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Abstract: Connectionist architectures constitute a popular method for modelling animal associative
learning processes in order to glean insights into the formation of cognitive capacities. Such approaches
(based on purely feedforward activity) are considered limited in their ability to capture relational cognitive
capacities. Pavlovian learning value-based models, being not based purely on fully connected feedforward
structure, have demonstrated learning capabilities that often mimic those of ‘higher’ relational cognition.
Capturing data using such models often reveals how associative mechanisms can exploit structure in the
experimental setting, so that ‘explicit’ relational cognitive capacities are not, in fact, required. On the other
hand, models of relational cognition, implemented as neural networks, permit formation and retrieval of
relational representations of varying levels of complexity. The flexible processing capacities of such models
are, however, are subject to constraints as to how offline relational versus online (real-time, real-world)
processing may be mediated. In the current article, we review the potential for building a connectionist-
relational cognitive architecture with reference to the representational rank view of cognitive capacity
put forward by Halford et al. Through interfacing system 1-like (connectionist/associative learning) and
system 2-like (relational-cognition) computations through a bidirectional affective processing approach,
continuity between Halford et al’s cognitive systems may be operationalized according to real world/online
constraints. By addressing i) and ii) in this manner, this paper puts forward a testable unifying framework
for system 1-like and system 2-like cognition.

Keywords: System 1-System 2, relational cognition, associative learning, representational rank, affective
computation, habits.

1 Background

The relationship between animal learning-based connectionist models and models of so-called ‘higher’
cognitive capacity has been the subject of much research in the animal (and human) learning community
over the last century. A variety of animal and human learning studies and models thereof have described
the link between basic associative processes (e.g. relevant to this special issue, including habits and their
formation) and cognitive capacities (e.g. Seger 2008, 2009; Phillips et al. 2009; Halford et al. 2014), including
logico-relational based reasoning. Bridging associative processes modelled using the connectionist, i.e.
neural network, approach, and ‘higher’ cognitive capacities (e.g. relational-based) does not necessarily
entail discontinuity (Halford et al. 2014). Moreover, associatively learned processes such as habits, in
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themselves, can be understood in terms of ‘higher’ cognitive phenomena, e.g. habits of thought (Seger
& Spiering 2011). The aim of the present article, however, is to postulate the bridging of connectionist
approaches and cognition according to bidirectional affective-associative processing. This entails the use of
affective neural representations whose constituents combine encodings of value dimension states and other
somatic sensory states. Their utilization as (affective) predicates in propositional relational knowledge we
speculate may top-down focus attention on the featural and semantic constituents of objects/arguments
that bind to those predicates. The modelling approach is constrained by a requirement to be faithful to
a suite of empirical data (in humans and non-human animals) and its development should therefore be
similarly amenable to empirical falsification. We discuss the extent to which such a model can be said to
capture cognitive capacities of a type that concern relational knowledge acquisition and usage. It is not
claimed that such affective states can facilitate the capturing of all relational knowledge but rather that
affective states provide a subset of important relational (predicate) information in relating individuals to
one another John loves Mary or in relating a subject to a particular task John likes fishing.

1.1 The Adaptive and Cognitive Value of Associative Processes

Associative processing provides a link between animals and humans in terms of learning and behaviour,
particularly in the context of pavlovian and instrumental conditioning (Pearce 2013). Grounding cognitive
architectures that utilize localist representations in associative (distributed connectionist) processes has
received much focus in recent decades (Hummel & Holyoak 1997, 2001; Halford et al. 1998, 2010, 2014;
Rogers & McClelland 2004; der Velde & de Kamps 2006, 2015; Leech et al. 2008; Eliasmith 2013; Sun 2015).
The associative component, however, shouldn’t be considered a mere add-on. Sun (2015) has suggested that
computational cognitive architectures benefit greatly from incorporating a notion of ‘implicit’ processing,
as part of a structured (dual-process) cognitive architecture. Agents utilizing cognitive architectures in the
real world by necessity utilize systems that learn from (distributed) patterns of sensorimotor embodiment
(Pfeifer & Scheier 2001; Montebelli et al. 2008, 2010, 2013; Lowe et al. 2008) whose interaction with value
systems (e.g. pavlovian) may permit emergent activity attributable to ‘higher’ cognition (Braitenberg 1986,
Kiryazov et al. 2013; Lowe & Kiryazov 2014; Barrett et al. 2016).

Halford et al. (2014) have likened human cognitive systems to Kahneman’s (2011) notion of System 1
and System 2 processes where, in this reading, System 1 utilizes implicit processes based on associative
learning and System 2 utilizes explicit relational cognitive processing. However, Halford et al. (2014) also
acknowledge that the two systems need not work independently, as Halford et al. (2014, p.10) discuss
in reference to Oberauer (2009): “associative and analytic systems are end points of a continuum”. The
first system may consist only of ‘functional’ structure, e.g. hidden layer representations in multi-layer
perceptrons where the representations themselves are functional only within the context of the ‘bottom
up’ activation of a given connecting input layer (their constituents or features; Fodor & Pylyshyn 1988).
The second system, however, can utilize object and relation representations in a manner such that the
activations of neurons or clusters thereof can occur independently of constituents and be utilized flexibly
in relation with many other such objects (or relations), in this sense becoming symbolic.

Notwithstanding the dubious validity of there existing a sharp division between implicit-based
(associative) and explicit-based (relational) cognitive systems (see Sun 2015 for discussion), the question
of how connectionist (neural network implementations of associative learning processes) and relational
systems can be bridged is an ongoing research topic (e.g. Leech et al. 2008; Sun 2011, 2015; Kolias &
McClelland 2013; Phillips et al. 2017; Doumas et al. 2018).
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1.2 Computational Modelling Approaches to Associative Learning and Cognition

The use of computational modelling to capture forced choice'-based performance of animal (and human)
learning paradigms provides a critical tool into understanding the mechanisms underlying the behavior
and the cognitive systems by which such learning and behavior is achieved.

In animals, associative (reinforcement) learning based models (Rescorla & Wagner 1972; Sutton & Barto
1998, 2018) have been used to capture a wide range of behavioural phenomena such as performance-based
asymptotic learning curves (Seger & Spiering 2011), increased reacquisition learning following extinction?
(Balkenius & Morén 2001) and resistance to unlearning following a previous training schedule of partial
reinforcement® (Lowe et al. 2017). Neural network / connectionist models of animal (and human) learning
paradigms abound and have been used to model memory and learning in relation to structured (i.e. not fully-
connected feedforward) networks that entail multiple parallel processes. A multiple parallel processing
model may consist simply of a dual-process. Such dual-process models have been used in animal learning
with respect to: instrumental and pavlovian routes of learning (Mowrer 1947, Klopf et al. 1993); ‘fast’ versus
‘slow’ routes of processing (Armony et al. 1997, 2005; Lowe et al. 2009); multi-functional or dimensional-
based value representations (Maki & Abunawass 1991, Balkenius & Morén 2001, Morén 2002, Doya 2008,
Schmajuk 2010, Lowe & Ziemke 2013, Navarro-Guerrero et al. 2017a). Such structure may, nevertheless, still
be utilized in associative, habit-like, i.e. automatic, processing yet give rise to behaviours that masquerade
asrelational, i.e. appear as though they are semantically constituted. In humans, associative learning based
models have been used to explain data from hitherto explored animal learning based paradigms (Delameter
et al. 2012, 2017; Lowe et al. 2016, Lowe & Billing 2017). However, humans may variably use associative, but
alternatively, other cognitive strategies in order to complete such tasks. Frank et al. (2005), for example,
showed that their associative based learning model could capture data from a paradigmatic learning task
designed to require a transitive inference solution. Their model, nevertheless, predicted a profile of choice
performance consistent with exposure to reinforced outcomes, i.e. a non-transitive inference memory-based
solution. Notwithstanding, profiles of performance differed in subjects who reported understanding of the
rules of the task suggesting that a more relational strategy was being employed in these cases (one which
apparently improved performance). Experimental procedures able to tease out how and when system 1
and system 2 like knowledge is used provide a key means for furthering understanding of how associative
learning brings to bear on relational cognition. For example, in some tasks research has indicated that
associative learning (System 1-like) precedes relational (System 2-like) understanding (e.g. apprehension of
task rules, e.g. Bechara et al.’s 2005 findings on implicit/”hunch” and explicit/”conceptual” apprehension
of task rules on the Iowa Gambling Task). The two types of systems, however, may facilitate one another
manifesting in an apparent temporal ordering of the utilization of the two systems belying the bidirectional
structural coupling of the underlying process.

1.3 Computational Modelling Approaches to Higher Cognition — Associative
Learning and Relational Cognition

More intricately structured (dual+-process) neural networks may allow for more cognitive functionality.
Some such networks can permit forms of relational cognitive processing, e.g. analogical reasoning,
according to either sensory similarity or semantic similarity. In the tradition of the parallel distributed
processing (PDP) perspective (Rumelhart & McClelland 1986), McClelland and colleagues (Rumelhart
1990; Rogers & McClelland 2004; Kolias & McClelland 2013; Saxe et al. 2018) have produced a number of
semantic relational neural networks based on feedforward structure trained with backpropagation. These

1 The experimental subject is required to choose among different presented options during a task.

2 Reacquisition entails the ability to relearn what was previously learned (choice response) following a period of non-reinforce-
ment for ‘correct choice’ (extinction).

3 Experimental subjects are reinforced for correct choice probabilistically or at a low rate.
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networks allow for objects and relations to be associated together through a hidden layer that provides
integrated representations of object and relational semantic inputs. The network permits learning by
semantic similarity — the semantic-cognition model exhibiting a “hierarchical progressive differentiation
of structure” (Saxe et al. 2018). This manifests in initial learning of broader semantic categories followed
by more refined categories, e.g. first animal and plant are differentiated, then bird and fish, and types of
plants, then other individual attributes/features.

Whilst this notion of learning and development through semantic similarity has been acknowledged as
an important contribution (Halford et al. 2010), it also suffers limitations regarding: i) the types of relational
knowledge that can be acquired and retrieved (Halford et al. 2014), ii) the learning (and development) of the
semantic units (items and relations) whose interactions permit the learning of attributes.

Earlier work by Halford and colleagues exemplifies this: Wilson et al. (2001) constructed a feedforward
neural network, which learned through backpropagation, to test whether a connectionist approach
could allow for the development of propositions with “the flexibility characteristic of certain classes of
symbolic neural net models” (p. 1). A key component of such flexibility, emphasized by Wilson et al. (2001),
is ‘omnidirectionality’, i.e. the ability of the network to access any relational component or (vectorized)
components from any other relational component(s). In this case an autoencoder was used with a number
of semantic (labelled) units feeding forward to hidden (representational) layers. The network was structured
in such a way that relations, subjects and objects could be learned at the output layer. Use of an autoencoder
had the advantage of permitting accessibility (Wilson et al. 2001) — so that when the query to the network
is made “what does Jane like?” based on the activation of the subject (Jane) and relation (like), the object
pizza, for example, can be accessed. The model, however, was shown to be limited in other respects. It
cannot reliably answer the query “who likes pizza?” — and therefore lacks full omnidirectionality. Moreover,
it can make category mistakes in relation to sensory similarity — stimuli whose neural encodings overlap
lead to overgeneralizations, e.g. Jane could erroneously be found to like watermelons on the basis of the
similarity of its encoding (of semantic constituents) with pizza.

Hummel & Holyoak (1997, 2001) produced an architecture (LISA — Learning and Inference with Schema
and Analogies, later adapted by Doumas et al. 2008 to DORA — Discovery of Relations by Analogy) that
in some sense deals with the above-mentioned problem of encoding similarities within the network.
Neural representations of propositional (e.g. Jane likes Pizza) statements are decomposed into sub-
propositions* (“Jane+Likes”, “isLiked+Pizza”) and their constituents (e.g. Jane, Likes, isLiked, Pizza), and
also the semantic unit constituents thereof (e.g. Female, Human, Bread). A given “sub-proposition” and its
constituents are synchronously activated. This sub-proposition is then bound to another sub-proposition
constitutive of the propositional statement through oscillatory inhibition — one sub-proposition and its
constituents are activated whilst inhibiting the activation of the other sub-proposition and its constituents
and vice-versa. This serves as a form of working memory whose oscillatory frequency is of a rate higher than
that of super-ordinate propositional levels and thereby provides a mechanism for propositional attentional
binding. Importantly, this also resolves issues of erroneous retrieval based on sensory/semantic similarity:
the constituents of sub-propositions can overlap in their encodings (contain many of the same properties)
yet the temporal asynchronicity of their activations precludes overgeneralization of retrieval unlike for the
Wilson et al. (2001) autoencoder model.

Halford et al. (1999, 2014) proposed that cognitive capacities that cover System 1-like and System 2-like
processes could be ranked according to their relational representational complexity. Seven ranks were
posited from ranks 0 to 6 inclusive. Ranks 0 and 1 concerned feedforward neural network architectures with
either no representations (no hidden layer) or a “functionally structured” process (single hidden layer).
These ranks were considered System 1-like. Ranks 2-6 on the other hand entailed relational representations
implemented as symbolic neural networks ordered from unary, e.g. Fido is a dog, to quinary, e.g. as concerns
requisite representations to solve the Tower of Hanoi problem. These ranks were considered System

4 This is the terminology of Hummel & Holyoak (1997) common to descriptions of the LISA architecture to label the neural
representational layer below that corresponds to full propositional statements. In the DORA architecture (Doumas et al. 2008)
this neural representation is referred to instead by its Role and Binding constituents.
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2-like. The neural networks, forming the STAR (Halford et al. 1998, 2010) — Structured Tensor Analogical
Reasoning — architecture, are, as the name suggests based on n-dimensional (n = representational rank -1)
tensor representations. Access to elements of the tensors (queries) can be achieved through dot product
calculations (similarly proposed by Smolensky 1990, and more recently Eliasmith 2013). Halford et al.
(2014) suggested that whilst Rank 0 and 1 architectures can potentially produce relational and inferential
outputs, such knowledge is considered implicit as it lacks the key property of omnidirectionality.

However, in its failure to elucidate learning and developmental mechanisms the STAR model has been
described as ‘descriptive’ rather than explanatory (Heath & Hayes 1998). The bridge that connects System
1-like networks (based on associative distributive learning) and System 2-like networks (based on relational
localist cognition) has not been fully clarified. Furthermore, STAR and the other above-mentioned models
fail to address how the semantic units (object argument and predicate-based) emerge in learning and
development, limiting them to disembodied and offline processing. Hierarchical (‘deep’) neural network
structures provide a means to ground at least object argument units through imbuing a property of invariant
representation at higher stages of the hierarchy (Hinton & Salakhudinov 2006, Eliasmith 2013, Rolls 2016).
Eliasmith (2013) has referred to such deep networks as providing semantic pointers by which, given an
autoencoder structure, units that provide invariant representations (Rolls 2016) may access information
from (point to) their lower level featural constituents. Relatedly, Deep generative based neural network
architectures (Rao & Ballard 1999; Hinton & Salakhudinov 2006; Goodfellow et al. 2016) provide promise
for grounding, through a connectionist approach, some of the relational-symbolic cognitive capacities
alluded to by Halford et al. (2014), in real-world online interaction.

2 Affective-Associative processing and the grounding of relational
cognition

Notwithstanding the potential for deep neural network architectures to ground object (argument) units and
their semantic properties as invariant representations, how exactly predicate representation invariance is
learned is less clear (Doumas et al. 2008). In the present section, we will describe connectionist models with
varying degrees of representational structure in relation to Halford et al.’s (1998, 2014) representational
rank perspective. The models described are pavlovian-based and, we argue, provide a means for imbuing
affective representations within a neural network structure. At the root of these models is the Rescorla-
Wagner (1972) pavlovian learning algorithm considered by Halford et al. (2014) to be of representational
rank O, i.e. devoid of representational information and incapable of explicit relational cognition (since it
lacks the key feature of omnidirectionality).

2.1 Rank 0 : The Rescorla-Wagner model

Among the most important of associative learning animal models is that of Rescorla and Wagner (1972)
equivalent to the delta learning rule popular in machine learning research and a forerunner to, and special
case’ of, the temporal difference learning rule (Sutton and Barto 1998). This model when implemented
as a neural network (figure 1) is considered by Halford et al. (2014) to consist of representational rank O,
i.e. there are no representations of the internal state given by a hidden layer. According to Halford et al.
(2014), the Rescorla-Wagner (1972) model exemplifies a representational rank 0 model. It is considered a
non-structured process since it has “no internal representation”. The model is likened to a single-layered
perceptron (see also Luzardo 2018) whereby external stimuli inputs are linearly combined in order to
activate the output node.

5 When the temporal discount parameter gamma is set to O the Rescorla-Wagner and temporal difference models equate (see
Niv 2009).
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Figure 1. The Rescorla-Wagner model of learning depicted as a feedforward neural network. The black node (circle) represents
the learnable value node which predicts reinforcement based on external stimuli inputs (green nodes). The black arrows
represent feedforward outputs of neurons of the network. The connections between green and black nodes are learnable

as denoted by the small yellow circles and dashed arrow. The connections are updated using the learning rule A - p, which
updates the weights as a function of the activation of their corresponding S nodes. Key: S(1.. i) = external stimuli, A = an
external reinforcement signal, p = the output, or prediction, of the network. For the mathematical description of this model
see Appendix A.

The Rescorla-Wagner model conflates into a single dimension of its value representation the information
about multiple reinforcement properties of the stimulus. In animal learning, the use of a scalar value
function has been noted as a key limitation of the Rescorla-Wagner model (Miller et al. 1995). As an example
of its limitation, a reinforcer magnitude of 1.0 and presentation probability 0.5 is valued equivalently to one
of magnitude 0.5 and presentation probability 1.0. Organisms may, in fact, benefit from multi-dimensional
reinforcer information and value representations thereof. For example, high magnitude, low probability
reinforcers might motivate learning the causal antecedents of the low presentation probability so as to
increase future reward yield (Mackintosh 1971) and actively reduce prediction error (Pezzulo et al. 2015).

In spite of its simplicity, the Rescorla-Wagner model has been used to explain performance on a standard
paradigm of transitive inferential learning that, according to Halford et al. (2014), requires representational
rank 4 neural structure encoding for ternary relations. Transitive inference takes the form of experiencing
a series of (at least) binary relations: if aRb and bRC, then aRc, where R represents an arbitrary relation
(predicate), e.g. greater than, and where a, b and c¢ are arguments, e.g. numbers 7, 5, 3. In the standard
(‘minimal’®) test — the five-term series — experimental subjects are required to learn the relations between
pairs of stimuli based on their reinforcement value. The sequence to learn is: A+, B-; B+, C-; C+, D-; D+, E-.
Where “+” indicates that choosing that stimulus, given the particular pairing, is reinforcing whereas the
“-“ suffix indicates no reinforcement is given for the stimulus. The letters themselves can be substituted
for any type of stimuli, e.g. colours, odors. Transitive inference is said to occur when subjects are able
to infer that given a novel pairing of B with D that B is preferable to D. That is to say, the inference is if B
is rewarding relative to C and C is rewarding relative to D, then B should be rewarding relative to D. The
Rescorla-Wagner model has been noted to be able to make correct transitive choices (Wynne 1995, Halford
et al. 2014). However, the manner in which this type of ‘connectionist’ model achieves the performance
owes to an artefact of memory. Stimulus A has the highest reinforcement value since it is never devalued,
during learning, by non-reinforcement (A is never followed by non-reward while being paired with a
rewarding stimulus). This unconditional positive reinforcement allows A to be chosen repeatedly at an
early stage of learning so that the reinforcement value of B is relatively rarely devalued by A-B pairings
(strong reinforcement of A leads to only rare choice of B leading to devaluation of B). B though has a lower
reinforcement valuation than A (since it is occasionally devalued as a result of B not A choices). This means
that C, competing against a not so strongly reinforced B, will be chosen relatively more often in B-C pairings
than B will be in A-B pairings. In this way, along the sequence the associative model learns that A, then B,
then C, then D, then E has the most reinforcement value purely as a function of associative memory based
on rate of exposure to devaluation. Such transitivity has been deemed, therefore, implicit by Halford et al.
(2014) since it does not permit omnidirectional relational-cognitive capacity and is limited with respect to
representational rank 4 neural structures. Halford et al. (2014) also point out that by adapting the standard

6 It is considered minimal because anchor effects may be induced by A and E (A never leads to no reinforcement, E never leads
to reinforcement) and so B, D provide the only pair for which to test for transitive inference.
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five-term series set up to allow for E-A pairings, the transitive effect is lost in the Rescorla-Wagner model.

2.2 Rank 1+ : The Balkenius & Morén (2001)/ Morén (2002) model

Addressing the criticism above — of the use of a unidimensional representation of value in the Rescorla-
Wagner model — Balkenius and Morén (2001 and Morén (2002) — see also Balkenius et al. (2009) — presented
a model of learning (figure 2) that derived a computation of reinforcement omission from a reinforcement
magnitude computation adaptation of the original Rescorla-Wagner rule. Although not explicitly noted by
the authors, this effectively provides an omission probability when taken as a fraction of the reinforcement
magnitude (standardly set to a maximum of 1.0). For every trial a reward is not presented to the network,
the representation of omission increases and serves to inhibit effects of the Rescorla-Wagner based reward
node (black node in the figure) on the output of the network (blue node in the figure). Since the reward node
can only be updated by positive, but not negative, prediction errors” it provides a value representation of
reward magnitude (or perhaps salience/presence) of the stimulus input.

Figure 2. The Balkenius & Morén (2001)/ Morén (2002) multi-dimensional pavlovian model of value. The model embeds a Rescorla-
Wagner model into a feedforward neural network but separates value into presence (or magnitude) — black node — and inhibition (or
omission) — grey node — components. The output of the latter has an (contextually) inhibitory effect on the output of the former. This
provides a hidden layer whose output yields a response rate (blue node). Key: p_= magnitude node prediction, p, = omission node
prediction, A = reinforcement value. For the mathematical description of this model see Appendix B.

The model provides a means thereby for contextual inhibition — by implementing differential rates of
learning for the reward magnitude and reward omission representations (the latter being faster to learn/
unlearn), it is possible for the network to inhibit output in a non-rewarding context but to rapidly re-produce
the output/response when the rewarding context is re-established (as a result of rapid unlearning of the
omission representation). The model thereby captures the profile of learning/unlearning characteristic of
the acquisition-extinction-reacquisition paradigm while the standard Rescorla-Wagner model does not. For
stimuli of magnitude 1, the model also preserves the property of the Rescorla-Wagner model that output
conforms to a scalar representation of conflated reward magnitude and omission. Thereby the model
should, under certain parameterizations (see Balkenius & Morén 2001), be able to replicate the Rescorla-
Wagner model findings regarding implicit transitive inference. In the Balkenius and Morén (2001) version
this entails setting the learning and unlearning rates of reward acquisition to the same value while setting
the omission learning rate to zero. In the Morén (2002) model this entails setting the omission learning/
unlearning rate to that of the reward learning.

As a fully connected feedforward neural network, the model might be viewed as a multi-layered
perceptron with a single hidden layer (Halford’s representational rank 1). Halford et al. (2007) suggested
that rank 1 can transition to rank 2 “by imagining the hidden layer at Rank 1 ... being divided into two
components which are then connected so as to form a matrix” (p.2). The splitting of the value representation
‘hidden’ layer and employment of such multi (dual)-process structure provides a key thereby for Halford

7 This is the case for the Morén (2002) version of the model.
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to bridge associative and relational forms of neural networks. However, the Balkenius & Morén model
lacks the “omni-directional access property of relational knowledge, which is considered basic to higher
cognition” (Halford et al. 2007, p.2).

2.3 Rank 1+: Affective-Associative modelling

Many animal learning theories have posited the existence of (at least) dual routes for memory, learning and
decision making. In animal learning models this has often manifested in systems that utilize pavlovian and
instrumental conditioning (Mowrer 1947, Cardinal et al. 2002, de Wit et al. 2009). In pavlovian (or classical)
conditioning, associations made between stimuli and outcomes are not contingent upon behavioural
(instrumental) intervention. By contrast, in instrumental (or operant) conditioning such stimulus—outcome
associations are contingent upon behaviour. Two-(or dual-) process theories have emphasized the inter-
dependency of these two purportedly distinct processes (e.g. Overmier & Lawry 1979).

Two-process theories tend to emphasize one or other of the i) energizing or motivational component,
essentially pavlovian, or ii) the directional control of responding (cf. Mowrer, 1947; Amsel 1958, 1992; Braver
et al. 2014), i.e. where specific responses are selected. Early models of such two-processes emphasized
the former component (within which the Rescorla-Wagner 1972, and Balkenius & Morén 2001, models
would fit), while a perspective on two-process models entailing directional control as well as illuminating
an important associative component, have since received growing focus. This initially took the form of
Associative Two-Process Theory (Trapold 1970, Trapold & Overmier 1972) and then Associative Mediational
Theory (Overmier & Lawry 1979, Kruse & Overmier 1982) where the latter identified a mediating role of
differential reward expectancies on behavioural responding that could be embedded within the former
(Lowe, Almér et al. 2017).

Underlying directional two-process theories is the use of a three-term contingency of instrumental
learning: S—-R-0, where S = stimulus, R = response, and O = goal based outcome, and where the pavlovian
process (through S-0 associations) is embedded within the instrumental process.

2.3.1 Associative Two-Process Theory

The theory of the Associative Two-Process (ATP) identifies S-R and S—-E-R routes (‘processes’) where E
represents an expectation of an outcome (or mediator) — see figure 3. ATP theory indicates that the outcome
expectancy route is formed according to two associatively learned components. Firstly, there are S—-E
associations — pavlovian associations — and secondly there are E-R associations (Overmier & Lawry 1979)
whereby outcome expectations can substitute for, compete with, or facilitate, the external stimulus in
guiding instrumental responding. The division of this route into two components has been verified by use
of transfer-of-control paradigms wherein the original, learned S-E and E-R contingencies are experimentally
manipulated leading to testable hypotheses concerning the pattern of initial responding to these new
contingencies (see Peterson & Trapold 1980; Lowe & Billing 2017).

By way of example, figure 4 schematizes a transfer-of-control scenario. As is typical for the paradigm,
there are three phases. Each of these phases consists of a number of independent trials for learning:
presentations of a stimulus, response options, and then a non-negative ‘outcome’ if the correct response is
chosen.
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A. Common Outcome |B. Differential
Condition Outcome Condition

Figure 3. Associative Two-Process Theory. Response choice is guided by the interaction of two processes: i) a stimulus-
response (S-R), or habit-enabling process; ii) a stimulus-outcome expectation-response (S-E-R) process. (A) Common
Outcome Condition. Reinforced S-R associations (mappings) cannot be distinguished by outcome (). (B) Differential Outcome
Condition. Reinforced S-R associations can be distinguished (A1, A2), and cued, by differential outcome expectancies (E1, E2).
Directional arrows indicate causal links. Dashed lines indicate learnable connections.

The phases break down as follows: Firstly, there is an initial instrumental learning phase where the two
components (S-E and E-R) of the ‘goal-directed’ route can be learned as well as the S-R (‘habit-enabling’)
route. Secondly, a pavlovian (contingency change) learning phase is presented where new S-E associations
are made. Finally, a second instrumental phase is utilized, which uses previously experienced stimuli and
responses but introduces novel stimulus-response pairings .2 This serves as a test of transfer of the knowledge
of the components (S-E and E-R) learned in the first two phases that provide the relevant building blocks for
the S-E-R process to select the ‘correct’ response in phase 2.

In the specific transfer-of-control example given in figure 4, over the first two phases outcomes (01
and 02) are common to S1 and S3, and S2 and S4, respectively (given that in phase 1 the correct responses
are made to obtain those outcomes). As a result, when Phase 3 (transfer test) occurs, since the animal/
human has learned S1 and S3 according to the same outcome (01)—that is, it has formed S1-E1 and S3-E1
associations—S3 automatically cues the response associated with E1 (learned in Phase 1), in this case R1
substituting for the external stimulus. No new learning is required for this in spite of the fact that the subject
has not been exposed to the particular (external) stimulus-response pairing (S3-R1) previously.

Discrimination Pairing Transfer Test
Training — Learned
E1  — » Non-learned
$1->R1(01) $3->01 §3->R1vsR2
$2->R2 (02) $4->02 $4->R1vs R2

Associative Two-Process Theoretics
e o S3-———+R1——>Al
§1-E1->R1 $3-E1 $3-E1->R1vsR2

$2-E2->R2 S4-E2 e S4-E2-> R1vs R2
02 02

Figure 4. Transfer-of-control paradigm. The conditioning consists of three phases: Phase 1 (Discrimination Training) —an
initial instrumental phase where different stimulus-response (S-R) pairings (51-R1, S2-R2) yield different outcomes (01, 02);
Phase 2 (Pairing) — a pavlovian learning phase where new stimuli are presented and associated with previously experienced
outcomes; Phase 3 (Transfer Test) —an instrumental transfer phase where the stimuli from phase 2 are re-presented as are
the response options from Phase 1. ATP theory predicts that responding in the transfer test (phase 3) will be based on already
existing S-E and E-R associations learned from the first two phases where the theorized preferred selections (underlined Rs)
are shown in the left diagram and the S3->R1 choice process is schematized on the right. Left diagram adapted from Urcuioli
(2005).

8 The first and second phase of the transfer of control paradigm can, in fact, be presented in any order though more standardly
the initial instrumental phase is used first.
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ATP postulates, therefore, that by way of a (dual-route) structured learning process, a type of transitive
inference is possible to find correct responses in the test phase without the requirement of learning. S3-R1
associations have not been learned at the beginning of the test phase, but previous experience allows for a
transitive performance of the form A->C (53-R1) derived from A->B (S3-E1), B->C (E1-R1).

The transfer-of-control problem does not entail a designed transitive inference problem but animals
and humans appear to resolve this problem by utilizing internal hidden stimuli (states) through which
inference can be made.

However, in the schematic (figure 4), the associative learning processes are not omnidirectional and
thus the property of retrievability given by Halford et al. (2014) is lacking for such a network to be considered
to imbue higher (relational) cognition. It would instead conform more to what Halford et al. (2012) terms
implicit transitive inference (as opposed to explicit transitive inference) — a term also used in animal learning
circles (e.g. Goel 2007). This provides an example whereby relational behavior does not necessarily imply
relational knowledge or representation.

2.3.2 Affective-Associative Two-Process Modelling

The Affective Associative Two-Process model that we developed (Lowe et al. 2014; Lowe et al. 2016; Lowe &
Billing 2017; Lowe, Almér et al. 2017) merges Associative Mediational Theory (Overmier & Laury 1979; Kruse
& Overmier 1982) and Associative Two-Process theory (Trapold 1970; Trapold & Overmier 1982). It does so
by modelling the differential expectancies of ATP (“E”) in terms of differential reinforcement outcomes. In
such cases, differential outcomes can take the form of differential reinforcement magnitudes (Peterson &
Trapold 1980; Delameter et al. 2012, 2017) or differential omission rates/probabilities (as studied by Urcuioli
1990; Kruse & Overmier 1982).

G

Figure 5. Neural computational model of the theorized Affective-Associative Two-Process (Lowe et al. 2017). This model
extends that of Balkenius & Morén (2001)/ Morén (2002) by a) adding an output node (blue) to which the omission probability
node (grey) provides excitatory (rather than inhibitory) input and which also receives inhibitory input indirectly from the (blue)
output node to which the magnitude node (black) excitatorily connects, b) have a differential response layer (cyan nodes) for
which reinforcement associations bias selection, c) a dual-response process whereby responses can be directly biased by
reinforced stimulus associations. Key: pe = magnitude prediction error, p_ = magnitude prediction, p, = omission prediction.
For the mathematical description of this model see Appendix C.

The Affective-ATP neural network model (figure 5) has previously been depicted as an adapted Actor-
Critic architecture (e.g. Lowe et al. 2017) but here is depicted as a feedforward ANN. This depiction allows
us to compare with the earlier-mentioned models but also show the ANN as a type of representational
rank 1 cognitive process (Halford et al. 2007, 2014). The model embeds the Balkenius and Morén (2001)
model (which in turn embeds the Rescorla-Wagner 1972, model) into an Associative Two-Process (ATP) via
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adding a ‘pessimistic’ computation of the output of the value computation (reward omission probability
expectation) to the ‘optimistic’ computation of the Balkenius and Morén model (reward acquisition
probability expectation). These two affective value state representations can then be associated with
different responses and are updated dependent on the reward (and omission of reward) outcomes the
responses yield. These pavlovian-affective representations of expectancies serve to implement Associative
Mediational theory embedded within the ATP.

The feedforward ANN depiction of the Affective-ATP model highlights how transitivity of choice
(Kahneman & Tversky 1986, Regenwetter et al. 2011) is computationally processed. The direct/habitual
route S-R (horizontal arrow at the bottom of the figure) provides the relation to be inferred in the absence of
explicit learning of this association (see previous section on transfer of control). The connections between
successive layers provides the means for ‘inference’ (when associatively learned). This process implements
the S-E and E-R route illustrated in figure 4 (right hand side) and occurs as follows: i. the omission and
magnitude value dimensions of the external stimuli (S1, S2, etc.) are learned and processed, ii. these values
are input into affective value states (‘optimistic’ reward acquisition probability inputs and ‘pessimistic’
reward omission probability inputs) and are non-linearly transformed (via differentially parameterized
logistic functions) so at to allow for ‘categorized’ semantic outputs to iii. form associations with responses.
This ‘categorization’ disambiguates the control that affective states can have over responding. In this model,
the E (expectancy) component can thus be seen as having two stages: i. value dimension computation, ii.
affective value computation. The model, as it builds on, and can collapse to, the Balkenius and Morén
(2001) model (and in turn that of Rescorla-Wagner 1972) is capable of resolving the sequential transitive
inference problem mentioned in section 2.1. through implicit transitive inference. As mentioned above in this
sub-section it also carries out another form of transitive inference using its structured hidden state.

However, as is made clear by the feedforward ANN depiction (figure 5) it does not satisfy the
omnidirectional criterion for higher cognition necessary for retrieval of propositional (and sub-
propositional) components. Delameter (2012) — see also Delameter et al. (2017) — has also proposed an ANN
model to capture differential outcomes data. However, this is also a feedforward ANN (does not permit
omnidirectionality) and has not been used to capture transfer-of-control data — it is not clear, therefore,
that the model allows for implicit transitivity (transitivity of choice). Furthermore, for the purposes of this
article, the model does not represent affective value.

2.3.3 Extending Affective-ATP Processing: Beyond Dual-processing

While we have grounded the Affective-ATP model in the pavlovian learning mechanisms of the Rescorla-
Wagner model, naturally models abound of pavlovian processes. Amsel (1958, 1992) provided a motivational-
pavlovian model centred on his frustration theory of invigorated responding — subjects will work harder for
rewards that are not immediately forthcoming. From Amsel’s frustration theory was derived the anticipatory
frustration directional model of Overmier and Laury (1979), Kruse and Overmier (1982) as previously
described. Other models exist that have been used in the context of Pavlovian-Instrumental Transfer (PIT)
experimentation, e.g. Balleine and Ostlund (2007). PIT is a phenomenon whereby a conditioned stimulus
brings to bear on the rate of conditioned responding. Cardinal et al. (2002) — see also Cardinal (2006) —
described a model of affective / emotional processing in relation to pavlovian conditioning. Within this
model affective states, described as “pure value states” by Cardinal et al. (2002, p.324) are constituted by
learned associated external (neutral) stimuli and unconditioned stimuli. These affective states in turn are
able to directly (without learning) bias responding. Such responses can be considered preparatory (non
US-specific), e.g. orientation, or consummatory (US-specific), e.g. salivation to food. In figure 6 (right hand
side) we have included the additional links (US-> R, S->Affect) to our Affective-ATP model (from figure 5)
with the difference that the Affective-ATP model requires associative (learned) links between affect and
response representations/nodes. The response options can be considered preparatory, e.g. differential
orientation responses (often used in differential outcomes experiments, e.g. pointing to a matching to
sample stimulus in space).
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Figure 6. Pavlovian-Affective Value Model of Cardinal et al. (2002). Left. Cardinal et al. (2002) model with colour-coded adapta-
tion. Right. Adapted Affective-ATP model to accommodate Cardinal et al. connections. Key: dashed arrows, with yellow circles,
represent (associative) learnable feedforward connections; solid arrows represent non-learnable feedforward connections.

In figure 6 (left) is depicted the Cardinal et al. (2002) model whereby to-be-conditioned stimuli can be
associated with both responses (thereby implementing the traditional S-R habit-forming route) and
S-Affective route.

To the authors’ knowledge systematic testing of the validity of each of the routes to differential outcomes
data has not been undertaken. In our current implementation of the model, the S-affect route learning
would necessarily be lagged relative to the S-US learning since US outputs are constitutive of the affective
states and therefore, we speculate that this route might not influence individual differential outcomes
learning and transfer of control. In the next section, however, we will discuss a role for this route in implicit
transitive inference based on social learning contexts.

A further conceptual extension of the Affective-ATP model concerns incorporating punishment-based (or
nociceptive) representations of stimuli, rather than just the reward and reward omission-based representations
currently modelled. While work has been carried out assessing how punishment and reward representations
might be combined associatively in active decision making (Lowe & Ziemke 2013; Navarro-Guerrero et al. 2017a,
b), we seek inspiration from the work of Rolls (1999, 2013, 2018) concerning stimulus-reinforcer association
learning theory of affect and emotions. In this theory, schematized in figure 7, emotions can be elicited as the
results of experienced (primary conditioned) or anticipated (secondary conditioned) positive rewards (e.g.
excitement) or omission/termination thereof (e.g. frustration, anger) but also as the results of experienced or
anticipated punishers (e.g. fear) or omission/termination thereof (relief).
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Figure 7. Rolls (1999) stimulus-reinforcer associative learning model of emotion. Acquisition of reward elicits positive emo-
tions scaled by reward intensity (S+). Punishment (S-) elicits negative emotions similarly scaled by intensity. Omission () or
termination (!) or reward or punishment elicit a different suite of emotions scaled by intensity.
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Our Affective-Associative perspective is consistent with Rolls’ (1999, 2018) insofar as we emphasize the
importance of reward contingencies rooted in the value dimensions of acquisition (magnitude) and omission.
We claim that these dimensions then lead to optimistic and pessimistic affective states, respectively, whose
influence on behavioural responses are designed to maximize future reinforcement.

3 Bridging Affective-Associative Processing and Relational
Cognition

Thus far we have discussed associative feedforward neural networks, their ability to imbue affective
representational states and their abilities to perform implicit relational cognition in the form of implicit
transitivity. The feedforward depiction of the previous models promotes a view that those networks provide
‘structure sensitive’ cognition (Fodor & Pylyshyn 1988). However, as Fodor and Pylyshyn (1988) note in
reference to such feedforward relational semantic networks (e.g. that implement John->loves->the girl:
“the links in Connectionist diagrams are not generalized pointers that can be made to take on different
functional significance by an independent interpreter, but are confined to meaning something like ‘sends
activation to’ ” (p.17). Therefore, the nodes of the network do not have value beyond their activation by
fed-forward input constituents and cannot engage flexibly in alternative relational contexts. Eliasmith
(2013) utilized the term ‘semantic pointer’ to allude to bidirectional networks (e.g. autoencoders) for which
relatively invariant representations (for clusters of nodes/neurons at higher levels in the hierarchy) are able
to: i) retrieve information from their constituents, but also ii) be used independently of their constituents
as symbols in relational activity. With respect to the Affective-Associative models referred to in the previous
section, this suggests that relational cognitive functionality may be limited to temporal relations, e.g. S1
succeeds E1, R1 succeeds E1.

3.1 Context-Specific Value Relational Representations

Notwithstanding the limitations of feedforward connectionist models for imbuing cognitive (logico-
relational) properties, explanation is needed for how symbolic-relational models are grounded in (or
connected to) associative processes that extract correlative patterns in the world (Harnad 1990) from which
‘meaning’ may be constructed. Grounding relational knowledge in the real world is critical for seamless
interaction in the world for physically embodied systems (humans, but also robots). But it may also be the
case that such relational systems can’t be fully understood without recourse to how they are shaped by the
dynamics of the world. The spatial and temporal dynamics of higher cognition (e.g. forming semantically
constituted relations) is at the very least constrained by those of the world but may also exploit such
dynamics in order to learn and develop higher cognition.

Leech et al. (2008) provided an example of how relational knowledge might be developed via exploiting
the temporal ordering of propositional information input to a connectionist architecture. In their proposed
recurrent (bidirectional) model of relational priming and analogy, priming is done by learning the temporal
order or relational transformations (before and after states), e.g. apple & knife is a before state and a cut
apple & knife, is an after state. The network was trained in accordance to this temporal ordering whereby
the ‘before’ state inputs were clamped (fixed temporal presentations to the network) while transformation
weights (for activating after states) were learned. Subsequently, before and after states were clamped in
order to learn hidden (transformative) representations that would allow for retrievability of before (from
after) and after (from before) states. Such relational learning that is grounded in the spatial and temporal
dynamics of the world may provide the building blocks for learning through structural alignment (Halford
et al. 2014) whereby analogies can be made based on learned structural relationships in the world (taller
than, faster than, precedes, succeeds). It must also constrain the sorts of spatial-temporal dynamics that
may occur in neural systems dedicated to analogical reasoning that have hitherto been considered only in
a disembodied context (Hummel & Holyoak 1997, Doumas et al. 2008).



248 — R.Llowe,etal. DE GRUYTER

3.2 Bridging Implicit and Explicit Relational Cognition Neural Networks

As mentioned in the previous section, the Affective-Associative Two Process model, as a feedforward
artificial neural network, structurally permits linguistically formulated transitive inferential logic, i.e.
the premises succeeds(A,B), succeeds(B,C) and inference succeeds(A,C), is inherent in the neural network
connective structure. However, the inferential process entails learning of the premises in order to arrive,
without learning, at the inference. This deviates from Halford et al. (2010, 2014) and Fodor & Pylyhsyn’s
(1988) conceptions of transitive inference who view connectionist schemas as limited regarding what they
can relationally represent. For Halford et al. (2010) the premises are not learned® but concern ‘one shot’
manipulation of symbols, i.e. representations that are independent of process (e.g. unlike feedforward
neural network activation). Halford et al. (1998, 2010, 2014) have postulated a tensor product structure
for neural networks whose n-dimensional (vector) complexity represents n minus 1 relational complexity,
e.g. the relation loves(John, Mary), consisting of 3 vector representations (2 objects, 1 relation), has binary
relational complexity and is of representational rank 3. Fodor & Pylyshyn (1988), on the other hand,
likening connectionist models to graphs and in reference to a relation “John -> loves -> the girl” suggest:
“Connectionist graphs are not structural descriptions of mental representations; they’re specifications of
causal relations. All that a Connectionist can mean by a graph of the form X - Y’ is: states of node X
causally affect states of node Y ... the graph can’t mean ‘X is a constituent of Y*” (p.17).

3.2.1 Case 1: Rank 2+ Autoencoding relational cognition model

In Halford et al. (2007) it was suggested that in order to (developmentally) transition from a representational
rank 1 neural network to a rank 2 network, it would be required to divide the hidden layer of a multi-layered
network (with one hidden layer) into (at least) two partitions: “The transition from Rank 1 to Rank 2 can
be envisaged by imagining the hidden layer at Rank 1 ... being divided into two components which are
then connected so as to form a matrix” (Halford et al. 2007, p. 2). Such a connectivity schema might be
envisaged as a recurrently connected neural network (e.g. of a form related to Leech et al. 2008). Halford
et al. (2014) has suggested that some forms of recurrent, or auto-associative, neural network may alleviate
such problems, e.g. autoencoders that are able to (auto-associatively) re-present inputs as idealized values
(based on the statistics of previous learning) at an output layer. Wilson et al. (2001) later demonstrated the
extent to which such an auto-associative (on an autoencoder based multi-layered perceptron — one hidden
layer) could permit ‘accessibility’ of items in a binary relational proposition, e.g. John Loves Mary.

The non-standard!® autoencoder was structured according to its having object, subject and relation
items selectively connected to a hidden layer, where object and subject could be viewed as arguments to
the predicate (relation). It was structured so that two of the three components projected to one of three
separate hidden layer partitions. These partitions then provided direct output to a partitioned output layer
representing the single other component, e.g. object (pizza) and subject (Mary) input representations were
represented in a hidden layer that projected to the output relation (likes) — see figure 8, left. The network
connectivity, therefore, was such that it had the potential for one-to-one, one-to-many, many-to-one and
many-to-many queries. For example, for the latter query type Who is frustrated by what? (in predicate
calculus: frustrated(X,Y)?) the dot product computation could produce an effective rank 2 tensor product
network, i.e. a matrix giving all frustrated people and all frustrated situations (see figure 8, right). However,
this network was found to have ‘limited accessibility’ (Wilson et al. 2001). It was best able to access single
elements from one-to-one queries, e.g. What is John frustrated by? (frustrated(John, Y)?) yielding in the
example in figure 8 the output ‘task’. Where one-to-many (vector) outputs provided the target output, the
network was more limited and suffered from incorrect generalization — if the encodings of different item

9 Or at least the learning of the premises is not a major concern from the modellers’ perspective.
10 The autoencoder did not have full connectivity between layers nor was the output layer trained to re-present the outputs of
the input layer.
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(relation, subject or object) vectors overlapped, i.e. had constituents similar to each other, there was greater
scope for erroneous output, i.e. accessing items that weren’t appropriate to the relation. This limitation
is apparently not the case for tensor product networks that are able to resolve many-to-many queries and
are thereby considered omnidirectional (have full accessibility to all possible queries made on the stored
propositions). This occurs since each proposition has a unique symbolic representation whose querying
(through dot product computations) can yield the appropriate outputs whether single values, vectors or
rank 2 tensor product networks.
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Figure 8. Connectionist and Symbolic Neural Network Implementations of Unary (Rank 2) and Binary (Rank 3) Relations. Left:
Adapted autoencoder of a binary relation of the form relation(subject, object). Each input element connects to corresponding
hidden layer partitions that connect to an output layer representing the two other element types (e.g. a subject element
connects to hidden layer partitions that output to object and relation targets). Adapted from Wilson et al. (2001). Right: Tensor
product networks (Wilson et al. 2001, Halford et al. 2014 following Smolensky 1990), also known as the STAR architecture.
Input vectors representing subject, object and relation (rank 3, lower network) provide inputs to a tensor product network
that captures the relation in a single symbolic neuron. From this neuron it is possible to access the other input values in the
relations (omnidirectionality) using a dot product query. A binary relation provides the output of the query “who feels what
about the task?”, given in predicate calculus by P(X,Y) where P and X are the terms being queried. The upper figure shows a
tensor product network for a unary (rank 2) relational neural network implementing a subset of the relations and objects of the
Wilson et al. autoencoder. Adapted from Halford et al. (2014).

3.2.2 Case 2: Rank 2+ Hierarchical structuring of relational cognition

The lack of semantic similarity (via implementing overlapping semantic units as relational constituents) of
STAR (figure 8, right) as a model of analogical mapping has been criticized by Hummel and Holyoak (1997).
Semantic similarity, while potentially providing a problem of overlapping constituents leading to incorrect
generalization, provides a property through which analogies may be learned.

An alternative ANN approach to the Wilson et al. (2001) model and to STAR (to which Wilson et al. 2001,
Halford et al. 2014 attribute omnidirectionality) is that provided in the LISA/DORA framework (Hummel
& Holyoak 1997; Hummel & Holyoak 2001; Doumas et al. 2008; Morrison et al. 2011; Holyoak 2012;
Knowlton et al. 2012; Doumas et al. 2018). The problem of overlapping activation of constituent elements
to propositional component representations, referred to in Case 1, is overcome by activating each sub-
proposition (and its constituents) of a proposition (e.g. John loves; Mary is loved of the proposition John
loves Mary) one at a time. So, all constituents of John loves are synchronously activated and this pattern
inhibits the Mary is loved pattern. The John loves pattern, through self-inhibition, loses activation and
simultaneously disinhibits the Mary is loved pattern (Knowlton et al. 2012). A high frequency oscillation
(relative to the neural states representing full binary propositions) between the two patterns is said to
allow for role-filler binding (of the “sub-propositions™) so as to input a stable pattern to the compound
neural representation that encodes the full proposition John loves Mary that is of representational rank 3
(Halford et al. 2014). This process is schematized in figure 9. Role-filler binding constituents may overlap
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in their representation — they might even involve the same objects (fillers) and predicates (roles) but
LISA/DORA exploits time (temporary representations involving re-use of components) so as to bind
position-sensitive (and thereby meaning-sensitive) role-fillers to propositional statements. Hummel et al.
(2004) has suggested that a critical feature that LISA (and DORA) possesses that STAR lacks is role/filler
independence — that is to say that the roles (predicates), e.g. loves, and fillers (object, subject), e.g. John
and Mary, that are used in a relational statement should not be dependent upon the particular statement.
John could be both ‘the lover’ and ‘the beloved’ and should not be re-presented in these different roles,
which is a requirement for STAR.
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Figure 9. The LISA/DORA Connectionist-Symbolic Architecture of Relational Cognition. Left. Top — LISA architecture, role-
binding (RB) units of the proposition (P unit) neural representation of bigger(Fido, Sara) fire synchronously with all constituent
neurons (object/O unit, predicate/role-filler or R unit and their semantic constituents/units) but asynchronously with each
other, i.e. the sub-proposition smaller(Sara) and its constituents are inhibited by larger(Fido) and its constituents. Bottom —
DORA architecture, the object/predicate constituents of role-binding (RB) units fire asynchronously with each other. Right.
The DORA firing patterns follow hierarchical oscillatory frequencies allowing for higher units to entrain lower units relevant to
analogical learning.

Learning and retrieval (from LTM) by analogy in DORA is guided top-down by a propositional unit and occurs
in reference to semantic similarity (amount of overlap) between a given sub-proposition’s constituents
(semantic units) and those of another that may give rise to analogous propositions but can also allow for
the learning of new predicates. Oscillatory (dynamic binding) activation of overlapping representations
provides the means to learn analogies since distributed semantic representations form the basis of analogies
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(semantic similarity) that can be disentangled (through temporal asynchronous activation) when learning
or retrieving specific role-filler bindings.

The historically earlier LISA uses the oscillatory binding (also referred to as dynamic binding)
mechanism to drive retrieval, and reinforcing in memory, of analogous propositions. This requires a Driver
proposition unit to top-down activate its hierarchically ordered constituents as illustrated in figure 9 (top).
Then analogous (Recipient) propositions are driven bottom up through activation of semantically similar
units (the constituents of the analogous proposition). Activation of these units in the analogue then feed
forward through the relational hierarchy — see figure 10. Activation in Object (O) and Predicate (P) units
feeds forward to a given role-binding (RB) unit that is invariant to sub-optimal activation in either unit
and is passed forward to the proposition unit (P). In turn activation feeds back down the hierarchy so as
to enable those O and P unit constituents of the RB unit to more cleanly win the competition against rival
object and predicate units allowing in turn for stronger representations in the (higher) relational levels.
This is achieved through a global inhibition mechanism and guards against multiple RB units being
simultaneously activated. The Driver oscillates between its synchronous RB unit constituent activations
thereby permitting the propositional statement (P) to be retrieved using feedforward and feedback dynamic
entrainment of the RB unit constituents of the (Recipient) analogous proposition. All of the analogue
recipient’s local units remain active for a period (i.e. have a prolonged oscillatory phase) along with those
of the ‘driver’ analogue allowing hebbian learning (LTM) for the like-for-like local units (mapping). This
is such that future inducements of Driver activity allow for direct activation of the local constituents of
the analogous proposition rather than requiring feedforward activation via semantically similar units (see
figure 10). LISA thereby achieves analogue retrieval and analogue learning (local unit mapping) through
use of its conceptually critical oscillatory binding mechanism.

The LISA/DORA framework has been criticized on account of not providing a description as to how
semantic constituents (above all predicates) are learned in the first place (Halford et al. 2010)*.

In order for any form of unary or binary relational knowledge to be acquired to bring to bear on
analogical learning and reasoning, some degree of associative learning must precede it. Refined object and
relational knowledge may be limited such that inaccurate or very holistic (Doumas et al. 2008, O’Reilly et
al. 2017) knowledge of objects may still have a top-down influence on what is learned through association.
In essence, any top-down knowledge that serves to focus attention on the constituents of the objects and
predicates relevant to relational knowledge may benefit the acquiring of both relational knowledge and
knowledge of the featural constituents of objects and predicates.

Bottom-up associative learning (‘System 1’) requires the use of space and time to resolve the binding
problem of apprehending the separateness and identity of individual objects. For example, an unfamiliar
object occluded by another may appear to young infants (Baillargeon 2004, O’Reilly et al. 2017) as a blend
of the two whereas more distal objects might be easier to process as being separate. However, apprehending
their co-occurrence in a particular situation requires some kind of embodied oscillation (moving towards,
orienting, foveating) between one object and another necessitating the use of time, i.e. sequential
processing of the stimuli/objects relevant to the scene. In this sense the bottom-up process may recapitulate
the top-down oscillatory binding process proposed by LISA/DORA as constrained by the embodiment of
the individual and the physical characteristics of the world. Notwithstanding, the possibility to learn the
constituents of objects and predicates that engage in relational knowledge, structural separation of the
constituents of propositional knowledge (binary relations) is required: “Simply jointly activating patterns
representing “John”, “Mary”, and “Loves” cannot distinguish “John loves Mary” from “Mary loves John” (or
even from a description of a narcissistic hermaphrodite)” (Hummel & Holyoak 1997, p.13).

11 It has also been criticized regarding the lack of evidence for oscillatory dynamics in the brain encoding for formation of
relational information ( see Eliasmith 2013).
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Figure 10. Analogical Retrieval and Learning LISA/DORA. The figure depicts the LISA/DORA architecture following analogical
retrieval where the proposition frustrates(Task, John) and its constituents is analogous to angers(Jake,Bill), for example, as it
applies to a related task or interaction. Prior to learning, the Driver (left-most Proposition) top-down activates semantic units.
Recipient (right side) R & O units propagate activity upwards as a result of semantic similarity (i.e. where Driver activated
semantic units concurrently activate the Recipient’s R&O units). The dashed horizontal lines indicate that following analogical
retrieval the individual unit layers of the analogues are associated (stored in long-term memory) permitting top-down retrieval
in future iterations. In this depiction we add featural (and input) units so as to highlight the possible interface of parallel
distributed (System 1) and localist (System 2) systems (adapted from Hummel & Holyoak 1997).

Top-down driven processing, starting either from propositional (binary) relational knowledge (LISA)
or (during learning) from unary relational and even object/predicate based representations (DORA) are
viewed as being critical for the formation of analogical relational structures. The mechanism of oscillatory
binding precludes simultaneous processing of overlapping semantic constituents for a given proposition,
e.g. where objects John and Mary share semantic features — both are human, have noses, etc. This enables
role-filler bindings (e.g. John is frustrated, Mary frustrates) to be kept distinct (Knowlton et al. 2012). As
for the bottom-up associative learning binding problem, relational knowledge is constrained by memory
storage capacity entailing overlapping constituents of objects and predicates. LISA/DORA resolves this
through the use of time, i.e. the sequential processing of unary relations and their constituents, and
additionally in DORA, objects and their constituents followed by predicates and their constituents. In this
manner, the semantic constituents of unary relations, objects and predicates maintain their identity in spite
of potentially being semantically similar but nevertheless are apprehended as belonging to the same scene
(relation in this case).

Top-down driven processing, insofar as it activates constituents of objects and predicates, might also
serve to activate (through asynchronous oscillation) featural (non-semantic) constituents potentially
providing the means for refining the learning of such featural constituents. This would occur through
providing a discriminative attentional mechanism to facilitate bottom-up associative learning means of
resolving the binding problem (i.e. using physical space and time as opposed to that contrived by top-
down oscillatory activation). Relational context can provide a means of disambiguating between objects
that are sensorially (not just semantically) similar. Such refinement could be viewed through the lens of the
predictive coding framework (Friston 2010, O’Reilly et al. 2017).
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3.3 Bridging Connectionism and Relational Cognition through Affective-Associa-
tive Processing.

As acknowledged by Doumas et al. (2008): “The model, as it stands, does not speak to where the semantic
invariants ... come from.” (p.33). To the authors’ knowledge work to the present-day using DORA (and
LISA) has not addressed this. DORA and LISA have been concerned with how relational knowledge can
be acquired through analogy rather than how the semantic constituents of objects and predicates for a
given relation may be acquired as a result of interaction with the outside world. Furthermore, Halford et al.
(2010) cites as a future question for the LISA/DORA connectionist-symbolic framework to address: “What
is the precise nature of the link between dynamic binding in working memory and acquisition of relational
knowledge”, (p. 503).

From this we can derive two research questions required to be addressed in order to arrive at a fuller
account of how a connectionist-relational architecture can explain the integration of system 1-like and
system 2-like processing in cognitive agents whilst accounting for the omnidirectionality property (through
retrieval from long-term memory - figure 10 — noted by Halford et al. 2010):

1. How are the semantic — object and predicate — constituents learned within a connectionist-relational
architecture?

2. How do top-down driven relational activations and bottom-up associatively learned activations interact
through dynamic binding?

In figure 11 is presented a hypothetical architecture integrating an affective-associative representational
rank 1+ model (section 2) with the LISA/DORA architecture. The affective-associative components (from
left to right of each plot up to but not including the R & O units) concern figure 6 (Cardinal / Affective-ATP
modelling) where for clarity of visualization arrows indicating learnable or non-learnable connections are
conflated into the same type. The affective mechanism is also inspired by Rolls (1999) stimulus-reinforcer
associative learning perspective on emotion elicitation (see figure 7).

Additional to the affective-associative processing network is depicted a replicated pair of affective
units representing perceived affective states (e.g. through facial expression) that, through mirror neuron
activation (De Gelder 2009) may be vicariously experienced by the perceiving individual. Such a social
dimension is a key element of affective processing but also potentially for relational knowledge concerning
other subjects. For details on vicarious learning using mirror neuron systems the reader is referred to Lowe
et al. (2016) — space precludes discussion here. Constituent units may now be considered as hierarchical
somatic (top) and object-based stimuli (bottom) comprising semantic (invariant) and non-semantic featural
(non-invariant) components. Lower down the hierarchy neurons encoding simpler features are more
sensitive to variation in the inputs and for different objects are expected to increasingly overlap based on
the sensory properties of the presented stimuli.

The figure represents a connectionist-relational architecture of an adult human that deploys the driver
— frustrates (Task, John) — proposition to exert top-down synchronous entraining of activation to all its
(semantic and featural) constituents. The affective-associative component left-to-right illustrates a reward-
based affective neural network blending that of the Affective-ATP and Cardinal et al. (2002) models. It could
be naturally extended by having additional reinforcer units that represent punishment (or nociception)
- and omission thereof — allowing for a Rolls (1999)-relevant model of affect to bring to bear on relational-
cognitive processing.

This constitutes a form of constituent refinement. In the above case, however, the activation can be viewed
as bidirectional. Bottom-up sensory processing of incoming stimuli (John and Task) whose constituent
features may overlap serve to activate object nodes in the R & O layer. Naturally, these object nodes may
misrepresent the subject and object ordering of the proposition Task frustrates John, and even more intuitively
in its retrieved analogue (figure 10) Bill angers Jake. Thus, discrimination benefits from top-down activation
focusing processing on one or other object (via oscillation) and its semantic and featural constituents. Such
a process would be of less obvious utility in the absence of sensory feedback (during which time precision
tuning to error might be dampened, see Friston et al. 2010 who provide a predictive coding argument for the
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existence of such a mechanism). In the case of there being sensory input a particular type of hierarchical
processing should occur. Here the level of top-down oscillatory binding should be constrained to that
which is sensorially available. For example, if sensory feedback for John + looking frustrated is available,
asynchronous oscillations between the John object and the is frustrated predicate (role) would be attended
to in order to refine the constituents of both — for John the semantic and featural components (e.g. nose, but
also non-semantic features of the nose may be important), for is frustrated the visual (and extra-visual, e.g.
prosodic) sensory properties, such as facial action units (Ekman 2003), may be attended to and refined. All
the while, the higher relational level of John is frustrated entrains the attentional focus on its object and role
constituents (asynchronously activated). The propositional unit — John is frustrated by Task, would entrain
the R & B units’ activations and their constituents oscillating between them in order to disambiguate the
overlapping constituents. This level is ‘motivationally’ significant since constituent refinement (for both
semantic and non-semantic features) for similar objects is important insofar as the objects have different
roles in a relation. Constituent refinement of predicates (frustrating versus is frustrated) would similarly be
important so as to distinguish my frustration (frustrating) from that of another (John’s) and to what extent.

— — — — — — — — — — —— — — — — — — — — — —
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Figure 11. Affective-Associative System 1-System 2 Network. Affective-Associative network extended through representation
of its ‘deep’ (external) stimulus and affective constituents. F units (featural units as in figure 10) and S units (semantic units)
are boxed to indicate that they are generative layers. Driver activation from the P unit flows through Role-Binder (RB) units and
their object (O unit) and affective unit constituents. These units in turn generate activation (or bias activation) in the S units
(that are then used to retrieve analogical propositions, e.g. angers(Bill, Jack) ). S units simultaneously generate activation in
their featural constituents (F units). Attention may be focused on any RB unit constituents but will be biased by simultaneous
bottom-up activation. This attention will also help refine constituent representations, e.g. the affective expressive consti-
tuents of John (and by analogy Jack) and the facial features of Jack (or task stimuli features). Generative activation may also
undergo precision tuning (Friston 2010) whereby attention to semantic and featural constituent details may be greater or less
depending on unpredicted fed forward activation. In the case of lowered attention achieved through such a precision tuning
mechanism, analogical retrieval may occur relatively unencumbered. In the case of high attention (to the external stimuli)
analogical retrieval may be deprioritized.
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The above provides an approach for implementing constituents of object and predicate units, essentially
using deep generative neural networks, whereby top-down activations allow for the generation of activations
of constituent units (as for autoencoders or deep Boltzmann machines — Hinton & Salakhutdinov 2006) or
the biasing of activations of the constituents (as for ‘VizNet’, Rolls 2016).

The affective representations thereby serve to i) learn predicate and proposition formation as grounded
in real world interactions, ii) top-down entrain agents to focus on affective relational constituents (featural
and semantic), i.e. to refine and learn features of objects and predicates (internalized affective states and
those expressed by another). The latter mechanism serving to better categorize those very objects and
predicates constitutive of the ‘predicted’ relation. The interaction between, on the one hand, this bidirectional
activation that serves learning about propositions in the world and, on the other hand, analogical learning
and retrieval, is then potentially enabled by an attentional mechanism (such as precision tuning, Friston
2010) wherein unpredicted external stimuli/events focus agents on the outside world (activation flows
down the hierarchy, see figure 10), and predicted stimuli/events permit activation to flow upwards from
semantic units to recipient analogue localist units (desensitizing activation from inputs units).

The experimental testing of such a bidirectional mechanism would not be without challenges. As for the
Frank et al. (2005) experiment mentioned in section 1.3., performance measures combined with subjective
reporting of the understanding of the rules of a given task could distinguish associative ‘strategists’ from
relational ‘strategists’. Doumas et al. (2018) have sought such evaluations through manipulating task
difficulty whereby associative strategizing is less likely to pay off for more complex relational problems.
An experimental set up that constrains sensory input to participants so that one object (John) is presented
followed by another (Task) in an oscillatory fashion and at different rates might also bring to bear on
how easily relational knowledge can top-down entrain associative processing and how easily analogical
knowledge can be utilized on a given task.

4 Discussion

We have presented a view on the bridging of connectionist and relational cognitive architectures
using affective-associative neural network modelling and a review of connectionist models and their
representational ranks (Halford et al. 2007, 2014). Halford et al.’s (2007, 2014) ranking system broadly
distinguished between System 1 (associative-based rank 0 and rank 1 representations) and System 2
(relational-based representations) like knowledge where the former entails the use of associative learning
mechanisms and is tied to interaction in the world and the latter permits higher cognitive functions
concerning relational knowledge subject to the property of omnidirectionality. We have focused our
attempts at bridging these two considered types of representational knowledge according to the encoding
of affective states as predicates — a subset of predicate knowledge, but an important subset nevertheless. A
fuller connectionist architecture should account for where all elements ‘come from’.

In presenting feedforward affective-associative neural networks imbuing representational ranks 0 and
1 we considered how such forms of processing can allow for implicit relational knowledge and that it may
permit the grounding of symbolic connectionist states (Harnad 1990) by exploiting the spatial and temporal
dimensions of physical embodied interaction (Leech et al. 2008). We finally discussed the possibility that
System 1 and System 2 like processing may be part of a single unified generative process. In this view,
bottom up processing is entrained by top down processing driven by ‘looking for’ object and predicate
relations in the world. Such processing can focus embodied attention whilst simultaneously refining the
semantic and featural constituents of those relations (as well as those of analogue relations).

A major motivation for our theoretical work is practical application and dealing with the hard problem
of engineering physically embodied agents (e.g. robots) so that they may make sense of the patterns of
sensorimotor activity that impact them (e.g. Li et al. 2013, 2014). Affective states, grounded in dimensions of
stimuli valuations, can take many forms - facial (Ekman 2003), prosodic (Schréder 2001), tactile (Andreasson
et al. 2018). Such diverse dimensions can all be argued to entail a predictive / generative process in order
to make sense of them (Lowe & Ziemke 2011, Morrison et al. 2013, Barrett et al. 2016, Lowe et al. 2017). In
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future work, we will strive to develop a predictive/generative architecture that permits affective states to
bridge connectionist/associative and higher cognitive-relational capacities in the service of intelligent and
adaptive robots and furthering cognitive scientific understanding.
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Appendix A: Rescorla-Wagner Model
pP=3s oy

where p is the prediction of reward, s, is the stimulus indexed by i, v, is the corresponding weight (or
valuation) of the stimulus.

Av,=as, [A - p] 2

where A is the reinforcement value set in (0,1), a is a learning constant in [0,1].

Appendix B: Balkenius-Morén Model

The Balkenius & Morén (2001) model uses equation (1) so that to calculate reward magnitude. The weights
update rule for valuating reward magnitude is the same as for (2) except that it computes only non-negative
values (Morén 2002).

Av=as [A-p_ I 3)

p,=%8; W, (4)
where p_is the prediction of reward omission.
Aw,;=Bs,(-[\-p,I"-p,) 5)

where B>a, is in [0,1].
E=p -p, (6)

where E is the output of the network (motivational state).

Appendix C: Lowe et al. Model

The Lowe, Almér et al. (2017) model is conceived as a temporal difference instrumental learning model.
Here is presented only the pavlovian component and in non-temporally discounted form (i.e. where y = 0)
thereby collapsing the model to the Balkenius-Morén model above (eqs 3-6). However, the output of the
model differs in providing for optimistic (eq. 6) and pessimistic (eq. 7) affective valuations of the stimuli.
Note, pe =A-p_as depicted in figure 5.

E_=-E+p, @)

)4



