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Abstract: Connectionist architectures constitute a popular method for modelling animal associative 
learning processes in order to glean insights into the formation of cognitive capacities. Such approaches 
(based on purely feedforward activity) are considered limited in their ability to capture relational cognitive 
capacities. Pavlovian learning value-based models, being not based purely on fully connected feedforward 
structure, have demonstrated learning capabilities that often mimic those of ‘higher’ relational cognition. 
Capturing data using such models often reveals how associative mechanisms can exploit structure in the 
experimental setting, so that ‘explicit’ relational cognitive capacities are not, in fact, required. On the other 
hand, models of relational cognition, implemented as neural networks, permit formation and retrieval of 
relational representations of varying levels of complexity. The flexible processing capacities of such models 
are, however, are subject to constraints as to how offline relational versus online (real-time, real-world) 
processing may be mediated. In the current article, we review the potential for building a connectionist-
relational cognitive architecture with reference to the representational rank view of cognitive capacity 
put forward by Halford et al. Through interfacing system 1-like (connectionist/associative learning) and 
system 2-like (relational-cognition) computations through a bidirectional affective processing approach, 
continuity between Halford et al’s cognitive systems may be operationalized according to real world/online 
constraints. By addressing i) and ii) in this manner, this paper puts forward a testable unifying framework 
for system 1-like and system 2-like cognition. 

Keywords: System 1-System 2, relational cognition, associative learning, representational rank, affective 
computation, habits.

1  Background
The relationship between animal learning-based connectionist models and models of so-called ‘higher’ 
cognitive capacity has been the subject of much research in the animal (and human) learning community 
over the last century. A variety of animal and human learning studies and models thereof have described 
the link between basic associative processes (e.g. relevant to this special issue, including habits and their 
formation) and cognitive capacities (e.g. Seger 2008, 2009; Phillips et al. 2009; Halford et al. 2014), including 
logico-relational based reasoning. Bridging associative processes modelled using the connectionist, i.e. 
neural network, approach, and ‘higher’ cognitive capacities (e.g. relational-based) does not necessarily 
entail discontinuity (Halford et al. 2014). Moreover, associatively learned processes such as habits, in 
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themselves, can be understood in terms of ‘higher’ cognitive phenomena, e.g. habits of thought (Seger 
& Spiering 2011). The aim of the present article, however, is to postulate the bridging of connectionist 
approaches and cognition according to bidirectional affective-associative processing. This entails the use of 
affective neural representations whose constituents combine encodings of value dimension states and other 
somatic sensory states. Their utilization as (affective) predicates in propositional relational knowledge we 
speculate may top-down focus attention on the featural and semantic constituents of objects/arguments 
that bind to those predicates. The modelling approach is constrained by a requirement to be faithful to 
a suite of empirical data (in humans and non-human animals) and its development should therefore be 
similarly amenable to empirical falsification. We discuss the extent to which such a model can be said to 
capture cognitive capacities of a type that concern relational knowledge acquisition and usage. It is not 
claimed that such affective states can facilitate the capturing of all relational knowledge but rather that 
affective states provide a subset of important relational (predicate) information in relating individuals to 
one another John loves Mary or in relating a subject to a particular task John likes fishing.  

1.1  The Adaptive and Cognitive Value of Associative Processes

Associative processing provides a link between animals and humans in terms of learning and behaviour, 
particularly in the context of pavlovian and instrumental conditioning (Pearce 2013). Grounding cognitive 
architectures that utilize localist representations in associative (distributed connectionist) processes has 
received much focus in recent decades (Hummel & Holyoak 1997, 2001; Halford et al. 1998, 2010, 2014; 
Rogers & McClelland 2004; der Velde & de Kamps 2006, 2015; Leech et al. 2008; Eliasmith 2013; Sun 2015). 
The associative component, however, shouldn’t be considered a mere add-on. Sun (2015) has suggested that 
computational cognitive architectures benefit greatly from incorporating a notion of ‘implicit’ processing, 
as part of a structured (dual-process) cognitive architecture. Agents utilizing cognitive architectures in the 
real world by necessity utilize systems that learn from (distributed) patterns of sensorimotor embodiment 
(Pfeifer & Scheier 2001; Montebelli et al. 2008, 2010, 2013; Lowe et al. 2008) whose interaction with value 
systems (e.g. pavlovian) may permit emergent activity attributable to ‘higher’ cognition (Braitenberg 1986, 
Kiryazov et al. 2013; Lowe & Kiryazov 2014; Barrett et al. 2016). 

Halford et al. (2014) have likened human cognitive systems to Kahneman’s (2011) notion of System 1 
and System 2 processes where, in this reading, System 1 utilizes implicit processes based on associative 
learning and System 2 utilizes explicit relational cognitive processing. However, Halford et al. (2014) also 
acknowledge that the two systems need not work independently, as Halford et al. (2014, p.10) discuss 
in reference to Oberauer (2009): “associative and analytic systems are end points of a continuum”. The 
first system may consist only of ‘functional’ structure, e.g. hidden layer representations in multi-layer 
perceptrons where the representations themselves are functional only within the context of the ‘bottom 
up’ activation of a given connecting input layer (their constituents or features; Fodor & Pylyshyn 1988). 
The second system, however, can utilize object and relation representations in a manner such that the 
activations of neurons or clusters thereof can occur independently of constituents and be utilized flexibly 
in relation with many other such objects (or relations), in this sense becoming symbolic. 

Notwithstanding the dubious validity of there existing a sharp division between implicit-based 
(associative) and explicit-based (relational) cognitive systems (see Sun 2015 for discussion), the question 
of how connectionist (neural network implementations of associative learning processes) and relational 
systems can be bridged is an ongoing research topic (e.g. Leech et al. 2008; Sun 2011, 2015; Kolias & 
McClelland 2013; Phillips et al. 2017; Doumas et al. 2018). 



� Bridging Connectionism and Relational Cognition...  237

1.2  Computational Modelling Approaches to Associative Learning and Cognition

The use of computational modelling to capture forced choice1-based performance of animal (and human) 
learning paradigms provides a critical tool into understanding the mechanisms underlying the behavior 
and the cognitive systems by which such learning and behavior is achieved. 

In animals, associative (reinforcement) learning based models (Rescorla & Wagner 1972; Sutton & Barto 
1998, 2018) have been used to capture a wide range of behavioural phenomena such as performance-based 
asymptotic learning curves (Seger & Spiering 2011), increased reacquisition learning following extinction2  
(Balkenius & Morén 2001) and resistance to unlearning following a previous training schedule of partial 
reinforcement3  (Lowe et al. 2017). Neural network / connectionist models of animal (and human) learning 
paradigms abound and have been used to model memory and learning in relation to structured (i.e. not fully-
connected feedforward) networks that entail multiple parallel processes. A multiple parallel processing 
model may consist simply of a dual-process. Such dual-process models have been used in animal learning 
with respect to: instrumental and pavlovian routes of learning (Mowrer 1947, Klopf et al. 1993); ‘fast’ versus 
‘slow’ routes of processing (Armony et al. 1997, 2005; Lowe et al. 2009); multi-functional or dimensional-
based value representations (Maki & Abunawass 1991, Balkenius & Morén 2001, Morén 2002, Doya 2008, 
Schmajuk 2010, Lowe & Ziemke 2013, Navarro-Guerrero et al. 2017a). Such structure may, nevertheless, still 
be utilized in associative, habit-like, i.e. automatic, processing yet give rise to behaviours that masquerade 
as relational, i.e. appear as though they are semantically constituted. In humans, associative learning based 
models have been used to explain data from hitherto explored animal learning based paradigms (Delameter 
et al. 2012, 2017; Lowe et al. 2016, Lowe & Billing 2017). However, humans may variably use associative, but 
alternatively, other cognitive strategies in order to complete such tasks. Frank et al. (2005), for example, 
showed that their associative based learning model could capture data from a paradigmatic learning task 
designed to require a transitive inference solution. Their model, nevertheless, predicted a profile of choice 
performance consistent with exposure to reinforced outcomes, i.e. a non-transitive inference memory-based 
solution. Notwithstanding, profiles of performance differed in subjects who reported understanding of the 
rules of the task suggesting that a more relational strategy was being employed in these cases (one which 
apparently improved performance). Experimental procedures able to tease out how and when system 1 
and system 2 like knowledge is used provide a key means for furthering understanding of how associative 
learning brings to bear on relational cognition. For example, in some tasks research has indicated that 
associative learning (System 1-like) precedes relational (System 2-like) understanding (e.g. apprehension of 
task rules, e.g. Bechara et al.’s 2005 findings on implicit/”hunch” and explicit/”conceptual” apprehension 
of task rules on the Iowa Gambling Task). The two types of systems, however, may facilitate one another 
manifesting in an apparent temporal ordering of the utilization of the two systems belying the bidirectional 
structural coupling of the underlying process. 

1.3  Computational Modelling Approaches to Higher Cognition – Associative 
Learning and Relational Cognition

More intricately structured (dual+-process) neural networks may allow for more cognitive functionality. 
Some such networks can permit forms of relational cognitive processing, e.g. analogical reasoning, 
according to either sensory similarity or semantic similarity. In the tradition of the parallel distributed 
processing (PDP) perspective (Rumelhart & McClelland 1986), McClelland and colleagues (Rumelhart 
1990; Rogers & McClelland 2004; Kolias & McClelland 2013; Saxe et al. 2018) have produced a number of 
semantic relational neural networks based on feedforward structure trained with backpropagation. These 

1 The experimental subject is required to choose among different presented options during a task.
2 Reacquisition entails the ability to relearn what was previously learned (choice response) following a period of non-reinforce-
ment for ‘correct choice’ (extinction).
3 Experimental subjects are reinforced for correct choice probabilistically or at a low rate.
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networks allow for objects and relations to be associated together through a hidden layer that provides 
integrated representations of object and relational semantic inputs. The network permits learning by 
semantic similarity – the semantic-cognition model exhibiting a “hierarchical progressive differentiation 
of structure” (Saxe et al. 2018). This manifests in initial learning of broader semantic categories followed 
by more refined categories, e.g. first animal and plant are differentiated, then bird and fish, and types of 
plants, then other individual attributes/features. 

Whilst this notion of learning and development through semantic similarity has been acknowledged as 
an important contribution (Halford et al. 2010), it also suffers limitations regarding: i) the types of relational 
knowledge that can be acquired and retrieved (Halford et al. 2014), ii) the learning (and development) of the 
semantic units (items and relations) whose interactions permit the learning of attributes. 

Earlier work by Halford and colleagues exemplifies this: Wilson et al. (2001) constructed a feedforward 
neural network, which learned through backpropagation, to test whether a connectionist approach 
could allow for the development of propositions with “the flexibility characteristic of certain classes of 
symbolic neural net models” (p. 1). A key component of such flexibility, emphasized by Wilson et al. (2001), 
is ‘omnidirectionality’, i.e. the ability of the network to access any relational component or (vectorized) 
components from any other relational component(s). In this case an autoencoder was used with a number 
of semantic (labelled) units feeding forward to hidden (representational) layers. The network was structured 
in such a way that relations, subjects and objects could be learned at the output layer. Use of an autoencoder 
had the advantage of permitting accessibility (Wilson et al. 2001) – so that when the query to the network 
is made “what does Jane like?” based on the activation of the subject (Jane) and relation (like), the object 
pizza, for example, can be accessed. The model, however, was shown to be limited in other respects. It 
cannot reliably answer the query “who likes pizza?” – and therefore lacks full omnidirectionality. Moreover, 
it can make category mistakes in relation to sensory similarity – stimuli whose neural encodings overlap 
lead to overgeneralizations, e.g. Jane could erroneously be found to like watermelons on the basis of the 
similarity of its encoding (of semantic constituents) with pizza.

Hummel & Holyoak (1997, 2001) produced an architecture (LISA – Learning and Inference with Schema 
and Analogies, later adapted by Doumas et al. 2008 to DORA – Discovery of Relations by Analogy) that 
in some sense deals with the above-mentioned problem of encoding similarities within the network. 
Neural representations of propositional (e.g. Jane likes Pizza) statements are decomposed into sub-
propositions4  (“Jane+Likes”, “isLiked+Pizza”) and their constituents (e.g. Jane, Likes, isLiked, Pizza), and 
also the semantic unit constituents thereof (e.g. Female, Human, Bread). A given “sub-proposition” and its 
constituents are synchronously activated. This sub-proposition is then bound to another sub-proposition 
constitutive of the propositional statement through oscillatory inhibition – one sub-proposition and its 
constituents are activated whilst inhibiting the activation of the other sub-proposition and its constituents 
and vice-versa. This serves as a form of working memory whose oscillatory frequency is of a rate higher than 
that of super-ordinate propositional levels and thereby provides a mechanism for propositional attentional 
binding.  Importantly, this also resolves issues of erroneous retrieval based on sensory/semantic similarity: 
the constituents of sub-propositions can overlap in their encodings (contain many of the same properties) 
yet the temporal asynchronicity of their activations precludes overgeneralization of retrieval unlike for the 
Wilson et al. (2001) autoencoder model.   

Halford et al. (1999, 2014) proposed that cognitive capacities that cover System 1-like and System 2-like 
processes could be ranked according to their relational representational complexity. Seven ranks were 
posited from ranks 0 to 6 inclusive. Ranks 0 and 1 concerned feedforward neural network architectures with 
either no representations (no hidden layer) or a “functionally structured” process (single hidden layer). 
These ranks were considered System 1-like. Ranks 2-6 on the other hand entailed relational representations 
implemented as symbolic neural networks ordered from unary, e.g. Fido is a dog, to quinary, e.g. as concerns 
requisite representations to solve the Tower of Hanoi problem. These ranks were considered System 

4 This is the terminology of Hummel & Holyoak (1997) common to descriptions of the LISA architecture to label the neural 
representational layer below that corresponds to full propositional statements. In the DORA architecture (Doumas et al. 2008) 
this neural representation is referred to instead by its Role and Binding constituents.
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2-like. The neural networks, forming the STAR (Halford et al. 1998, 2010) – Structured Tensor Analogical 
Reasoning – architecture, are, as the name suggests based on n-dimensional (n = representational rank -1) 
tensor representations. Access to elements of the tensors (queries) can be achieved through dot product 
calculations (similarly proposed by Smolensky 1990, and more recently Eliasmith 2013). Halford et al. 
(2014) suggested that whilst Rank 0 and 1 architectures can potentially produce relational and inferential 
outputs, such knowledge is considered implicit as it lacks the key property of omnidirectionality. 

However, in its failure to elucidate learning and developmental mechanisms the STAR model has been 
described as ‘descriptive’ rather than explanatory (Heath & Hayes 1998). The bridge that connects System 
1-like networks (based on associative distributive learning) and System 2-like networks (based on relational 
localist cognition) has not been fully clarified. Furthermore, STAR and the other above-mentioned models 
fail to address how the semantic units (object argument and predicate-based) emerge in learning and 
development, limiting them to disembodied and offline processing. Hierarchical (‘deep’) neural network 
structures provide a means to ground at least object argument units through imbuing a property of invariant 
representation at higher stages of the hierarchy (Hinton & Salakhudinov 2006, Eliasmith 2013, Rolls 2016). 
Eliasmith (2013) has referred to such deep networks as providing semantic pointers by which, given an 
autoencoder structure, units that provide invariant representations (Rolls 2016) may access information 
from (point to) their lower level featural constituents. Relatedly, Deep generative based neural network 
architectures (Rao & Ballard 1999; Hinton & Salakhudinov 2006; Goodfellow et al. 2016) provide promise 
for grounding, through a connectionist approach, some of the relational-symbolic cognitive capacities 
alluded to by Halford et al. (2014), in real-world online interaction. 

2  Affective-Associative processing and the grounding of relational 
cognition
Notwithstanding the potential for deep neural network architectures to ground object (argument) units and 
their semantic properties as invariant representations, how exactly predicate representation invariance is 
learned is less clear (Doumas et al. 2008). In the present section, we will describe connectionist models with 
varying degrees of representational structure in relation to Halford et al.’s (1998, 2014) representational 
rank perspective. The models described are pavlovian-based and, we argue, provide a means for imbuing 
affective representations within a neural network structure. At the root of these models is the Rescorla-
Wagner (1972) pavlovian learning algorithm considered by Halford et al. (2014) to be of representational 
rank 0, i.e. devoid of representational information and incapable of explicit relational cognition (since it 
lacks the key feature of omnidirectionality). 

2.1  Rank 0 : The Rescorla-Wagner model 

Among the most important of associative learning animal models is that of Rescorla and Wagner (1972) 
equivalent to the delta learning rule popular in machine learning research and a forerunner to, and special 
case5  of, the temporal difference learning rule (Sutton and Barto 1998). This model when implemented 
as a neural network (figure 1) is considered by Halford et al. (2014) to consist of representational rank 0, 
i.e. there are no representations of the internal state given by a hidden layer. According to Halford et al. 
(2014), the Rescorla-Wagner (1972) model exemplifies a representational rank 0 model. It is considered a 
non-structured process since it has “no internal representation”. The model is likened to a single-layered 
perceptron (see also Luzardo 2018) whereby external stimuli inputs are linearly combined in order to 
activate the output node.

5 When the temporal discount parameter gamma is set to 0 the Rescorla-Wagner and temporal difference models equate (see 
Niv 2009).
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Figure 1. The Rescorla-Wagner model of learning depicted as a feedforward neural network. The black node (circle) represents 
the learnable value node which predicts reinforcement based on external stimuli inputs (green nodes). The black arrows 
represent feedforward outputs of neurons of the network. The connections between green and black nodes are learnable 
as denoted by the small yellow circles and dashed arrow. The connections are updated using the learning rule λ –  p, which 
updates the weights as a function of the activation of their corresponding S nodes.  Key: S(1 .. i) = external stimuli, λ = an 
external reinforcement signal, p = the output, or prediction, of the network. For the mathematical description of this model 
see Appendix A. 

The Rescorla-Wagner model conflates into a single dimension of its value representation the information 
about multiple reinforcement properties of the stimulus. In animal learning, the use of a scalar value 
function has been noted as a key limitation of the Rescorla–Wagner model (Miller et al. 1995). As an example 
of its limitation, a reinforcer magnitude of 1.0 and presentation probability 0.5 is valued equivalently to one 
of magnitude 0.5 and presentation probability 1.0. Organisms may, in fact, benefit from multi-dimensional 
reinforcer information and value representations thereof. For example, high magnitude, low probability 
reinforcers might motivate learning the causal antecedents of the low presentation probability so as to 
increase future reward yield (Mackintosh 1971) and actively reduce prediction error (Pezzulo et al. 2015).

In spite of its simplicity, the Rescorla-Wagner model has been used to explain performance on a standard 
paradigm of transitive inferential learning that, according to Halford et al. (2014), requires representational 
rank 4 neural structure encoding for ternary relations. Transitive inference takes the form of experiencing 
a series of (at least) binary relations: if aRb and bRC, then aRc, where R represents an arbitrary relation 
(predicate), e.g. greater than, and where a, b and c are arguments, e.g. numbers 7, 5, 3. In the standard 
(‘minimal’6 ) test – the five-term series – experimental subjects are required to learn the relations between 
pairs of stimuli based on their reinforcement value. The sequence to learn is: A+, B-; B+, C-; C+, D-; D+, E-. 
Where “+” indicates that choosing that stimulus, given the particular pairing, is reinforcing whereas the 
“-“ suffix indicates no reinforcement is given for the stimulus. The letters themselves can be substituted 
for any type of stimuli, e.g. colours, odors. Transitive inference is said to occur when subjects are able 
to infer that given a novel pairing of B with D that B is preferable to D. That is to say, the inference is if B 
is rewarding relative to C and C is rewarding relative to D, then B should be rewarding relative to D. The 
Rescorla-Wagner model has been noted to be able to make correct transitive choices (Wynne 1995, Halford 
et al. 2014). However, the manner in which this type of ‘connectionist’ model achieves the performance 
owes to an artefact of memory. Stimulus A has the highest reinforcement value since it is never devalued, 
during learning, by non-reinforcement (A is never followed by non-reward while being paired with a 
rewarding stimulus). This unconditional positive reinforcement allows A to be chosen repeatedly at an 
early stage of learning so that the reinforcement value of B is relatively rarely devalued by A-B pairings 
(strong reinforcement of A leads to only rare choice of B leading to devaluation of B). B though has a lower 
reinforcement valuation than A (since it is occasionally devalued as a result of B not A choices). This means 
that C, competing against a not so strongly reinforced B, will be chosen relatively more often in B-C pairings 
than B will be in A-B pairings. In this way, along the sequence the associative model learns that A, then B, 
then C, then D, then E has the most reinforcement value purely as a function of associative memory based 
on rate of exposure to devaluation. Such transitivity has been deemed, therefore, implicit by Halford et al. 
(2014) since it does not permit omnidirectional relational-cognitive capacity and is limited with respect to 
representational rank 4 neural structures. Halford et al. (2014) also point out that by adapting the standard 

6 It is considered minimal because anchor effects may be induced by A and E (A never leads to no reinforcement, E never leads 
to reinforcement) and so B, D provide the only pair for which to test for transitive inference.
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five-term series set up to allow for E-A pairings, the transitive effect is lost in the Rescorla-Wagner model.      

2.2  Rank 1+ : The Balkenius & Morén (2001)/ Morén (2002) model

Addressing the criticism above – of the use of a unidimensional representation of value in the Rescorla-
Wagner model – Balkenius and Morén (2001 and Morén (2002) – see also Balkenius et al. (2009) – presented 
a model of learning (figure 2) that derived a computation of reinforcement omission from a reinforcement 
magnitude computation adaptation of the original Rescorla-Wagner rule. Although not explicitly noted by 
the authors, this effectively provides an omission probability when taken as a fraction of the reinforcement 
magnitude (standardly set to a maximum of 1.0). For every trial a reward is not presented to the network, 
the representation of omission increases and serves to inhibit effects of the Rescorla-Wagner based reward 
node (black node in the figure) on the output of the network (blue node in the figure). Since the reward node 
can only be updated by positive, but not negative, prediction errors7  it provides a value representation of 
reward magnitude (or perhaps salience/presence) of the stimulus input. 

Figure 2. The Balkenius & Morén (2001)/ Morén (2002) multi-dimensional pavlovian model of value. The model embeds a Rescorla-
Wagner model into a feedforward neural network but separates value into presence (or magnitude) – black node – and inhibition (or 
omission) – grey node – components. The output of the latter has an (contextually) inhibitory effect on the output of the former. This 
provides a hidden layer whose output yields a response rate (blue node). Key:  pm = magnitude node prediction, po = omission node 
prediction, λ = reinforcement value. For the mathematical description of this model see Appendix B.

The model provides a means thereby for contextual inhibition – by implementing differential rates of 
learning for the reward magnitude and reward omission representations (the latter being faster to learn/
unlearn), it is possible for the network to inhibit output in a non-rewarding context but to rapidly re-produce 
the output/response when the rewarding context is re-established (as a result of rapid unlearning of the 
omission representation). The model thereby captures the profile of learning/unlearning characteristic of 
the acquisition-extinction-reacquisition paradigm while the standard Rescorla-Wagner model does not. For 
stimuli of magnitude 1, the model also preserves the property of the Rescorla-Wagner model that output 
conforms to a scalar representation of conflated reward magnitude and omission. Thereby the model 
should, under certain parameterizations (see Balkenius & Morén 2001), be able to replicate the Rescorla-
Wagner model findings regarding implicit transitive inference. In the Balkenius and Morén (2001) version 
this entails setting the learning and unlearning rates of reward acquisition to the same value while setting 
the omission learning rate to zero. In the Morén (2002) model this entails setting the omission learning/
unlearning rate to that of the reward learning. 

As a fully connected feedforward neural network, the model might be viewed as a multi-layered 
perceptron with a single hidden layer (Halford’s representational rank 1). Halford et al. (2007) suggested 
that rank 1 can transition to rank 2 “by imagining the hidden layer at Rank 1 … being divided into two 
components which are then connected so as to form a matrix” (p.2). The splitting of the value representation 
‘hidden’ layer and employment of such multi (dual)-process structure provides a key thereby for Halford 

7 This is the case for the Morén (2002) version of the model.
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to bridge associative and relational forms of neural networks. However, the Balkenius & Morén model 
lacks the “omni-directional access property of relational knowledge, which is considered basic to higher 
cognition” (Halford et al. 2007, p.2). 

2.3  Rank 1+: Affective-Associative modelling 

Many animal learning theories have posited the existence of (at least) dual routes for memory, learning and 
decision making. In animal learning models this has often manifested in systems that utilize pavlovian and 
instrumental conditioning (Mowrer 1947, Cardinal et al. 2002, de Wit et al. 2009). In pavlovian (or classical) 
conditioning, associations made between stimuli and outcomes are not contingent upon behavioural 
(instrumental) intervention. By contrast, in instrumental (or operant) conditioning such stimulus–outcome 
associations are contingent upon behaviour. Two-(or dual-) process theories have emphasized the inter-
dependency of these two purportedly distinct processes (e.g. Overmier & Lawry 1979). 

Two-process theories tend to emphasize one or other of the i) energizing or motivational component, 
essentially pavlovian, or ii) the directional control of responding (cf. Mowrer, 1947; Amsel 1958, 1992; Braver 
et al. 2014), i.e. where specific responses are selected. Early models of such two-processes emphasized 
the former component (within which the Rescorla-Wagner 1972, and Balkenius & Morén 2001, models 
would fit), while a perspective on two-process models entailing directional control as well as illuminating 
an important associative component, have since received growing focus. This initially took the form of 
Associative Two-Process Theory (Trapold 1970, Trapold & Overmier 1972) and then Associative Mediational 
Theory (Overmier & Lawry 1979, Kruse & Overmier 1982) where the latter identified a mediating role of 
differential reward expectancies on behavioural responding that could be embedded within the former 
(Lowe, Almér et al. 2017). 

Underlying directional two-process theories is the use of a three-term contingency of instrumental 
learning: S–R–O, where S = stimulus, R = response, and O = goal based outcome, and where the pavlovian 
process (through S–O associations) is embedded within the instrumental process. 

2.3.1  Associative Two-Process Theory

The theory of the Associative Two-Process (ATP) identifies S–R and S–E–R routes (‘processes’) where E 
represents an expectation of an outcome (or mediator) – see figure 3. ATP theory indicates that the outcome 
expectancy route is formed according to two associatively learned components. Firstly, there are S–E 
associations – pavlovian associations – and secondly there are E–R associations (Overmier & Lawry 1979) 
whereby outcome expectations can substitute for, compete with, or facilitate, the external stimulus in 
guiding instrumental responding. The division of this route into two components has been verified by use 
of transfer-of-control paradigms wherein the original, learned S-E and E-R contingencies are experimentally 
manipulated leading to testable hypotheses concerning the pattern of initial responding to these new 
contingencies (see Peterson & Trapold 1980; Lowe & Billing 2017). 

By way of example, figure 4 schematizes a transfer-of-control scenario. As is typical for the paradigm, 
there are three phases. Each of these phases consists of a number of independent trials for learning: 
presentations of a stimulus, response options, and then a non-negative ‘outcome’ if the correct response is 
chosen. 
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Figure 3. Associative Two-Process Theory. Response choice is guided by the interaction of two processes: i) a stimulus-
response (S-R), or habit-enabling process; ii) a stimulus-outcome expectation-response (S-E-R) process. (A) Common 
Outcome Condition. Reinforced S-R associations (mappings) cannot be distinguished by outcome (λ). (B) Differential Outcome 
Condition. Reinforced S-R associations can be distinguished (λ1, λ2), and cued, by differential outcome expectancies (E1, E2). 
Directional arrows indicate causal links. Dashed lines indicate learnable connections.  

The phases break down as follows: Firstly, there is an initial instrumental learning phase where the two 
components (S-E and E-R) of the ‘goal-directed’ route can be learned as well as the S-R (‘habit-enabling’) 
route. Secondly, a pavlovian (contingency change) learning phase is presented where new S-E associations 
are made. Finally, a second instrumental phase is utilized, which uses previously experienced stimuli and 
responses but introduces novel stimulus-response pairings .8 This serves as a test of transfer of the knowledge 
of the components (S-E and E-R) learned in the first two phases that provide the relevant building blocks for 
the S-E-R process to select the ‘correct’ response in phase 2. 

In the specific transfer-of-control example given in figure 4, over the first two phases outcomes (O1 
and O2) are common to S1 and S3, and S2 and S4, respectively (given that in phase 1 the correct responses 
are made to obtain those outcomes). As a result, when Phase 3 (transfer test) occurs, since the animal/
human has learned S1 and S3 according to the same outcome (O1)—that is, it has formed S1-E1 and S3-E1 
associations—S3 automatically cues the response associated with E1 (learned in Phase 1), in this case R1 
substituting for the external stimulus. No new learning is required for this in spite of the fact that the subject 
has not been exposed to the particular (external) stimulus-response pairing (S3-R1) previously. 

      

O1

O2 O2

O1S1

S2

S1
S3

S2
S4

 

Figure 4. Transfer-of-control paradigm. The conditioning consists of three phases: Phase 1 (Discrimination Training) —an 
initial instrumental phase where different stimulus-response (S-R) pairings (S1-R1, S2-R2) yield different outcomes (O1, O2); 
Phase 2 (Pairing) — a pavlovian learning phase where new stimuli are presented and associated with previously experienced 
outcomes; Phase 3 (Transfer Test) —an instrumental transfer phase where the stimuli from phase 2 are re-presented as are 
the response options from Phase 1. ATP theory predicts that responding in the transfer test (phase 3) will be based on already 
existing S-E and E-R associations learned from the first two phases where the theorized preferred selections (underlined Rs) 
are shown in the left diagram and the S3->R1 choice process is schematized on the right. Left diagram adapted from Urcuioli 
(2005). 

8 The first and second phase of the transfer of control paradigm can, in fact, be presented in any order though more standardly 
the initial instrumental phase is used first.
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ATP postulates, therefore, that by way of a (dual-route) structured learning process, a type of transitive 
inference is possible to find correct responses in the test phase without the requirement of learning. S3-R1 
associations have not been learned at the beginning of the test phase, but previous experience allows for a 
transitive performance of the form A->C (S3-R1) derived from A->B (S3-E1), B->C (E1-R1). 

The transfer-of-control problem does not entail a designed transitive inference problem but animals 
and humans appear to resolve this problem by utilizing internal hidden stimuli (states) through which 
inference can be made.

However, in the schematic (figure 4), the associative learning processes are not omnidirectional and 
thus the property of retrievability given by Halford et al. (2014) is lacking for such a network to be considered 
to imbue higher (relational) cognition. It would instead conform more to what Halford et al. (2012) terms 
implicit transitive inference (as opposed to explicit transitive inference) – a term also used in animal learning 
circles (e.g. Goel 2007). This provides an example whereby relational behavior does not necessarily imply 
relational knowledge or representation. 

2.3.2  Affective-Associative Two-Process Modelling

The Affective Associative Two-Process model that we developed (Lowe et al. 2014; Lowe et al. 2016; Lowe & 
Billing 2017; Lowe, Almér et al. 2017) merges Associative Mediational Theory (Overmier & Laury 1979; Kruse 
& Overmier 1982) and Associative Two-Process theory (Trapold 1970; Trapold & Overmier 1982). It does so 
by modelling the differential expectancies of ATP (“E”) in terms of differential reinforcement outcomes. In 
such cases, differential outcomes can take the form of differential reinforcement magnitudes (Peterson & 
Trapold 1980; Delameter et al. 2012, 2017) or differential omission rates/probabilities (as studied by Urcuioli 
1990; Kruse & Overmier 1982).

Figure 5. Neural computational model of the theorized Affective-Associative Two-Process (Lowe et al. 2017). This model 
extends that of Balkenius & Morén (2001)/ Morén (2002) by a) adding an output node (blue) to which the omission probability 
node (grey) provides excitatory (rather than inhibitory) input and which also receives inhibitory input indirectly from the (blue) 
output node to which the magnitude node (black) excitatorily connects, b) have a differential response layer (cyan nodes) for 
which reinforcement associations bias selection, c) a dual-response process whereby responses can be directly biased by 
reinforced stimulus associations. Key: pem = magnitude prediction error, pm = magnitude prediction, po = omission prediction. 
For the mathematical description of this model see Appendix C. 

The Affective-ATP neural network model (figure 5) has previously been depicted as an adapted Actor-
Critic architecture (e.g. Lowe et al. 2017) but here is depicted as a feedforward ANN. This depiction allows 
us to compare with the earlier-mentioned models but also show the ANN as a type of representational 
rank 1 cognitive process (Halford et al. 2007, 2014). The model embeds the Balkenius and Morén (2001) 
model (which in turn embeds the Rescorla-Wagner 1972, model) into an Associative Two-Process (ATP) via 
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adding a ‘pessimistic’ computation of the output of the value computation (reward omission probability 
expectation) to the ‘optimistic’ computation of the Balkenius and Morén model (reward acquisition 
probability expectation). These two affective value state representations can then be associated with 
different responses and are updated dependent on the reward (and omission of reward) outcomes the 
responses yield. These pavlovian-affective representations of expectancies serve to implement Associative 
Mediational theory embedded within the ATP. 

The feedforward ANN depiction of the Affective-ATP model highlights how transitivity of choice 
(Kahneman & Tversky 1986, Regenwetter et al. 2011) is computationally processed. The direct/habitual 
route S-R (horizontal arrow at the bottom of the figure) provides the relation to be inferred in the absence of 
explicit learning of this association (see previous section on transfer of control). The connections between 
successive layers provides the means for ‘inference’ (when associatively learned). This process implements 
the S-E and E-R route illustrated in figure 4 (right hand side) and occurs as follows: i. the omission and 
magnitude value dimensions of the external stimuli (S1, S2, etc.) are learned and processed, ii. these values 
are input into affective value states (‘optimistic’ reward acquisition probability inputs and ‘pessimistic’ 
reward omission probability inputs) and are non-linearly transformed (via differentially parameterized 
logistic functions) so at to allow for ‘categorized’ semantic outputs to iii. form associations with responses. 
This ‘categorization’ disambiguates the control that affective states can have over responding. In this model, 
the E (expectancy) component can thus be seen as having two stages: i. value dimension computation, ii. 
affective value computation. The model, as it builds on, and can collapse to, the Balkenius and Morén 
(2001) model (and in turn that of Rescorla-Wagner 1972) is capable of resolving the sequential transitive 
inference problem mentioned in section 2.1. through implicit transitive inference. As mentioned above in this 
sub-section it also carries out another form of transitive inference using its structured hidden state. 

However, as is made clear by the feedforward ANN depiction (figure 5) it does not satisfy the 
omnidirectional criterion for higher cognition necessary for retrieval of propositional (and sub-
propositional) components. Delameter (2012) – see also Delameter et al. (2017) – has also proposed an ANN 
model to capture differential outcomes data. However, this is also a feedforward ANN (does not permit 
omnidirectionality) and has not been used to capture transfer-of-control data – it is not clear, therefore, 
that the model allows for implicit transitivity (transitivity of choice). Furthermore, for the purposes of this 
article, the model does not represent affective value.  

2.3.3  Extending Affective-ATP Processing: Beyond Dual-processing

While we have grounded the Affective-ATP model in the pavlovian learning mechanisms of the Rescorla-
Wagner model, naturally models abound of pavlovian processes. Amsel (1958, 1992) provided a motivational-
pavlovian model centred on his frustration theory of invigorated responding – subjects will work harder for 
rewards that are not immediately forthcoming. From Amsel’s frustration theory was derived the anticipatory 
frustration directional model of Overmier and Laury (1979), Kruse and Overmier (1982) as previously 
described. Other models exist that have been used in the context of Pavlovian-Instrumental Transfer (PIT) 
experimentation, e.g. Balleine and Ostlund (2007). PIT is a phenomenon whereby a conditioned stimulus 
brings to bear on the rate of conditioned responding. Cardinal et al. (2002) – see also Cardinal (2006) – 
described a model of affective / emotional processing in relation to pavlovian conditioning.  Within this 
model affective states, described as “pure value states” by Cardinal et al. (2002, p.324) are constituted by 
learned associated external (neutral) stimuli and unconditioned stimuli. These affective states in turn are 
able to directly (without learning) bias responding. Such responses can be considered preparatory (non 
US-specific), e.g. orientation, or consummatory (US-specific), e.g. salivation to food. In figure 6 (right hand 
side) we have included the additional links (US-> R, S->Affect) to our Affective-ATP model (from figure 5) 
with the difference that the Affective-ATP model requires associative (learned) links between affect and 
response representations/nodes. The response options can be considered preparatory, e.g. differential 
orientation responses (often used in differential outcomes experiments, e.g. pointing to a matching to 
sample stimulus in space).  
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Figure 6. Pavlovian-Affective Value Model of Cardinal et al. (2002). Left. Cardinal et al. (2002) model with colour-coded adapta-
tion. Right. Adapted Affective-ATP model to accommodate Cardinal et al. connections. Key: dashed arrows, with yellow circles, 
represent (associative) learnable feedforward connections; solid arrows represent non-learnable feedforward connections. 

In figure 6 (left) is depicted the Cardinal et al. (2002) model whereby to-be-conditioned stimuli can be 
associated with both responses (thereby implementing the traditional S-R habit-forming route) and 
S-Affective route.

To the authors’ knowledge systematic testing of the validity of each of the routes to differential outcomes 
data has not been undertaken. In our current implementation of the model, the S-affect route learning 
would necessarily be lagged relative to the S-US learning since US outputs are constitutive of the affective 
states and therefore, we speculate that this route might not influence individual differential outcomes 
learning and transfer of control. In the next section, however, we will discuss a role for this route in implicit 
transitive inference based on social learning contexts.

A further conceptual extension of the Affective-ATP model concerns incorporating punishment-based (or 
nociceptive) representations of stimuli, rather than just the reward and reward omission-based representations 
currently modelled. While work has been carried out assessing how punishment and reward representations 
might be combined associatively in active decision making (Lowe & Ziemke 2013; Navarro-Guerrero et al. 2017a, 
b), we seek inspiration from the work of Rolls (1999, 2013, 2018) concerning stimulus-reinforcer association 
learning theory of affect and emotions. In this theory, schematized in figure 7, emotions can be elicited as the 
results of experienced (primary conditioned) or anticipated (secondary conditioned) positive rewards (e.g. 
excitement) or omission/termination thereof (e.g. frustration, anger) but also as the results of experienced or 
anticipated punishers (e.g. fear) or omission/termination thereof (relief).

 

Figure 7. Rolls (1999) stimulus-reinforcer associative learning model of emotion. Acquisition of reward elicits positive emo-
tions scaled by reward intensity (S+). Punishment (S-) elicits negative emotions similarly scaled by intensity. Omission (¯) or 
termination (!) or reward or punishment elicit a different suite of emotions scaled by intensity.  
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Our Affective-Associative perspective is consistent with Rolls’ (1999, 2018) insofar as we emphasize the 
importance of reward contingencies rooted in the value dimensions of acquisition (magnitude) and omission. 
We claim that these dimensions then lead to optimistic and pessimistic affective states, respectively, whose 
influence on behavioural responses are designed to maximize future reinforcement.

3  Bridging Affective-Associative Processing and Relational 
Cognition
Thus far we have discussed associative feedforward neural networks, their ability to imbue affective 
representational states and their abilities to perform implicit relational cognition in the form of implicit 
transitivity. The feedforward depiction of the previous models promotes a view that those networks provide 
‘structure sensitive’ cognition (Fodor & Pylyshyn 1988). However, as Fodor and Pylyshyn (1988) note in 
reference to such feedforward relational semantic networks (e.g. that implement John->loves->the girl: 
“the links in Connectionist diagrams are not generalized pointers that can be made to take on different 
functional significance by an independent interpreter, but are confined to meaning something like ‘sends 
activation to’ ” (p.17). Therefore, the nodes of the network do not have value beyond their activation by 
fed-forward input constituents and cannot engage flexibly in alternative relational contexts. Eliasmith 
(2013) utilized the term ‘semantic pointer’ to allude to bidirectional networks (e.g. autoencoders) for which 
relatively invariant representations (for clusters of nodes/neurons at higher levels in the hierarchy) are able 
to: i) retrieve information from their constituents, but also ii) be used independently of their constituents 
as symbols in relational activity. With respect to the Affective-Associative models referred to in the previous 
section, this suggests that relational cognitive functionality may be limited to temporal relations, e.g. S1 
succeeds E1, R1 succeeds E1. 

3.1  Context-Specific Value Relational Representations

Notwithstanding the limitations of feedforward connectionist models for imbuing cognitive (logico-
relational) properties, explanation is needed for how symbolic-relational models are grounded in (or 
connected to) associative processes that extract correlative patterns in the world (Harnad 1990) from which 
‘meaning’ may be constructed. Grounding relational knowledge in the real world is critical for seamless 
interaction in the world for physically embodied systems (humans, but also robots). But it may also be the 
case that such relational systems can’t be fully understood without recourse to how they are shaped by the 
dynamics of the world. The spatial and temporal dynamics of higher cognition (e.g. forming semantically 
constituted relations) is at the very least constrained by those of the world but may also exploit such 
dynamics in order to learn and develop higher cognition. 

Leech et al. (2008) provided an example of how relational knowledge might be developed via exploiting 
the temporal ordering of propositional information input to a connectionist architecture. In their proposed 
recurrent (bidirectional) model of relational priming and analogy, priming is done by learning the temporal 
order or relational transformations (before and after states), e.g. apple & knife is a before state and a cut 
apple & knife, is an after state. The network was trained in accordance to this temporal ordering whereby 
the ‘before’ state inputs were clamped (fixed temporal presentations to the network) while transformation 
weights (for activating after states) were learned. Subsequently, before and after states were clamped in 
order to learn hidden (transformative) representations that would allow for retrievability of before (from 
after) and after (from before) states. Such relational learning that is grounded in the spatial and temporal 
dynamics of the world may provide the building blocks for learning through structural alignment (Halford 
et al. 2014) whereby analogies can be made based on learned structural relationships in the world (taller 
than, faster than, precedes, succeeds). It must also constrain the sorts of spatial-temporal dynamics that 
may occur in neural systems dedicated to analogical reasoning that have hitherto been considered only in 
a disembodied context (Hummel & Holyoak 1997, Doumas et al. 2008). 
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3.2  Bridging Implicit and Explicit Relational Cognition Neural Networks

As mentioned in the previous section, the Affective-Associative Two Process model, as a feedforward 
artificial neural network, structurally permits linguistically formulated transitive inferential logic, i.e. 
the premises succeeds(A,B), succeeds(B,C) and inference succeeds(A,C), is inherent in the neural network 
connective structure. However, the inferential process entails learning of the premises in order to arrive, 
without learning, at the inference. This deviates from Halford et al. (2010, 2014) and Fodor & Pylyhsyn’s 
(1988) conceptions of transitive inference who view connectionist schemas as limited regarding what they 
can relationally represent. For Halford et al. (2010) the premises are not learned9 but concern ‘one shot’ 
manipulation of symbols, i.e. representations that are independent of process (e.g. unlike feedforward 
neural network activation). Halford et al. (1998, 2010, 2014) have postulated a tensor product structure 
for neural networks whose n-dimensional (vector) complexity represents n minus 1 relational complexity, 
e.g. the relation loves(John, Mary), consisting of 3 vector representations (2 objects, 1 relation), has binary 
relational complexity and is of representational rank 3. Fodor & Pylyshyn (1988), on the other hand, 
likening connectionist models to graphs and in reference to a relation “John -> loves -> the girl” suggest: 
“Connectionist graphs are not structural descriptions of mental representations; they’re specifications of 
causal relations. All that a Connectionist can mean by a graph of the form ‘X  Y’ is: states of node X 
causally affect states of node Y … the graph can’t mean ‘X is a constituent of Y’” (p.17).

3.2.1  Case 1: Rank 2+ Autoencoding relational cognition model

In Halford et al. (2007) it was suggested that in order to (developmentally) transition from a representational 
rank 1 neural network to a rank 2 network, it would be required to divide the hidden layer of a multi-layered 
network (with one hidden layer) into (at least) two partitions: “The transition from Rank 1 to Rank 2 can 
be envisaged by imagining the hidden layer at Rank 1 … being divided into two components which are 
then connected so as to form a matrix” (Halford et al. 2007, p. 2).  Such a connectivity schema might be 
envisaged as a recurrently connected neural network (e.g. of a form related to Leech et al. 2008). Halford 
et al. (2014) has suggested that some forms of recurrent, or auto-associative, neural network may alleviate 
such problems, e.g. autoencoders that are able to (auto-associatively) re-present inputs as idealized values 
(based on the statistics of previous learning) at an output layer. Wilson et al. (2001) later demonstrated the 
extent to which such an auto-associative  (on an autoencoder based multi-layered perceptron – one hidden 
layer) could permit ‘accessibility’ of items in a binary relational proposition, e.g. John Loves Mary. 

The non-standard10 autoencoder was structured according to its having object, subject  and relation 
items selectively connected to a hidden layer, where object and subject could be viewed as arguments to 
the predicate (relation). It was structured so that two of the three components projected to one of three 
separate hidden layer partitions. These partitions then provided direct output to a partitioned output layer 
representing the single other component, e.g. object (pizza) and subject (Mary) input representations were 
represented in a hidden layer that projected to the output relation (likes) – see figure 8, left. The network 
connectivity, therefore, was such that it had the potential for one-to-one, one-to-many, many-to-one and 
many-to-many queries. For example, for the latter query type Who is frustrated by what? (in predicate 
calculus: frustrated(X,Y)?) the dot product computation could produce an effective rank 2 tensor product 
network, i.e. a matrix giving all frustrated people and all frustrated situations (see figure 8, right). However, 
this network was found to have ‘limited accessibility’ (Wilson et al. 2001). It was best able to access single 
elements from one-to-one queries, e.g. What is John frustrated by? (frustrated(John, Y)?) yielding in the 
example in figure 8 the output ‘task’. Where one-to-many (vector) outputs provided the target output, the 
network was more limited and suffered from incorrect generalization – if the encodings of different item 

9  Or at least the learning of the premises is not a major concern from the modellers’ perspective. 
10  The autoencoder did not have full connectivity between layers nor was the output layer trained to re-present the outputs of 
the input layer. 
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(relation, subject or object) vectors overlapped, i.e. had constituents similar to each other, there was greater 
scope for erroneous output, i.e. accessing items that weren’t appropriate to the relation. This limitation 
is apparently not the case for tensor product networks that are able to resolve many-to-many queries and 
are thereby considered omnidirectional (have full accessibility to all possible queries made on the stored 
propositions). This occurs since each proposition has a unique symbolic representation whose querying 
(through dot product computations) can yield the appropriate outputs whether single values, vectors or 
rank 2 tensor product networks. 
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Figure 8. Connectionist and Symbolic Neural Network Implementations of Unary (Rank 2) and Binary (Rank 3) Relations. Left: 
Adapted autoencoder of a binary relation of the form relation(subject, object). Each input element connects to corresponding 
hidden layer partitions that connect to an output layer representing the two other element types (e.g. a subject element 
connects to hidden layer partitions that output to object and relation targets). Adapted from Wilson et al. (2001). Right: Tensor 
product networks (Wilson et al. 2001, Halford et al. 2014 following Smolensky 1990), also known as the STAR architecture. 
Input vectors representing subject, object and relation (rank 3, lower network) provide inputs to a tensor product network 
that captures the relation in a single symbolic neuron. From this neuron it is possible to access the other input values in the 
relations (omnidirectionality) using a dot product query. A binary relation provides the output of the query “who feels what 
about the task?”, given in predicate calculus by P(X,Y) where P and X are the terms being queried. The upper figure shows a 
tensor product network for a unary (rank 2) relational neural network implementing a subset of the relations and objects of the 
Wilson et al. autoencoder. Adapted from Halford et al. (2014). 

3.2.2  Case 2: Rank 2+ Hierarchical structuring of relational cognition

The lack of semantic similarity (via implementing overlapping semantic units as relational constituents) of 
STAR (figure 8, right) as a model of analogical mapping has been criticized by Hummel and Holyoak (1997). 
Semantic similarity, while potentially providing a problem of overlapping constituents leading to incorrect 
generalization, provides a property through which analogies may be learned. 

An alternative ANN approach to the Wilson et al. (2001) model and to STAR (to which Wilson et al. 2001, 
Halford et al. 2014 attribute omnidirectionality) is that provided in the LISA/DORA framework (Hummel 
& Holyoak 1997; Hummel & Holyoak 2001; Doumas et al. 2008; Morrison et al. 2011;  Holyoak 2012; 
Knowlton et al. 2012; Doumas et al. 2018). The problem of overlapping activation of constituent elements 
to propositional component representations, referred to in Case 1, is overcome by activating each sub-
proposition (and its constituents) of a proposition (e.g. John loves; Mary is loved of the proposition John 
loves Mary) one at a time. So, all constituents of John loves are synchronously activated and this pattern 
inhibits the Mary is loved pattern. The John loves pattern, through self-inhibition, loses activation and 
simultaneously disinhibits the Mary is loved pattern (Knowlton et al. 2012). A high frequency oscillation 
(relative to the neural states representing full binary propositions) between the two patterns is said to 
allow for role-filler binding (of the “sub-propositions”) so as to input a stable pattern to the compound 
neural representation that encodes the full proposition John loves Mary that is of representational rank 3 
(Halford et al. 2014). This process is schematized in figure 9. Role-filler binding constituents may overlap 
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in their representation – they might even involve the same objects (fillers) and predicates (roles) but 
LISA/DORA exploits time (temporary representations involving re-use of components) so as to bind 
position-sensitive (and thereby meaning-sensitive) role-fillers to propositional statements.  Hummel et al. 
(2004) has suggested that a critical feature that LISA (and DORA) possesses that STAR lacks is role/filler 
independence – that is to say that the roles (predicates), e.g. loves, and fillers (object, subject), e.g. John 
and Mary, that are used in a relational statement should not be dependent upon the particular statement. 
John could be both ‘the lover’ and ‘the beloved’ and should not be re-presented in these different roles, 
which is a requirement for STAR. 
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Figure 9. The LISA/DORA Connectionist-Symbolic Architecture of Relational Cognition. Left. Top – LISA architecture, role-
binding (RB) units of the proposition (P unit) neural representation of bigger(Fido, Sara) fire synchronously with all constituent 
neurons (object/O unit, predicate/role-filler or R unit and their semantic constituents/units) but asynchronously with each 
other, i.e. the sub-proposition smaller(Sara) and its constituents are inhibited by larger(Fido) and its constituents. Bottom – 
DORA architecture, the object/predicate constituents of role-binding (RB) units fire asynchronously with each other. Right. 
The DORA firing patterns follow hierarchical oscillatory frequencies allowing for higher units to entrain lower units relevant to 
analogical learning.  

Learning and retrieval (from LTM) by analogy in DORA is guided top-down by a propositional unit and occurs 
in reference to semantic similarity (amount of overlap) between a given sub-proposition’s constituents 
(semantic units) and those of another that may give rise to analogous propositions but can also allow for 
the learning of new predicates. Oscillatory (dynamic binding) activation of overlapping representations 
provides the means to learn analogies since distributed semantic representations form the basis of analogies 
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(semantic similarity) that can be disentangled (through temporal asynchronous activation) when learning 
or retrieving specific role-filler bindings.   

The historically earlier LISA uses the oscillatory binding (also referred to as dynamic binding) 
mechanism to drive retrieval, and reinforcing in memory, of analogous propositions. This requires a Driver 
proposition unit to top-down activate its hierarchically ordered constituents as illustrated in figure 9 (top). 
Then analogous (Recipient) propositions are driven bottom up through activation of semantically similar 
units (the constituents of the analogous proposition). Activation of these units in the analogue then feed 
forward through the relational hierarchy – see figure 10. Activation in Object (O) and Predicate (P) units 
feeds forward to a given role-binding (RB) unit that is invariant to sub-optimal activation in either unit 
and is passed forward to the proposition unit (P). In turn activation feeds back down the hierarchy so as 
to enable those O and P unit constituents of the RB unit to more cleanly win the competition against rival 
object and predicate units allowing in turn for stronger representations in the (higher) relational levels. 
This is achieved through a global inhibition mechanism and guards against multiple RB units being 
simultaneously activated. The Driver oscillates between its synchronous RB unit constituent activations 
thereby permitting the propositional statement (P) to be retrieved using feedforward and feedback dynamic 
entrainment of the RB unit constituents of the (Recipient) analogous proposition. All of the analogue 
recipient’s local units remain active for a period (i.e. have a prolonged oscillatory phase) along with those 
of the ‘driver’ analogue allowing hebbian learning (LTM) for the like-for-like local units (mapping). This 
is such that future inducements of Driver activity allow for direct activation of the local constituents of 
the analogous proposition rather than requiring feedforward activation via semantically similar units (see 
figure 10). LISA thereby achieves analogue retrieval and analogue learning (local unit mapping) through 
use of its conceptually critical oscillatory binding mechanism. 

The LISA/DORA framework has been criticized on account of not providing a description as to how 
semantic constituents (above all predicates) are learned in the first place (Halford et al. 2010)11. 

In order for any form of unary or binary relational knowledge to be acquired to bring to bear on 
analogical learning and reasoning, some degree of associative learning must precede it. Refined object and 
relational knowledge may be limited such that inaccurate or very holistic (Doumas et al. 2008, O’Reilly et 
al. 2017) knowledge of objects may still have a top-down influence on what is learned through association. 
In essence, any top-down knowledge that serves to focus attention on the constituents of the objects and 
predicates relevant to relational knowledge may benefit the acquiring of both relational knowledge and 
knowledge of the featural constituents of objects and predicates. 

Bottom-up associative learning (‘System 1’) requires the use of space and time to resolve the binding 
problem of apprehending the separateness and identity of individual objects. For example, an unfamiliar 
object occluded by another may appear to young infants (Baillargeon 2004, O’Reilly et al. 2017) as a blend 
of the two whereas more distal objects might be easier to process as being separate. However, apprehending 
their co-occurrence in a particular situation requires some kind of embodied oscillation (moving towards, 
orienting, foveating) between one object and another necessitating the use of time, i.e. sequential 
processing of the stimuli/objects relevant to the scene. In this sense the bottom-up process may recapitulate 
the top-down oscillatory binding process proposed by LISA/DORA as constrained by the embodiment of 
the individual and the physical characteristics of the world. Notwithstanding, the possibility to learn the 
constituents of objects and predicates that engage in relational knowledge, structural separation of the 
constituents of propositional knowledge (binary relations) is required: “Simply jointly activating patterns 
representing “John”, “Mary”, and “Loves” cannot distinguish “John loves Mary” from “Mary loves John” (or 
even from a description of a narcissistic hermaphrodite)” (Hummel & Holyoak 1997, p.13). 

11  It has also been criticized regarding the lack of evidence for oscillatory dynamics in the brain encoding for formation of 
relational information ( see Eliasmith 2013).
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Figure 10. Analogical Retrieval and Learning LISA/DORA. The figure depicts the LISA/DORA architecture following analogical 
retrieval where the proposition frustrates(Task, John) and its constituents is analogous to angers(Jake,Bill), for example, as it 
applies to a related task or interaction. Prior to learning, the Driver (left-most Proposition) top-down activates semantic units. 
Recipient (right side) R & O units propagate activity upwards as a result of semantic similarity (i.e. where Driver activated 
semantic units concurrently activate the Recipient’s R&O units). The dashed horizontal lines indicate that following analogical 
retrieval the individual unit layers of the analogues are associated (stored in long-term memory) permitting top-down retrieval 
in future iterations. In this depiction we add featural (and input) units so as to highlight the possible interface of parallel 
distributed (System 1) and localist (System 2) systems (adapted from Hummel & Holyoak 1997). 

Top-down driven processing, starting either from propositional (binary) relational knowledge (LISA) 
or (during learning) from unary relational and even object/predicate based representations (DORA) are 
viewed as being critical for the formation of analogical relational structures. The mechanism of oscillatory 
binding precludes simultaneous processing of overlapping semantic constituents for a given proposition, 
e.g. where objects John and Mary share semantic features – both are human, have noses, etc. This enables 
role-filler bindings (e.g. John is frustrated, Mary frustrates) to be kept distinct (Knowlton et al. 2012). As 
for the bottom-up associative learning binding problem, relational knowledge is constrained by memory 
storage capacity entailing overlapping constituents of objects and predicates. LISA/DORA resolves this 
through the use of time, i.e. the sequential processing of unary relations and their constituents, and 
additionally in DORA, objects and their constituents followed by predicates and their constituents. In this 
manner, the semantic constituents of unary relations, objects and predicates maintain their identity in spite 
of potentially being semantically similar but nevertheless are apprehended as belonging to the same scene 
(relation in this case). 

Top-down driven processing, insofar as it activates constituents of objects and predicates, might also 
serve to activate (through asynchronous oscillation) featural (non-semantic) constituents potentially 
providing the means for refining the learning of such featural constituents. This would occur through 
providing a discriminative attentional mechanism to facilitate bottom-up associative learning means of 
resolving the binding problem (i.e. using physical space and time as opposed to that contrived by top-
down oscillatory activation). Relational context can provide a means of disambiguating between objects 
that are sensorially (not just semantically) similar. Such refinement could be viewed through the lens of the 
predictive coding framework (Friston 2010, O’Reilly et al. 2017).
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3.3  Bridging Connectionism and Relational Cognition through Affective-Associa-
tive Processing.

As acknowledged by Doumas et al. (2008): “The model, as it stands, does not speak to where the semantic 
invariants … come from.” (p.33). To the authors’ knowledge work to the present-day using DORA (and 
LISA) has not addressed this. DORA and LISA have been concerned with how relational knowledge can 
be acquired through analogy rather than how the semantic constituents of objects and predicates for a 
given relation may be acquired as a result of interaction with the outside world. Furthermore, Halford et al. 
(2010) cites as a future question for the LISA/DORA connectionist-symbolic framework to address: “What 
is the precise nature of the link between dynamic binding in working memory and acquisition of relational 
knowledge”, (p. 503). 

From this we can derive two research questions required to be addressed in order to arrive at a fuller 
account of how a connectionist-relational architecture can explain the integration of system 1-like and 
system 2-like processing in cognitive agents whilst accounting for the omnidirectionality property (through 
retrieval from long-term memory – figure 10 – noted by Halford et al. 2010):
1.	 How are the semantic – object and predicate – constituents learned within a connectionist-relational 

architecture?
2.	 How do top-down driven relational activations and bottom-up associatively learned activations interact 

through dynamic binding? 

In figure 11 is presented a hypothetical architecture integrating an affective-associative representational 
rank 1+ model (section 2) with the LISA/DORA architecture. The affective-associative components (from 
left to right of each plot up to but not including the R & O units) concern figure 6 (Cardinal / Affective-ATP 
modelling) where for clarity of visualization arrows indicating learnable or non-learnable connections are 
conflated into the same type. The affective mechanism is also inspired by Rolls (1999) stimulus-reinforcer 
associative learning perspective on emotion elicitation (see figure 7). 

Additional to the affective-associative processing network is depicted a replicated pair of affective 
units representing perceived affective states (e.g. through facial expression) that, through mirror neuron 
activation (De Gelder 2009) may be vicariously experienced by the perceiving individual. Such a social 
dimension is a key element of affective processing but also potentially for relational knowledge concerning 
other subjects. For details on vicarious learning using mirror neuron systems the reader is referred to Lowe 
et al. (2016) – space precludes discussion here. Constituent units may now be considered as hierarchical 
somatic (top) and object-based stimuli (bottom) comprising semantic (invariant) and non-semantic featural 
(non-invariant) components. Lower down the hierarchy neurons encoding simpler features are more 
sensitive to variation in the inputs and for different objects are expected to increasingly overlap based on 
the sensory properties of the presented stimuli. 

The figure represents a connectionist-relational architecture of an adult human that deploys the driver 
– frustrates (Task, John) – proposition to exert top-down synchronous entraining of activation to all its 
(semantic and featural) constituents. The affective-associative component left-to-right illustrates a reward-
based affective neural network blending that of the Affective-ATP and Cardinal et al. (2002) models. It could 
be naturally extended by having additional reinforcer units that represent punishment (or nociception) 
– and omission thereof – allowing for a Rolls (1999)-relevant model of affect to bring to bear on relational-
cognitive processing. 

This constitutes a form of constituent refinement. In the above case, however, the activation can be viewed 
as bidirectional. Bottom-up sensory processing of incoming stimuli (John and Task) whose constituent 
features may overlap serve to activate object nodes in the R & O layer. Naturally, these object nodes may 
misrepresent the subject and object ordering of the proposition Task frustrates John, and even more intuitively 
in its retrieved analogue (figure 10) Bill angers Jake. Thus, discrimination benefits from top-down activation 
focusing processing on one or other object (via oscillation) and its semantic and featural constituents. Such 
a process would be of less obvious utility in the absence of sensory feedback (during which time precision 
tuning to error might be dampened, see Friston et al. 2010 who provide a predictive coding argument for the 
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existence of such a mechanism). In the case of there being sensory input a particular type of hierarchical 
processing should occur. Here the level of top-down oscillatory binding should be constrained to that 
which is sensorially available. For example, if sensory feedback for John + looking frustrated is available, 
asynchronous oscillations between the John object and the is frustrated predicate (role) would be attended 
to in order to refine the constituents of both – for John the semantic and featural components (e.g. nose, but 
also non-semantic features of the nose may be important), for is frustrated the visual (and extra-visual, e.g. 
prosodic) sensory properties, such as facial action units (Ekman 2003), may be attended to and refined. All 
the while, the higher relational level of John is frustrated entrains the attentional focus on its object and role 
constituents (asynchronously activated). The propositional unit – John is frustrated by Task, would entrain 
the R & B units’ activations and their constituents oscillating between them in order to disambiguate the 
overlapping constituents. This level is ‘motivationally’ significant since constituent refinement (for both 
semantic and non-semantic features) for similar objects is important insofar as the objects have different 
roles in a relation. Constituent refinement of predicates (frustrating versus is frustrated) would similarly be 
important so as to distinguish my frustration (frustrating) from that of another (John’s) and to what extent. 

Figure 11. Affective-Associative System 1-System 2 Network. Affective-Associative network extended through representation 
of its ‘deep’ (external) stimulus and affective constituents. F units (featural units as in figure 10) and S units (semantic units) 
are boxed to indicate that they are generative layers. Driver activation from the P unit flows through Role-Binder (RB) units and 
their object (O unit) and affective unit constituents. These units in turn generate activation (or bias activation) in the S units 
(that are then used to retrieve analogical propositions, e.g. angers(Bill, Jack) ). S units simultaneously generate activation in 
their featural constituents (F units). Attention may be focused on any RB unit constituents but will be biased by simultaneous 
bottom-up activation. This attention will also help refine constituent representations, e.g. the affective expressive consti-
tuents of John (and by analogy Jack) and the facial features of Jack (or task stimuli features). Generative activation may also 
undergo precision tuning (Friston 2010) whereby attention to semantic and featural constituent details may be greater or less 
depending on unpredicted fed forward activation. In the case of lowered attention achieved through such a precision tuning 
mechanism, analogical retrieval may occur relatively unencumbered. In the case of high attention (to the external stimuli) 
analogical retrieval may be deprioritized. 
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The above provides an approach for implementing constituents of object and predicate units, essentially 
using deep generative neural networks, whereby top-down activations allow for the generation of activations 
of constituent units (as for autoencoders or deep Boltzmann machines – Hinton & Salakhutdinov 2006) or 
the biasing of activations of the constituents (as for ‘VizNet’, Rolls 2016). 

The affective representations thereby serve to i) learn predicate and proposition formation as grounded 
in real world interactions, ii) top-down entrain agents to focus on affective relational constituents (featural 
and semantic), i.e. to refine and learn features of objects and predicates (internalized affective states and 
those expressed by another). The latter mechanism serving to better categorize those very objects and 
predicates constitutive of the ‘predicted’ relation. The interaction between, on the one hand, this bidirectional 
activation that serves learning about propositions in the world and, on the other hand, analogical learning 
and retrieval, is then potentially enabled by an attentional mechanism (such as precision tuning, Friston 
2010) wherein unpredicted external stimuli/events focus agents on the outside world (activation flows 
down the hierarchy, see figure 10), and predicted stimuli/events permit activation to flow upwards from 
semantic units to recipient analogue localist units (desensitizing activation from inputs units). 

The experimental testing of such a bidirectional mechanism would not be without challenges. As for the 
Frank et al. (2005) experiment mentioned in section 1.3., performance measures combined with subjective 
reporting of the understanding of the rules of a given task could distinguish associative ‘strategists’ from 
relational ‘strategists’. Doumas et al. (2018) have sought such evaluations through manipulating task 
difficulty whereby associative strategizing is less likely to pay off for more complex relational problems. 
An experimental set up that constrains sensory input to participants so that one object (John) is presented 
followed by another (Task) in an oscillatory fashion and at different rates might also bring to bear on 
how easily relational knowledge can top-down entrain associative processing and how easily analogical 
knowledge can be utilized on a given task. 

4  Discussion
We have presented a view on the bridging of connectionist and relational cognitive architectures 
using affective-associative neural network modelling and a review of connectionist models and their 
representational ranks (Halford et al. 2007, 2014). Halford et al.’s (2007, 2014) ranking system broadly 
distinguished between System 1 (associative-based rank 0 and rank 1 representations) and System 2 
(relational-based representations) like knowledge where the former entails the use of associative learning 
mechanisms and is tied to interaction in the world and the latter permits higher cognitive functions 
concerning relational knowledge subject to the property of omnidirectionality. We have focused our 
attempts at bridging these two considered types of representational knowledge according to the encoding 
of affective states as predicates – a subset of predicate knowledge, but an important subset nevertheless. A 
fuller connectionist architecture should account for where all elements ‘come from’. 

In presenting feedforward affective-associative neural networks imbuing representational ranks 0 and 
1 we considered how such forms of processing can allow for implicit relational knowledge and that it may 
permit the grounding of symbolic connectionist states (Harnad 1990) by exploiting the spatial and temporal 
dimensions of physical embodied interaction (Leech et al. 2008). We finally discussed the possibility that 
System 1 and System 2 like processing may be part of a single unified generative process. In this view, 
bottom up processing is entrained by top down processing driven by ‘looking for’ object and predicate 
relations in the world. Such processing can focus embodied attention whilst simultaneously refining the 
semantic and featural constituents of those relations (as well as those of analogue relations). 

A major motivation for our theoretical work is practical application and dealing with the hard problem 
of engineering physically embodied agents (e.g. robots) so that they may make sense of the patterns of 
sensorimotor activity that impact them (e.g. Li et al. 2013, 2014). Affective states, grounded in dimensions of 
stimuli valuations, can take many forms – facial (Ekman 2003), prosodic (Schröder 2001), tactile (Andreasson 
et al. 2018). Such diverse dimensions can all be argued to entail a predictive / generative process in order 
to make sense of them (Lowe & Ziemke 2011, Morrison et al. 2013, Barrett et al. 2016, Lowe et al. 2017). In 
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future work, we will strive to develop a predictive/generative architecture that permits affective states to 
bridge connectionist/associative and higher cognitive-relational capacities in the service of intelligent and 
adaptive robots and furthering cognitive scientific understanding.   
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Appendix A: Rescorla-Wagner Model
						      p = ∑i si vi	 (1)

where p is the prediction of reward, si is the stimulus indexed by i, vi is the corresponding weight (or 
valuation) of the stimulus. 

 						      Δvi = αsi [λ ‒ p]	 (2)

where λ is the reinforcement value set in (0,1), α is a learning constant in [0,1]. 

Appendix B: Balkenius-Morén Model
The Balkenius & Morén (2001) model uses equation (1) so that  to calculate reward magnitude. The weights 
update rule for valuating reward magnitude is the same as for (2) except that it computes only non-negative 
values (Morén 2002). 
 						      Δvi= αsi [λ ‒ pm ]+ 	 (3)

 						      po = ∑i si  wi	 (4)

where po is the prediction of reward omission.

 						      Δwi = βsi (‒[λ ‒ pm]+ ‒ po)	 (5)

where β>α , is in [0,1].
  						      E = pm ‒ po	 (6)

where E is the output of the network (motivational state). 

Appendix C: Lowe et al. Model
The Lowe, Almér et al. (2017) model is conceived as a temporal difference instrumental learning model. 
Here is presented only the pavlovian component and in non-temporally discounted form (i.e. where γ = 0) 
thereby collapsing the model to the Balkenius-Morén model above (eqs 3-6). However, the output of the 
model differs in providing for optimistic (eq. 6) and pessimistic (eq. 7) affective  valuations of the stimuli. 
Note,  pem= λ ‒ pm as depicted in figure 5. 

 						      Epes = ‒ E+ po 		   (7)


