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Abstract: Two different scientific analyses—one destructive and one non-destructive—were conducted on
two separate groups of bronze ornaments dating from 1500-1100 BC to investigate, amongst other traits,
the metal composition of their copper-tin alloys. One group of artefacts was sampled, and polished thin
sections were analysed using a scanning electron microscope (SEM). Results from the corrosion crust of
copper-tin alloys, and the change measured within the elemental composition from the bulk metal to
the surface, greatly influenced the interpretation of the second data set, which was measured using a
handheld X-ray fluorescence (XRF) device. The surface of corroded bronze ornaments consists mostly
of copper carbonates, oxides, and chlorides. Chemical processes, such as decuprification, change the
element composition in such a manner that the original alloy cannot be traced with a non-destructive
method. This paper compares the results of both investigations in order to define the possibilities and
limits of non-destructive XRF analyses of corroded bronze artefacts.

Keywords: portable XRF-analysis, corroded bronze ornaments, determination of workshops, Nordic
Bronze Age

1 Introduction

Defining metal workshops using scientific methods—for instance, through analysis of trace elements or
isotopic signatures—is a common matter of interest in archaeometallurgical studies. However, since the
middle of the nineteenth century, the impact of chemical analysis in provenancing archaeological objects
was discussed with a focus on the definition of workshops (for a detailed research history, see Pernicka
2014, Stos-Gale & Gale 2009).

Behind such an approach is the assumption that the metalworker was well aware of the properties of the
metal in use and intentionally chose that best suited to the object’s purpose. The colour, smell, and weight
of the metal, as well as its reaction during smelting, would have given the craftsperson all the information
needed to successfully produce the desired copper alloy. This can also be inferred for bronze and, as such,
the already alloyed tin-bronze would have been specifically chosen by the craftsperson to meet further
need. To support such a statement, however, a detailed trace element analysis of artefacts produced within
one defined workshop is necessary.
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Within a FP7-financed project, several metal workshops were detected from the early and middle Nordic
Bronze Age—namely in southern Scandinavia, Denmark, and North Germany (see Ngrgaard 2014a, 2014b,
2015h, 2015c).

Based on traces visible on the material culture, such as tool marks, residues of the crafting (technical
traces), and relics of the craftsperson’s habitus, eleven NBA II (1500-1350 BC) workshops were defined in
Denmark. Five further workshops were detected in Lower Saxony, including four NBA III (1350-1100 BC)
workshops in Mecklenburg, with evidence pointing towards a continuation of the majority of the NBA II
workshops. This project raised the possibility of testing for intentional alloying, and thus identifying a
specific craftsman through a signature alloy. The material from Mecklenburg (NBA III) offered a potentially
insightful case study, as the technical defined workshops, while located within a narrow region, clearly
could be separated due to their characteristics (Ngrgaard 2015a). Furthermore, the availability of the
material promised a robust data set. However, given the tendency within modern archaeology to emphasise
the protection and preservation of artefacts, solely a non-destructive analytical approach was allowed.

Non-destructive methods are becoming increasingly important within modern archaeological research.
These methods include analysis by handheld XRF spectrometer (Anker 1982, Helfert & Bohme 2010, Wolff
2009). Advancements in the scientific analysis of prehistoric objects, without the risk of damage, promise
researchers access to previously hidden information. Furthermore, the increasing availability of portable
XRF devices, as well as their moderate cost when compared to laboratory-based technologies, more
frequently allows the incorporation of chemical examinations in material culture studies. However, such
analyses have their limits and not all questions can be answered in this manner.

One major difficulty in the non-destructive analysis of bronze artefacts in museum collections or
in the field is the fact that the majority of these objects are corroded. Several studies have concentrated
on the analysis of corrosive structures on copper alloy objects (e.g. Bernard & Joiret 2009, Chase 1994,
Constantinides, Adrianes, & Adams 2002, Mircea, Sandu, Vasilache, & Sandu 2012, Oudbashi, Emami,
Ahmadi, & Davami 2013, Robbiola, Blengino, & Fiaud 1998, Wadsak et al. 2000), while only a small
number have discussed the analysis of corroded artefacts using handheld XRF devices (Fernandes, van
Os, & Huisman 2013, Satovié, Desnica, & Fazini¢ 2013). Unfortunately, these studies are typically published
within the domain of conservation studies and seldom find their way to archaeologists. Nonetheless, within
archaeological literature, the difficulties involved in using superficial analytical methods to determine the
composition of copper alloys in ancient artefacts have been mentioned and researchers have also noted the
fact that those values measured superficially using these methods give little insight about the actual alloy
(e.g. Hérke 1978, Lutz & Pernicka 1996, Otto 1973, Pernicka 2010). However, this topic is rarely discussed at
any length (exceptionsi.e. Pernicka 2010, 720-724), perhaps permitting archaeology’s continued assumption
that an analysis of the surface of corroded bronze artefacts will allow one to determine the composition of
the underlying alloy. The following case study will demonstrate not only the degree of the advancement of
corrosion on a select set of Northern European bronze artefacts, but also the value to be gained by the non-
destructive analysis of such objects. As such, this paper contributes to a wider debate regarding the limits
of non-destructive analysis using portable XRF technology. It will discuss the kinds of questions that could
be answered using handheld XRF and whether a surface analysis of artefacts will allow the determination
of workshops via the trace element composition.

2 Material and Method

To illustrate the limits of non-destructive methods such as XRF, outlined above, this study describes two
differently-executed analyses of corroded bronze ornaments originating within and dated to the Nordic
Bronze Age (1500-1100 BC). The material considered here consists of belt plates and neck collars from
NBA II sites (1500-1300 BC) in Lower Saxony (Ngrgaard 2015b) and from NBA III sites (1300-1100 BC) in
Mecklenburg, Germany (Ngrgaard 2015a). All artefacts examined for this study are made from bronze, a
copper-tin alloy, and form part of existing museum collections or stores. The majority of objects within the
sample were acquired at the beginning of the twentieth century; thus, many of the bronzes are coated with
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a heavy corrosion layer, and sometimes even with a layer of varnish or paint. They represent the normal
spectra of bronze artefacts a researcher will find while investigating the Bronze Age in northern Europe.

As this paper focuses on the possibilities and limits of non-destructive XRF-analysis in the study of bronze
artefacts, rather than the craft of metalworking itself’, the differences within the analytical methods of both
object groups and their potential regarding the leading question is the main objective. To this end, this study
considers primarily the corrosion of the examined artefacts and its effect on the chosen analytical method.

An earlier study details the metallographic analysis of the NBA II ornaments from Lower Saxony
considered here (Norgaard 2015b); the results of that investigation made it possible to reconstruct the
detailed operational sequence of the crafting process (Ngrgaard 2014a, 680ff.). During this earlier analysis
at the German Mining Museum in Bochum, it was possible to perform a more extensive investigation of
the specimen, due to a fully exposed cross-section. With the objective of defining the corrosion layers
of the bronze artefacts, as well as the change in the alloy composition towards the objects’ surface, the
samples were examined under a scanning electron microscope (SEM). The specimen samples were placed
within the large sample chamber (no restricting airlock) of the field emission scanning electron microscope
(SUPRA 40 VP from Zeiss), located in the museum’s material science laboratory. The SEM is equipped
with an energy-dispersive x-ray spectrometer (Noran System 7, Thermo) with a silicon drift detector (SDD).
In order to execute further metallographic investigations under the light microscope, the sand-polished
specimen samples were placed within a Bakelite ring and labeled on the back (Ngrgaard 2015b). The results
from the scanning process allowed the author to determine the alloy compositions of the artefact and the
changes within the composition towards the corrosion and within the corrosion layer. To offer a detailed
characterisation of the changes within the alloy composition towards the corroded surface areas, a series of
element distribution curves, measured from the centre of the sample to the edge of the corrosion layer, was
created, as well as element distribution charts (elemental maps).

The second group of artefacts—those from NBA III sites in Mecklenburg—were visually analysed with
an eye to studying the remaining traces left from the crafting process. The result is a superficial knowledge
of the traces left by different tools, techniques and habits of the craftsperson during the production process
(i.e. Ngrgaard 2015c). When this knowledge is compared to the deformations, or non-deformation, of the
metal’s microstructure as is documented within the metallographic examination, it is possible to create
a detailed operational sequence of the artefacts’ production. In addition, several scientific investigations
were executed in order to answer the initial question posed at the start of this discussion as to the nature
of specific individual alloys. The Archdologisches Landesmuseum Mecklenburg-Vorpommern restricts
examination of its collection to non-destructive methods; thus, the analysis of those objects in the
sample from the Mecklenburg region was executed using a handheld energy-dispersive XRF spectrometer
(Niton X13t GOLDD) to reveal their trace element composition. A handheld XRF spectrometer measures
and analyses the metal composition of an artefact near the surface. It is based on the principle that an
X-ray photon, emitted from an X-ray tube, removes an electron from the inner shell of an atom (for a more
detailed description of the process, see Anker 1982, Helfert & B6hme 2010, Wolff 2009). Thus, it measures
the elemental composition of the sample’s surface. As was indicated in the earlier case study, the results are
strongly influenced by the effects of corrosion on the distribution of elements at an object’s surface.

3 Results and Discussion

Most of the Scandinavian and north German bronzes considered here were found in agricultural areas or
bogs, and, due to a similar climate and agricultural practices, have been exposed to similar conditions.
Therefore, the corrosion documented through the metallographic investigation of the bronze ornaments
from Lower Saxony is comparable to that visible on the ornaments from Mecklenburg. As such, the
destructive (metallographic) analysis of the artefacts from Lower Saxony can be used to understand the
results from the non-destructive analysis of the artefacts from Mecklenburg.

1 For more information concerning the crafting of NBA II-IIl ornaments see Ngrgaard 2014; 2015c.
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3.1 Some Specific Information on Corrosion

The majority of bronzes dated to 1500-1300 BC are Cu-Sn alloys (tin bronzes), which, when exposed to
moist air under pre-industrial conditions, develops a patina consisting largely of basic copper (CuCO,).
These CU (II) salts can differ according to the deposition context of the bronze artefacts, e.g. malachite
(Cu,(CO,)(OH),) when corroded in soil, brochantite (Cu,(SO,)(OH),) when exposed to the atmosphere, or
atacamite (Cu,Cl(OH),) when placed in seawater. They commonly cover a red cuprous oxide (Cu,0; SnO,)
layer (Bernard & Joiret 2009, 5200, Constantinides et al. 2002, Robbiola et al. 1998, 2084). Therefore, the
monoclinic emerald-green to blackish carbonate and the glaze blue azurite, which develops into the
familiar greenish malachite (Mircea et al. 2012, 180, Wolters 1991, 206), dominates the appearance of the
bronze artefacts. Consequently, the appearance of carbon (C) and oxygen (O) as primary and secondary
chemical compounds is of particular importance for the understanding of the corrosion layer. In addition
to oxygen, chlorine (Cl) is also detected in almost all corrosion layers. As Oudbashi and colleagues (2013)
point out, the presence of chlorine in the burial environment of an artefact causes a reaction with its copper
and a formation of cuprous chloride. In the worst case, such exposure can lead to what is known as ‘bronze
disease’—a ‘reaction of copper with chlorine in presence of moisture and oxygen that causes the formation
of copper trihydroxichlorides ... until all metallic copper converts’ (Oudbashi et al. 2013, 8).

Furthermore, minor elements contained in the soil can influence the composition of the corrosion layer.
The metals contained in the immediate area around the deposited bronzes can accumulate in the corrosion,
in particular manganese and cobalt, as well as phosphorus and silicon, which appear frequently in modern
soil due to the effects of modern agricultural work. Thus, it can create a concentration of secondary metals,
including iron (Fernandes et al. 2013, 4, Pernicka 1995, 44) and aluminum (Mircea et al. 2012, 183).

Robbiola and colleagues (1998), as well as Chase (1994), have suggested that ion migration is
responsible for the observed effects within the corrosion layer. In order to explain the formation of copper-
alloy patinas, they have classified corrosion structures according to several types. The Type-I structure—
an even surface with a two-layer structure incorporating internal tin oxidation accompanied by selective
dissolution of copper—is characteristic for quaternary bronze (CU-Sn-Zn-Pb) and brass (Cu-Zn) (Robbiola et
al. 1998, 2090, Constantinides et al. 2002, 92). It also appears on tin-bronzes (Cu-Sn) as ‘noble patina’. The
Type-II structure—a coarse three-layered structure with a general uneven structure and corrosion attacks
such as pitting—appears frequently on arsenical bronzes (Cu-As), tin bronzes (Cu-Sn) and leaded bronzes
(Cu-Sn-Pb) (see Robbiola et al. 1998, 2097, Constantinides et al. 2002, 93-95). Interestingly, with an average
thickness of 25-34pum and a minimum thickness of 3pm the Type-I corrosion layers are much less developed
than the Type-II corrosion layers of tin bronzes (Cu-Sn). The average thickness of the latter measures
67um (measured on artificially-produced patina, table. 1). Furthermore, Constantinides and colleagues
observed an aggressive corrosion process in tin-bronzes at places ‘where the original surface is destroyed’
(Constantinides et al. 2002, 93); however, such developments are advantageous in craft technical studies,
as punch marks, intensive hammering of the surface, or inserted decoration would be visible within the
corrosion layer. This visibility of decorations applied post casting could be supported by the metallographic
analysis of the bronze ornaments from Lower Saxony (Ngrgaard 2015b, 121).

Table 1. The thickness of the corrosion layer in regard to the type of copper-alloy (based on Constantinides et al. 2002, 100).

Composition Range of Average of Type
thickness (um) thickness (pm) (after Robbiola 1998)
Quaternary bronze 14-146 34 1/ Pit
Arsenical copper 23-78 38 I/ Pit
Tin bronze 40-138 67 1]
Leaded tin bronze 18-60 25 I /1l/ laminated

Brass 3-73 24 |
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3.2 Differences in Element Composition Between Surface and Metallic Core

Results from the SEM analysis of the bronze ornaments from central Lower Saxony outlined here mark an
important contribution to ongoing discussion regarding handheld XRF analysis of museum collections.

Initial visual, qualitative analysis of thin sections taken from samples of most artefacts considered
revealed advanced corrosion (see figure 1). Occasionally it is to be inferred that no metallic core material
is left as the artefact is brittle and very light, which is characteristic of fully corroded bronze (Oudbashi et
al. 2013). To gain more information about the corrosion crust, an element distribution curve was charted
for several samples displaying a full cross-section and a sample thickness of 1-2 mm, tracing changes
in composition from the sample’s centre to the edge of its corrosion layer. The curve depicting element
distribution for the neck collar from Luttmissen, in Lower Saxony?, for example, showed a rapid drop of the
copper values, as well as a simultaneous and disproportionate increase in tin content with the transition to
the corrosion layer (figure 1).

Figure 1. SEM analysis of the specimen sample from the front section and the end plate of the neck collar from Luttmissen,
Uelzen (LMN 14161). The element curve clearly shows the change in the elemental values (scan: Dirk Kirchner, German Mining
Museum, Bochum).

Similar phenomena have already been documented in other studies of ancient bronzes, mostly within
conservation studies, while comparable results have been achieved in studies of artificially-created patinas

2 Two samples were taken from the neck collar found in Luttmissen, Uelzen, Lower Saxony LMH14161 (Laux 1971); - one from
the ribbed section and one from the end-plate.
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(Fernandes et al. 2013, 5, Oudbashi et al. 2013, 3, Satovi¢ et al. 2013, Constantinides et al. 2002, 93ff.). Copper
dissolution, which starts with selective dissolution from the copper solid solution a-phase (see Robbiola et
al. 1998, 2108), is commonly known as ‘decuprification’. During this stage, the dissolved copper reacts with
soil anions such as chloride (Cl) and carbon (C), and as these copper salts are soluble in soil waters, they
can be carried away from the metal surface (see Chase 1994, Oudbashi et al. 2013, Weisser 1975). Along with
the decrease in the copper values, the oxygen content rises sharply. This effect results from the reaction of
copper and oxide to the copper-oxide cuprite.

Since tin reacts to a much lesser extent with oxygen, the percentage of tin content in the alloy is not
changed; in fact, the additional enrichment of tin in the corrosion layer (Pernicka 1995, 44) results in a
distinct increase in its proportion relative to other components. In several studies of bronze corrosion, a
high tin concentration has been detected in corrosion layers. Selective de-alloying, or ‘destannification’,
from the bulk metal (and the tin rich 8-phase) towards the corrosion provides one possible explanation for
this phenomenon, while selective removal of tin offers an alternative (see for example Chase 1994, Weisser
1975). In this case, the fast oxidation of tin can be seen as the main motivation for its dissolution from the
bulk (tin-oxide films); however, this phenomenon requires further investigation.

With respect to the two alloying components of tin-bronze, copper and tin, one can speak of a
disproportionate reversal of their percentages within the corrosion. However, within three-layered Type-II-
corrosion crusts, the chemical composition changes greatly from one layer to the next (Robbiola et al. 1998,
2101).

Element distribution maps (figures 2 and 3) demonstrate that the sharp rise in oxygen content, as well
as the dissolution of copper and tin, are not local phenomena.

Figure 2, captured using the SEM, depicts half the cross-section of a sample taken from a neck collar’s
end plate. Clearly, the uneven corrosion layer (Type I/II corrosion, Robbiola et al. 1998, 2099) of about
30um is visible, as is the protruding corrosion at the grain boundaries. The SEM allows filtering of specific
elements, therefore it possible to visualise solely the distribution of, for example, oxygen and copper (figure
2, 0 K and Cu K - K indicates the shell) in an elemental map. These maps demonstrate that the decrease
of copper within the corrosion is correlated to an increase in oxygen, and that this phenomenon occurs
consistently throughout the corrosion. Additionally, the proportion of carbon (figure 2, C K) increases
in the corrosion crust. One can infer that the decrease in copper is part of the decuprification process®.
Simultaneously, tin becomes more densely concentrated (figure 2, Sn L).

The minor trace elements contained within the alloy also exhibit changes that are caused by the
corrosion process. Sulphur inclusions were found in the vast majority of the metallographically-examined
bronzes from the Liineburg Heath (see Ngrgaard 2014a, 2015b). The detectable percentage of the sulphur
content in most samples was constant; however, a slight increase in the sulphur values could be detected
within the corrosion layer. Arsenic could be only sporadically documented in the samples (figure 3, As
K). It is striking, however, that in the samples considered here, although arsenic-containing inclusions
predominantly occured at the transition to the corrosion layer, they could not be detected at the outer edge
of the sample (figure 4).

Changes in alloy composition within the corrosion crust were documented for all samples examined
(figure 5). Depending on the type of corrosion (both Type-I and Type-II structures were present) the
composition changed once or twice (for three-layered structures, see figure 5, 4931(6)). However, the
investigation led to some unexpected results.

A specimen sample from the site labeled as ‘Liineburgisch’ provides a particularly interesting case. The
fragment of a neck collar endplate with vertical ribbing and undecorated ends (see Ngrgaard 2011, 34-35),
examined under the SEM, showed a coating/layer with a dense structure, apparently attached to the original
surface of the artefact (figure 6). According to its element distribution curve, the artefact shows a familiar
shift in the copper and tin values in the transition from bulk metal to the corrosion crust. However, in the
transitional area, the proportion of copper increases drastically (from 38.37 to 72.18 weight %, see figure 6)

3 Neck collar from Raven, Harburg, Lower Saxony (LMH 4932).
4 However, some of the measured C in the elemental curve might be a reflection of the surrounding epoxy resin.
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Figure 2. Elemental map of the alloy components from the sample of the neck collar from Raven, Kr. Harburg, Lower Saxony
(LMN 4932). The sample is taken of the end plate of the collar (scan: Dirk Kirchner, German Mining Museum, Bochum).

and the tin proportion falls below its original value (figure 6 and 7). Additionally, sulphur content reaches
its peak at the transition to the coating. This phenomenon becomes apparent in mapping the distribution
of these elements. Both the distribution of copper (Cu) and tin (Sn) within the sample indicate a coating, as
does the linear concentration of sulphur (S) along the surface of the artefact (figure 8). The appearance of
tin, arsenic, and iron in the coating layer prompts one to question what this coating was made of and how
it may have come to be present on the surface of such artefacts.
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Figure 3. Elemental map of the alloy components from the sample of the neck collar (LMN 4931) from Rehlingen, Liineburg,
Lower Saxony (scan: Dirk Kirchner, German Mining Museum, Bochum).

Figure 4. SEM analysis of the specimen sample from the end plate of the neck collar from Luttmissen, Uelzen (LMN 14161). The
table lists the measured values of the individual measurements 1-4 (scan: Dirk Kirchner, German Mining Museum, Bochum).
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Figure 5. Elemental curve from several samples taken for metallographic analyses. Top left, Bleckmar, Celle, Lower Saxony
(LMN K851:76); Top right, end part of the collar from Raven, Kr. Harburg, Lower Saxony (LMN 4932); Left, Rehlingen, Liineburg,
Lower Saxony (LMN 4931); Right, shaft of the pin (LMN 5032) from Rehlingen, Liineburg, Lower Saxony (scan: Dirk Kirchner,
German Mining Museum, Bochum).



110 —— H. Wrobel Ngrgaard DE GRUYTER OPEN

Figure 6. Specimen sample from the end part of the collar near Liineburg (LMN 14147). The SEM data clearly show a severe
element composition at the outer layer of the collar (scan: Dirk Kirchner, German Mining Museum, Bochum).

Figure 7. SEM analysis and elemental distribution curve of the specimen sample from the collar (LMN 14147) near Liineburg
(scan: Dirk Kirchner, German Mining Museum, Bochum).
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Figure 8. Elemental distribution map, with arsenic and iron, of the specimen sample from the collar (LMN 14147) near Liine-
burg (scan: Dirk Kirchner, German Mining Museum, Bochum).

For restoration purposes as well as to imitate a green antique patina, linseed oil varnish, mixed with
malachite or azurite, has historically been used. Such treatment was especially popular at the end of the
nineteenth century (Copper Development Association 2008, Groves 2001). Occasionally, powdered copper-
alloy material was also added to the varnish. It can be assumed that the coating detected on this artefact
is such a varnish and that it was applied to give the neck collar the ‘typical green colour’ of Bronze Age
artefacts for its exhibition. Alternatively, it is possible that this layer was added as a conservational measure,
as it has obviously limited the effects of corrosion of the artefact’s surface.

Thus, the analysis conducted here of thin sections from artefacts of the Lower Saxony region allows one
to conclude that that the metal composition of an object’s surface does not reflect the composition intended
by prehistoric artisans.



112 —— H. Wrobel Ngrgaard DE GRUYTER OPEN

3.3 The Limits of Non-Destructive XRF Analysis on Archaeological Bronzes

Examination under the SEM clearly showed a marked change in the trace element composition from the
core to the corroded surface of the bronzes. This observation leads one to infer that studies of corroded
artefacts using a handheld XRF will not allow for the characterisation of the original alloy.

In order to determine a deterioration of the results by such corrosion layers in the bronzes, comparable
data was assembled using portable XRF devices from two fragments of identical bracelets, found within an
urn from the tomb of Gielow® (ALM IV/64/561 c and d) and now held in the National Museum of Mecklenburg
(see also Ngrgaard 2015a). A quarter of each fragment was cleansed of the patina, which covers the
remaining surface (figure 9). Two readings were taken for each artefact—one at the patina, and another
from the polished area. A comparison of the two measurements revealed the corroded area to contain 3-4%
less copper than the polished area, with an increased tin value of up to 4%. Furthermore, a slight deviation
was recognisable in regard to the further elements such as arsenic, which was present in usually a few
tenths or hundredths of the values observed for the polished areas.

Figure 9. Bracelet from Gielow, Kr. Malchin in Mecklenburg. Using the XRF device, once the polished section and the corroded
section of the bracelet were measured (picture: Heide Wrobel Ngrgaard).

However, as the thickness, as well as the properties, of the corrosion layer (see figure 5, K851) can differ
from artefact to artefact (Type-I corrosion and Type-II corrosion appear on artefacts with similar alloy
components), it is therefore not appropriate to value the deviation of tin and copper to around 4%.
Detailed study of the element distribution curves (see figure 5) clearly demonstrates the impact of
corrosion on the distribution of elements. As is shown by the data measured from the corroded artefacts in
Mecklenburg (table 2)¢, variations within the proportional values for tin are massive. Based on a variety of

5 Gielow, Kreis Malchin, Mecklenburg (Schoknecht 1965, 109, Ngrgaard 2011, 62-64).
6 See also supplementary material: extended table 2.
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archaeological and archaeometallurgical studies of north German Bronze Age material culture, one might
expect the artefacts investigated here to contain tin in proportions of between 8-12%, and possibly up to
14%. Data obtained via SEM from the artefacts from Lower Saxony support such a conclusion (see table 3).
As such, values between 8.71 to 55.56% obtained via handheld XRF illustrate a severe difference. Commonly,
within the earliest Bronze Age, artefacts were made of relatively pure copper or a multi-impurity metal
with high levels of nickel and antimony (for further reading, see i.e. Junghans, Sangmeister, & Schroder
1974, Sangmeister 1971). During the early and middle Bronze Age in north Germany, copper-tin alloys
were prevalent. The proportional presence of tin varies from 9-12% in NBA II and from 8-11% in NBA IIT".
Occasionally, artefacts contained 13-17% tin, as this composition was fairly widespread during the Taunton
phase in the British Isles (i.e. Harding 2000, 204). As trading relations between these regions are known to
have existed, one might assume the recycling of materials took place. However, only twenty of the seventy-
two artefacts from Mecklenburg analysed for this study were determined to be close to these common
compositional values.

The data leads one to conclude that the artefacts considered here are not equally well preserved.
A superficial examination of their surfaces and accessible cross-sections could indicate the extent of
their corrosion (as also shown in table 2); however, the data differs greatly from the compositions that
were expected. A range of minor elements were measured, including aluminum (Al), manganese (Mn),
phosphorus (P), and silicon (Si). As the X-ray penetration depth is limited to 100-200pum (Satovié et al. 2013,
7), these elements clearly were not a component within the original alloys; rather, they likely migrated from
the soil into the developing corrosion layers. Still, the presence of such elements can provide useful data,
informing the conservator of the degree to which the corrosion crust is developed, while determining the
value of a visual, qualitative assessment of the state of corrosion.

The data from Mecklenburg was experimentally used to execute some calculations in order to consider
the question of material groups related to Bronze Age workshops. To this end, proportional values obtained
for those elements clearly related to the corrosion process (like Al, Cd, Cr, Mn, Mo, Nb, P, Si, Ti, V, W or Zr)
were added and the total subtracted from 100%. In order to achieve a comparable composition of solely
original alloy elements, the remaining elements were proportionally extrapolated to 100% (see table 4). At
first sight, some of these calculated (in the sense of being mathematically constructed) compositions could
be used in further evaluations of the material. Not knowing the original data, over 50% of the calculated
elemental composition of the artefacts matches copper-tin (Cu-Sn) bronzes that could well have been
present during the Bronze Age. However, they are calculated and, as such, are not necessarily indicative
of the original alloy. None of these bronzes were examined if a metal core was still present. Some bronzes
might have just a few pm of corrosion crust while others might have up to Imm. As shown in table 4, a large
number of artefacts contained tin in proportions far greater than their likely composition at the time of
production. The uncertainty of the estimated data is also visible in the serious deviation of the tin content,
ranging from 9.5% to 64%. Furthermore, the unreliability concerning the patina type, as suggested within
this study, is striking.

As a result, analysis of metal composition using a non-destructive XRF device is not suitable to
discussions related to the fine qualities of alloys used by contemporary craftspeople. The data also made
clear that even when the material consists of artefacts in superficially similar corrosive conditions, one can
find significant variation in elemental composition and depth of corrosion. As comparative studies have
shown, bronzes with ‘noble patina’ (type I patina) and a high lead content might be better suited for such
investigations (e.g. Fernandes et al. 2013, Satovi¢ et al. 2013).

7 It should be noted that this information derives mainly from the analysis of weapons (axes) or ingots (see Junghans, Sang-
meister, & Schroder 1974). It might be possible that ornaments contain a slightly higher tin percentage as has also been seen
within the analysis of the ornaments from Lower Saxony.
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4 Conclusion and Perspective

Both non-destructive analysis by handheld XRF-devices and traditional XRF analysis of corroded bronze
objects can provide useful but limited information about artefacts. In the first case, the results of these
analyses can determine the morphology of corrosion crusts (see also results by Constantinides et al. 2002,
Fernandes et al. 2013, Mircea et al. 2012, Wadsak et al. 2000). When considered alongside other factors (e.g.
weight, colour (see for example Oudbashi et al. 2013, Weisser 1975, 207), and the characteristic changes of
the surface by the various types of patina described above) can be used to inform the conservator about the
state of an artefact.

Furthermore, such an analysis permits identification of the major elements present in the material used
to craft the artefact. One can assess whether an artefact is made of copper, bronze, brass, silver, or gold. Thus,
the non-destructive analysis using XRF will provide answers to most general questions regarding material.
The same is also true for some copper alloys, like arsenic-bronze, tin-bronze and lead-bronze. Alloys high
in lead are more resistant to corrosion due to a quick passive oxide layer of metallic lead (Fernandes et al.
2013, 5). It has also been illustrated that the significant dissolution of copper documented in other copper
alloys does not occur in arsenic bronzes (Constantinides et al. 2002, 93). Thus, more detailed information
regarding an artefact’s original composition, which is also explored here, might be achieved.

However, this analysis has demonstrated that tin-bronzes are especially prone to both types of corrosion,
and that major changes in composition are caused during the corrosion process. The type of corrosion,
however, cannot be determined with any certainty by a visual, qualitative analysis. Additionally, several
cases of bronze disease (type III) in which no metallic copper was left in the artefact could be identified in
the material. Furthermore, by comparing SEM cross-section scans on artefacts contemporary to the pXRF-
measured items from Mecklenburg, it became clear that the thickness of the corrosion crust differs greatly
in several cases. Even after stripping off the corrosion elements, a mathematical extrapolation of the values
could not yield any results comparable to the alloying ratios which are known from the Bronze Age.

Generally, a non-destructive, XRF-driven methodology is insufficient in identifying and quantifying the
components of an artefact’s alloy as intended by the craftsperson. This method cannot define intentionally
improved alloys by specific craftspeople and, thus, is not suitable for the definition of workshops.
Metallographic sampling, however, can help to identify craftspeople, as the skill of a craftsperson becomes
apparent through the techniques that he/she applies. With regard to handheld XRF investigations of
corroded bronze artefacts from museum collections, however, the fact remains that sampling is necessary
in order to answer detailed questions related to provenance, workshops and craftspeople. That being said,
XRF can nonetheless help to identify objects for further analysis, as heavily corroded objects are difficult to
evaluate using metallographic methods.
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Supplementary Material

The online version of this article (DOI: 10.1515/opar-2017-0006) offers supplementary material.

Extended table 2: The data measured by the XRF device on the artefacts from Mecklenburg (German Mining
Museum, Bochum) including elemental errors and full description of artefacts. In order to compare the
measurements, the patina type is given based on a superficial examination (including visible profile
sections) of the artefacts. Additional the corrosion elements are given in values.
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