulas can be defined as follows:

•	 The truth conditions of an exemplification formula Fnx1…xn are determined by the proposition obtained 
by applying the function used to represent Fn to the Urelements corresponding to x1,…,xn (in such a way 
that when xi is an abstract object, then its Urelement is the proxy σ(xi)). This yields a proposition, which 
can then be evaluated at a specific possible world (and in the hyperintensional case, at the designated 
‘actual’ intensional state).

•	 An encoding formula xF is true if and only if x is an abstract object and the function representing F is 
contained in the set of functions representing x. An ordinary object x does not encode any properties, 
so all formulas of the form xF are false when x is ordinary.58

55  Kirchner, “Representation and Partial Automation of the PLM in Isabelle/HOL”.
56  Zalta, “Natural numbers and natural cardinals as abstract objects”.
57  Note that for the model to be well-founded, the function σ cannot be injective, i.e., σ must map some distinct abstract 
objects to the same special Urelement.
58  The truth conditions for n-ary encoding formulas x1…xnFn can be defined on the basis of monadic encoding formulas, but 
this requires an appeal to the semantics of complex λ-expressions, discussed below. Hence, we omit the discussion of this 
further development here.
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In earlier formulations, AOT relied heavily on the notion of a propositional formula, namely, a formula 
free of encoding subformulas. This notion played a role in relation comprehension: only propositional 
formulas could be used to define new relations. However, we realized that in the modal version of 
AOT, encoding formulas are either necessarily true if true or necessarily false if false. This led to the 
realization that in the models we had constructed, all formulas could be assigned a proposition as 
denotation; encoding formulas could denote propositions that are necessarily equivalent to necessary 
truths or necessary falsehoods. As a result, the latest (unpublished) versions of AOT have been 
reformulated without the notion of a propositional formula and one of the consequences of this move 
is that comprehension for propositions can be extended to all formulas (this will be discussed further 
in Section 3.3).

What remains to be defined are the denotations for AOT’s complex terms, namely, definite descriptions 
and λ-predicates. Descriptions may fail to denote and, since AOT follows Russell’s analysis of definite 
descriptions, atomic formulas containing a non-denoting description are treated as false. Therefore, the 
embedding has to distinguish between the domain of individuals and the domain for individual terms. The 
latter domain consists of the domain of individuals plus an additional designated element that represents 
non-denoting terms. If there exists a unique assignment to x for which it holds that φ, the definite description 
ιxφ denotes this unique object. If there is no unique such object, ιxφ denotes the designated element in the 
domain of individual terms that represents non-denoting terms. The truth conditions of atomic formulas 
can now just be lifted to the new domain for terms, with the result that an atomic formula involving the 
designated element for non-denoting terms becomes false.

In published versions of AOT, every well-formed λ-expression was asserted to have a denotation. 
However, AOT now allows λ-expressions with encoding subformulas and requires that some of these 
(in particular, the paradoxical ones) don’t denote. Only the λ-expressions that denote are governed by 
β-Conversion. Nevertheless, every λ-expression has to be interpreted in the model, and the mechanism 
for doing this is as follows, where we simplify by discussing only the 1-place case and where we 
suppose that an ordinary object serves as its own proxy. When the matrix φ of the λ-expression [λx 
φ] has the same truth conditions for all objects that have the same proxy, one can find a function 
from Urelements to propositions that, when used to represent [λx φ], preserves β-Conversion.59 There 
is no such function when the matrix has different truth conditions for objects with the same proxy, 
but these are precisely the matrices for which the λ-expressions provably fail to denote. We interpret 
these λ-expressions in a manner similar to the interpretation of non-denoting descriptions, namely, 
by introducing an additional domain for relation terms that extends the domain of relations with a 
designated element for non-denoting terms. Since the condition under which [λx φ] cannot denote is 
easy to formulate, namely as x y F Fx Fy( ( ) ( ))

x
yϕ ϕ∃ ∃ ∀ ≡ ∧¬ ≡ , such expressions can be mapped to this 

designated element.
Given the presence of non-denoting descriptions and λ-expressions, AOT extended its free logic for 

descriptions to cover all complex terms. Note that the axioms of free logic are usually stated in terms of a 
primitive notion of identity or a primitive notion of existence (↓) for terms, so that, for example, the axiom 
for instantiating terms into universal claims can be stated as one of the following:

1.	 	 ( )αϕ β β τ ϕ( )∀ → ∃ = →
α
τ

2.	 	 αϕ τ ϕ( )∀ → ↓ →
α
τ

Normally, these are equivalent formulations, since one usually defines τ↓ ≡ ∃β(β = τ).
However, object theory now proves this standard definition as a theorem! As we saw above, it doesn’t 

take identity as a primitive, but rather defines it. Moreover, AOT does not take term existence as primitive 

59  For example, if we make use of the λ-expressions of HOL’s functional type theory, then we could point to (λu. ∃x. u = |x| 
∧ φ′x) as such a function, where (a) φ′ is a function that represents the matrix φ of the AOT λ-expression [λx φ] and maps the 
bound variable x to a proposition, (b) the type of the bound variable u is the type of Urelements, and (c) |x| is the Urelement 
corresponding to x.
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either, but defines it as well by cases: (a) an individual term κ exists (‘κ↓’) just in case ∃F Fκ, provided F 
isn’t free in κ, and (b) an n-place property term Π exists (‘Π↓’) just in case ∃x1…∃xn x1…xnΠ, provided no xi is 
free in Π, and (c) a 0-place proposition term Π exists (‘Π↓’) just in case [λx Π]↓, provided x isn’t free in Π. 
Thus, object theory reduces existence to predication, and indeed, given its definitions of identity, reduces 
identity to predication and existence.60 Given the foregoing definitions, the claim τ↓ ≡ ∃β(β = τ) becomes 
a theorem.

3.2   Minimal models of second-order modal AOT

Normally, the minimal model for first-order quantified modal logic (QML) contains one possible world and 
one individual, and in second-order QML, there have to be at least two properties (one true of everything 
and one false of everything). So, a question arises: what is the most natural axiom that forces the domain 
of possible worlds to have at least two members (so as to exclude modal collapse), and what effect does 
that have on the domain of properties? We’ve discovered that the axiom Zalta has proposed for this job 
in AOT, namely, the assertion that ◊∃x(E!x & ¬E!x), not only forces the models to have at least 2 possible 
worlds, but also a minimum of 4 propositions and (given the actuality operator  and the comprehension 
principle for abstract objects) a minimum of 16 properties. Proofs of these facts are available within the 
system. The latter fact improved upon the original discussion in PLM, which had asserted only that there 
are at least 6 different properties.61 But once properties in AOT were modeled in Isabelle/HOL as functions 
from Urelements and possible worlds to Booleans, it was recognized that there had to be at least 16 of those 
functions.

The two core axioms that need to be considered for minimal models of AOT are the modal axiom that 
requires the existence of a contingently nonconcrete object already mentioned above and the comprehension 
axiom for abstract objects:

•	 ◊∃x(E!x & ¬E!x)
•	 ∃x(A!x & ∀F(xF ≡ φ))

where being abstract (A!) in the second axiom is defined as not possibly being concrete, i.e., where A! = [λx 
¬◊E!x]. In particular, the first of these axioms implies:

•	 ∃x(◊E!x & ¬E!x)

while the second implies:

•	 ∃x(¬◊E!x)

60  To see how the latter comes about (i.e., the reduction of identity to predication and existence), note that in a system like 
AOT, the definition of property identity stated in the opening paragraphs of Section 3, have to be formalized using metavariables 
and existence clauses in the definiens, so that we have:

•	 Π = Π′ =df Π↓ & Π′↓ & ◻∀x(xΠ ≡ xΠ′)

The metavariables ensure that the definiendum Π = Π′ will be provably false when either Π or Π′ is non-denoting. Otherwise 
one could argue, for non-denoting Π and Π′, that both xΠ and xΠ′ are equivalent (since both are false, given that atomic 
formulas with non-denoting terms are false), and since this holds for arbitrary x and can be proved without an appeal to 
contingencies, it follows that ◻∀x(xΠ ≡ xΠ′). So without the existence clauses, we could prove that Π = Π′ for any non-denoting 
terms Π and Π′.

So whereas identity claims in AOT require the existence of the terms flanking the identity sign, this is not required in 
computational implementations of other interesting logics. For example, Scott introduces both a notion of “identity“ and 
“existing identity“, where the latter corresponds to AOT’s notion of identity. See Benzmüller & Scott, “Automating free logic in 
HOL”.
61  Originally, Zalta had proved that E! and its negation, O!, A!, [λx E!x → E!x] and the latter’s negation, all of which exist by 
comprehension, were distinct properties.
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From these consequences it follows that there are at least two distinct individuals; let’s call them  
x1 and x2.62 The proof makes it clear that x1 is ordinary (i.e., O!x1 = [λz ◊E!z]x1) and x2 is abstract. But by 
the construction of Aczel models, the proxy Urelement of the abstract individual can’t be the ordinary 
individual. Urelements in Aczel models determine the exemplification behaviour of individuals. So 
since x1 exemplifies being ordinary while x2 does not, x1 and x2 have to be mapped to distinct Urelements. 
Furthermore, the first statement ∃x(◊E!x & ¬E!x), implies that there are at least two possible worlds in 
the Kripke semantics, namely, a non-actual world, in which E!x1 holds, and the actual world, in which E!x1 
does not hold.

Recall that in our models, relations are represented as functions from Urelements and possible worlds to 
Booleans.63 So, by a combinatorial argument from the existence of two possible worlds and two Urelements, 
we may derive the existence of at least (22)2 = 16 relations in the model; each relation has a well-defined and 
distinct exemplification extension.

However, this doesn’t yet show, within the system, that there are at least 16 distinct relations, but only 
that there are at least 16 distinct relations in our models (we don’t assume a priori that our models are 
complete). However, we found a proof of the existence of at least 16 relations in AOT and this is now part 
of PLM.64

The foregoing discussion illustrates our research methodology: (1) we constructed a model for the 
theory and conjectured that it was complete; (2) we then analyzed the features of the model and arrived at 
statements formulable within the systems AOT and its representation in Isabelle/HOL that should be true 
given the model; (3) we investigated whether these statements are indeed derivable in AOT (or alternatively, 
derivable in the abstraction layer of the embedding); and (4) we then concluded either that we had derived 
a new theorem within these systems or that the model needed to be further refined.

3.3  An extended theory of propositions and worlds

One of the key challenges in constructing the first SSE of AOT was the fact that its syntax relied heavily 
on the use of the notion of a propositional formula (i.e., formulas with no encoding subformulas). Only 
propositional formulas were allowed in the construction of n-place complex relation terms for n ≥ 0. φ 
and [λ φ] were designated as 0-place relation terms only if φ was a propositional formula. But capturing 
the notion of a propositional formula in the SSE would have increased its complexity significantly. For 
example, it would have been necessary to define two versions of every connective and quantifier, one for 
non-propositional formulas and one for propositional formulas. Instead, the SSE used one type for both 
kinds of formulas, and thus one kind of connective and quantifier suffices.

62  To see this, instantiate these two existential claims using two individual variables x1 and x2, such that:

•	 ◊E!x1 & ¬E!x1

•	 ¬◊E!x2

To show that x1 ≠ x2, we need the principle of the substitution of identicals, which is asserted by the following axiom:

•	 �α = β → (φ → φ′), whenever β is substitutable for α in φ, and φ′ is the result of replacing zero or more free occurrences of α 
in φ with occurrences of β.

Now if, for reductio, x1 = x2, then ◊E!x1 → ◊E!x2, but since ¬◊E!x2, this cannot be true, hence x1 ≠ x2. This already shows that there 
are at least two individuals in AOT.
63  In hyperintensional models, they additionally depend on an intensional state, but since there is only one intensional state 
in a minimal model, this dependency can be ignored; it doesn’t affect the size of the model.
64  The modal axiom ∃x(◊E!x & ¬E!x) of AOT requires the existence of a contingently false proposition, namely ∃x(E!x & 
¬E!x). Call the false proposition q0 and its negation 0. These propositions (in the form of propositional properties [λx q0] and 
[λx 0]) were not considered when it was thought there were at least 6 properties. It turns out that they are provably distinct 
from the six other properties mentioned above and that combinations (e.g., conjunctions) of these propositional properties and 
the six properties mentioned above in fact yield 16 properties that are provably distinct in the system and correspond to the 16 
properties in the models.
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However, from this it became apparent that the models used for the SSE assigned every formula a 
proposition, including those formulas that contained encoding subformulas. This suggested that AOT could 
be expanded similarly. Consequently, the comprehension principle for propositions in AOT was revised 
and expanded in such a way that it has become a theorem that every formula denotes a proposition. And 
once every formula denotes a proposition, the fundamental theorem of possible worlds becomes naturally 
extended to cover all formulas and not just propositional ones. The fundamental theorem of possible world 
theory asserts that for every proposition p and every world w, ◻p ≡ ∀w (w ⊨ p), where w ⊨ p asserts that p 
is true in w (where this, in turn, is cashed out as: w encodes the propositional property [λx p]). In previous 
versions of AOT, only propositional formulas could be substituted for p, since only propositional formulas 
denoted propositions. But once AOT was extended (as a result of our computational investigations), every 
formula becomes substitutable for p, including those with encoding subformulas.

4  Generalizing the cross-fertilization
As we see it, computer science and related disciplines like philosophy that rely heavily on reasoning and 
argumentation, benefit from interdisciplinary studies in which computational techniques are applied. 
Historically, the realization that first-order theorem provers don’t capture the higher-order logic of many 
applied systems created the impetus for the development of systems like Isabelle/HOL. In this paper, we’ve 
seen that the requirements for implementing logics and metaphysical theories has led to the development 
of new methodologies for creating automated reasoning environments for complex systems (e.g., those 
that are essentially higher-order, non-classical, or have complex terms). This is especially clear in the 
development of additional abstraction layers in which deductive systems are recaptured so that only the 
theorems of the target system, and no artifactual theorems, can be discovered computationally. Abstraction 
layers in turn can be used as a technical tool to analyze properties of the implementation, and in the case of 
AOT, the completeness of its embedding. In our particular work, not only did the interdisciplinary effort lead 
to improvements in the computational methodologies used for modeling, but those same methodologies 
led to improvements in the target metaphysical theory being implemented.

This cross-fertilization methodology can be depicted more generally in Figure 3. In this diagram, the 
cross-fertilization occurs primarily between the various interactions that the user can have with the front-
end systems and applications. Note that Isabelle/HOL integrates state-of-the-art automated reasoning 
technology and benefits from the constant improvements in all the systems that it integrates.

In the lower left corner of Figure 3, the user is conducting/orchestrating experiments; in this particular 
case, the application in the lowest blue box is (the metaphysics of) AOT. Since AOT is based on a higher-order 
modal logic, the computational mechanization of this “target logic” (in the middle blue box) has served as a 
significant goal. However, at the start of the project, AOT’s proof theory wasn’t computationally implemented 
generally. Therefore, the task was to semantically embed the language and theory in HOL (the top blue box), 
which turned out to be sufficiently expressive as a meta-logic for second-order AOT. A core advantage of 
this meta-logical approach is that existing reasoning tools for HOL can readily be reused for interactive and 
automated reasoning in the embedded target logic (the black arrows). This is particularly helpful when the 
details of a desired language and theory in a given context are not fully determined yet; the methodology 
enables rapid prototyping of the different ways of formulating the language and axioms of the theory.

Our preferred proof assistant for HOL has been Isabelle/HOL. This system comes with strong user-
interaction support, including a configurable user-interface, which, in our context, enables readable 
surface presentations of the embedded target logic. Equally important is the automation provided by 
the proof assistants, which include both external ATPs orchestrated by the Sledgehammer tool65 and 
automated (counter-)model finding tools like Nitpick66 and Nunchaku.67 These systems, in turn, make calls 

65  Blanchette, Böhme & Paulson “Extending Sledgehammer with SMT solvers”.
66  Blanchette & Nipkow, “Nitpick”.
67  Cruanes & Blanchette, “Extending Nunchaku to dependent type theory”.
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to specialist tools such as Kodkod, Paradox, smbc, and the SMT solvers CVC468 and Z3.69 Other systems 
integrated with Sledgehammer include the first-order ATPs E,70 Spass,71 Vampire,72 and the higher-order 
ATPs Leo-II,73 Leo-III,74 and Satallax.75 If one downloads Isabelle/HOL, all of these systems are bundled 
with it, except for the higher-order provers like Leo-II, Leo-III and Satallax, which can be accessed via 
the TPTP infrastructure using remote calls. These higher-order ATPs internally collaborate in turn with 
first-order ATPs and SMT solvers. And all these ATPs and SMT solvers internally rely on or integrate state-
of-the-art SAT technology. Thus, whenever one of the subsystems improves, the enhancements filter up to 
the Isabelle/HOL environment. In other words, a proof conjecture in some theory that is not automatically 
solvable at the present time may well become solvable as improvements to this framework accumulate.

When moving to other application domains (e.g., machine ethics), deontic logics become relevant as 
target logics. The overall picture stays the same. Only the two lower blue boxes on the left of the Figure 
change. Note that the combinations of different non-classical logics, e.g., those required for the encoding 
of the Gewirth principle of generic consistency,76 can be realized and assessed as targets in this framework.

What has been described above is a generic approach to universal logical and metalogical reasoning77 
based on shallow semantic embeddings in HOL. In addition, the approach also supports the direct 

68  Deters, Reynolds, King, Barrett & Tinelli, “A tour of CVC4”.
69  Moura & Bjørner, “Z3: An efficient SMT solver”.
70  Schulz, “System description: E”.
71  Blanchette, Popescu, Wand & Weidenbach, “More SPASS with Isabelle”.
72  Kovács & Voronkov, “First-order theorem proving and Vampire”.
73  Benzmüller, Sultana, Paulson & Theiß, “The higher-order prover LEO-II”.
74  Steen & Benzmüller, “The higher-order prover Leo-III”.
75  Brown, “Satallax”.
76  Fuenmayor & Benzmüller, “Formalisation and Evaluation of Alan Gewirth’s Proof”.
77  Benzmüller, “Universal (meta-)logical reasoning”.

Figure 3: Our general methodology supports the reuse of state of the art theorem proving technology.
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encoding of a target logic’s proof theory of choice. The shallow semantic embedding technique and 
associated reasoning framework described in the previous sections scale to applications in many other 
areas, including, for example, mathematical foundations, artificial intelligence and machine ethics. In 
particular, metalogical investigations are feasible beyond what was considered possible before. In a case 
study in mathematics, for example, Benzmüller and Scott78 compared different axiom systems for category 
theory proposed by MacLane,79 Scott,80 and Freyd & Scedrov.81 This work started with an embedding of free 
logic in HOL, which was then utilized to encode and assess the different axiom systems. As a side result 
of the studies, a minor flaw in the work of Freyd and Scedrov was revealed and corrected. Applications in 
artificial intelligence include the verification of the dependency diagrams of systems in modal logic82 and 
an elegant, higher-order encoding of common knowledge (of a group of agents) as part of a solution for the 
wise men puzzle, a famous riddle in artificial intelligence.83 A normative-reasoning workbench supporting 
empirical studies with alternative deontic logics that are resistant to contrary-to-duty paradoxes is currently 
being developed,84 and various embeddings of other logics in this area can be found elsewhere.85 A recent 
extension and application of this framework86 demonstrates that even ambitious ethical theories such as 
Alan Gewirth’s principle of generic consistency can be formally encoded and assessed on the computer.
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