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Abstract: Energy costs are the main concerns of the agricul-
tural stakeholders, because of their economic, environmental,
and social impacts on the farms and the development of
interrelated activities. In fact, it is important to save costs
with the energy use to improve the profitability of the farms,
but the level of these costs is often interlinked with the
options tomanage the energy consumption and the respective
implications on sustainability. This framework highlights the
importance of good management and planning for energy
utilisation in the farming sector, namely to promote a balanced
and integrated rural development. Considering these perspec-
tives, this research intends to identify which factor, and how,
impacted the energy costs in the European Union farms over
the last decades. To achieve these objectives data from the
Farm Accountancy Data Network database were considered
for the European Union agricultural regions and the period
2013–2021. This statistical information was analysed through
machine learning approaches following the procedures pro-
posed by the software IBM SPSS Modeler. The linear support
vector machine, regression, random forest, random trees, and
the classification and regression tree are the most accurate
models. On the contrary, the level of production, the size of
farms, the economic and financial structure, and policy mea-
sures are the most important predictors. The findings here
may be important insights for the European Union farming
stakeholders, specifically to allow the design of policies for a
more adjusted energy resources management.

Keywords: agricultural regions, artificial intelligence, digital
transition, econometric methodologies

1 Introduction

There is growing concern about social and territorial equi-
librium, which calls for new approaches to managing ter-
ritories and the various socio-economic activities that take
place there [1]. Agriculture and the corresponding agricul-
tural policies play an important role in territorial balance in
rural areas [2]. It is therefore important to ensure the rational
and appropriate use of resources by the agricultural sector
in order to promote more sustainable rural development.
Energy sources and the related farming costs are examples
of how more rational management of these resources will
lead to interesting gains in terms of sustainability.

The framework understanding of energy use in the
farming sector is fundamental to supporting the farmers’
decisions and the policy design for better agricultural man-
agement. The digital transition and the respective approaches
brought innovations that may contribute significantly to
more sustainable development in different fields [3],
including the agrifood chains. This is mainly essential to
assess and implement more eco-friendly practices and pro-
cesses, such as those related to circular economy [4] and
bioeconomy. This transition is also central to supporting the
development of new biotechnology fields [5].

These new methodologies may have a relevant added
value, for example, in the following contexts: tomato dis-
ease identification through the deep convolutional neural
network [6] and tea leaf disease prediction at the early
phase [7]; assessing the potential for bioenergy production
[8] and agricultural biomass use in the energy supply [9];
unmanned aerial vehicles challenges management [10];
solar energy prediction through neural networks in preci-
sion agriculture [11]; internet of things application [12]; leaf
area index evaluation in vineyards considering small
unmanned aerial systems [13]; contributions for the food,
energy, and water frameworks understanding [14]; energy
management approaches for vehicles used in agriculture
[15]; farming production efficiency [16]; and corn produc-
tion prediction [17].

These innovative technologies, associated with the
concept of smart farming [18], allow us to collect of data
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with alternative approaches (unmanned aerial vehicles,
for example), transmitting (through the Internet of Things
innovations) the information in real-time to be assessed
and process these data with methodologies of artificial
intelligence (with higher accuracy). The implementation
of smart farming methods promotes improvements in
the quality of agricultural products and consequently
increases the profitability of the farmers [19].

The relevance of the digital transition for agricultural
and forestry activities seems to have acceptance in the
scientific community [20]. Nonetheless, there is still some
work to do [21], particularly to improve the efficiency of the
related methodologies and consequently to reduce the
costs associated with their application. Energy efficiency,
network period and model accuracy have been concerns
for the researchers [22] who work with the new technolo-
gies and procedures.

Considering this scenario, this study aims to analyse
factors that influence the energy costs in the European
Union farming sector, considering microeconomic data
for the period 2013–2021 obtained from the Farm
Accountancy Data Network (FADN) [23] database for the
agricultural regions. The statistical information is pre-
sented in this database for representative farms of each
European Union agricultural region. These data were
assessed through machine learning approaches following
the IBM SPSS Modeler [24] procedures and taking into
account the findings of Martinho [25,26]. For the literature
review the most relevant documents were identified (for
the topics “energy,” “agricultur*,” and “machine learning”)
through bibliometric analysis [27] and considering the
VOSviewer [28–30] software procedures for
bibliographic data and bibliographic coupling links. The
selection of these topics, on 24 February 2024, for the bib-
liometric assessment was based on a compromise between
obtaining a reasonable number of studies for the literature
survey and their relation with the objectives of this
research. Panel data regression techniques were also taken
into account following Stata software [31–33] procedures,
Torres-Reyna [34] suggestions, and developments of
Hoechle [35]. To better understand the relationships
between some variables a Spearman’s rank correlation
[36] matrix was obtained. The assessments carried out
using these methodologies took into account potential pro-
blems related, among others, to multicollinearity, data par-
titioning, cross-validation, the most important metrics for
evaluating the models used. These analyses were made
following the procedures proposed by the software used
(IBM SPSS Modeler and Stata).

The main contribution and innovation of this study
lies in the consideration of machine learning approaches

to identify the best-fitting models and the most important
predictors of energy costs on farms in the agricultural
regions of the European Union, using microeconomic
information from the FADN. The perspective here is that
more rational uses of energy resources in agriculture will
ensure greater sustainability in the sector and promote
better territorial balance. The scientific literature available
on the topics addressed, namely agricultural energy,
machine learning approaches, and FADN data is scarce
and warrants new contributions.

2 Literature review

The several dimensions related to energy use in diverse
socio-economic activities and processes, particularly in
agriculture, have motivated different researchers over
time. More recently, the relevance of artificial intelligence
in these fields has been the focus of a significant number of
studies. Some of these scientific contributions have given
special attention, for example, to the following domains:
– Data analysis and the supply chain planning [37];
– Pest detection in precision agriculture [38];
– Crop production assessment [39];
– Internet of Things vulnerabilities [40];
– Cattle behaviour analysis [41];
– Privacy and trustworthiness on Internet of Things sys-

tems [42];
– Spray management in vineyards [43];
– Robustness of Internet of Things data transmission [44];
– Triboelectric nanogenerators and Internet of Things

[45];
– Farm monitoring [46];
– Mapping the soil [47];
– Net radiation estimation [48];
– Greenhouse climate regulation [49];
– Crop landscape mapping [50];
– Solid fuels classification [51];
– Artificial neural networks applications in greenhouse

[52];
– Photosynthetic capacities estimation [53];
– Solar energy use in greenhouses [54];
– Evapotranspiration analysis [55–57];
– Sorghum biomass prediction [58];
– Well-organised agrophotovoltaic structure [59];
– Weed control [60];
– Environmental implications of corn farms [61];
– Rubber tree evolution [62];
– Irrigated areas mapping [63];
– Deep learning constraints [64];
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– Agricultural practices and food security [65];
– Wireless sensor network and precision agriculture [66];
– Drought forecast [67];
– Variety temperature forecast [68];
– Soil moisture prediction [69]; and
– Wireless sensor networks quality in terms of efficiency,

privacy, and security [70].

These studies focused on the trustworthiness of the
new approaches related to artificial intelligence, specifi-
cally on the collection and transmission of data through
the Internet of Things technologies and wireless sensor
networks. The prediction and mapping of the resources
needed for agricultural production is another motivation
for the researchers, as well as the farming yield forecast.
The use of these new methodologies for a more adjusted
management and planning of the activities inside the
farms was also highlighted in the scientific literature.

The use of artificial intelligence opens, indeed, new
opportunities for the different socio-economic sectors;
nonetheless, some constraints may compromise, in some
cases, the effective adoption of these innovations. Some of
these limitations are related to the complexity of the meth-
odologies, the needed resources, skills requirements, and
some distrust of the society about these approaches
(namely because of the use of non-humans in some
jobs) [71].

In any case, the use of smart farming approaches may
be a plausible solution to deal with the current challenges
created for the agricultural sector by climate change and
the increased need for food for the world population,
which has been growing. In these frameworks, water use

is a concern for the agricultural stakeholders, and here,
smart irrigation answers may bring relevant added value
[72] for more sustainable agricultural management. Wire-
less sensor network plays a relevant role in smart farming
innovation [73]. Global warming also brings new worries
with the air and soil temperature forecast [74,75]. Data
analysis is another motivation for the scientific community
where digital innovations may contribute significantly [76].

The agricultural sector has specificities, and some of
them need complex approaches to be managed. In these
contexts, the contributions of novel solutions may support
the decisions of the stakeholders for better options related,
for instance, with the insemination practices in dairy cattle
[77], energy use on dairy farms [78], food supply chain
analysis [79], and agricultural land management [80].

Disease and pest control, crop selection, and water use
are among the most critical decisions for farmers, and this
requires innovative approaches for more adjusted agricul-
tural plan design [81]. The application of new technologies
for more sustainable water use in agriculture has attracted
the interest of researchers [82–84], as well as crop produc-
tivity [85] and fruit harvesting [86].

3 Data analysis

On average, the energy cost/total input cost ratio in the
European Union with 27 countries, after Brexit in 2020
(EU27_2020), presents a decreasing tendency over the
period considered (2013–2021) and represents around 8%
(Figure 1). This trend may represent good news, signifying
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Figure 1: Weight of energy costs in total input costs for the EU27_2020 representative farms over the period 2013–2021.
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Table 1: Energy costs on average for the European Union agricultural regions over the period 2013–2021

(Continued )
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a propensity for a more sustainable development; none-
theless, there are here several factors that may impact
this evolution and need to be properly and deeper ana-
lysed in this research and future studies.

Table 1 shows the results for the average energy costs
in the European Union agricultural regions over the period
2013–2021. It should be noted that in these values, not all
years have statistical information for the agricultural
regions of Hamburg and Martinique.

Czechia, a relevant number of German agricultural
regions, The Netherlands, and Slovakia agricultural
regions have higher energy costs per representative
farm, in some cases because of the dimension of the farms,
in other cases due to the requirements of energy of the
agricultural systems adopted and in other circumstances
because of the economic conjuncture.

Some regions of Croatia, Greece, Poland, Portugal,
Romania, and Spain have lower energy costs per farm.
These findings need, however, to be further analysed to
try to understand if these costs are a consequence of the
prices, for example, or derived from the level of consump-
tion related to the dynamics of the farm (or lower effi-
ciency in the energy use). In particular, it is important to
understand the importance of factors such as the type of
crop and the size of the farm.

4 Machine learning approaches to
identify important predictors of
energy costs and accurate
models

Linear support vector machine (LSVM), regression, random
forest, random trees, and classification and regression (C&R)
tree approaches are the most accurate models, considering
the relative error (lower results) for the testing set (Table 2).
The relative error is the way considered by the software used
(IBM SPSS Modeler) to analyse the accuracy of the models
tested. In any case, this way of analysing accuracy is consid-
ered the most relevant [87]. The higher accuracy of these
models to predict the energy costs in the European Union
farming regions is confirmed by Figure 2 for the relationships
among the observed values and the predicted ones. The sta-
tistical information considered was obtained from the Eur-
opean Union FADN, and the results of the models were found
using IBM SPSS Modeler procedures. LSVM is specifically
relevant for datasets with a large number of variables. The
regressions are common linear regressions, and the random
forest is a tree model implemented in Python. Random trees
are models characterised by multiple decision trees, and C&R
tree is a classification and predictive method [24].

Table 1: Continued

Note: The red cells represent the ten higher values, and the green ones
are relative to the ten agricultural regions with the lower average energy
costs.

Table 2: Accurate models to predict the energy costs in the European
Union agricultural regions over the period 2013–2021

Model Build
time

Correlation Number
fields used

Relative
error

LSVM 4 1.000 168 0.000
Regression 4 0.999 135 0.003
Random forest 4 0.991 168 0.018
Random trees 4 0.986 168 0.028
C&R tree 4 0.982 52 0.039
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The most important predictors identified are, for
example, the following (Table 3): cereals output, long and
medium-term loans, total liabilities, cows’milk production,
total utilised agricultural area, total assets, and decoupled
subsidies.

These results reveal the importance of some produc-
tions for the level of energy costs in the European Union
representative farms, as well as the dimension of these
farms and their economic and financial structures.

Another interesting finding is the relevance of the
Common Agricultural Policy (CAP) instruments to explain
and predict energy costs. This means that the CAP mea-
sures may be considered to mitigate some of these costs.

In the following subsections, the findings for each one
of the five models with higher accuracy will be presented,
considering the most important predictors identified.

4.1 Linear support vector machine results

Table 4 summarises the linear support vector machine
model information, considering the energy costs as the
target field and ten predictors input. Table 5 shows the
importance of the total utilised agricultural area to predict
the energy costs in the European Union agricultural
regions (in the period 2013–2021), as well as the level of
output of some specific productions. This is confirmed in
Figure 3 for the relative importance of the predictors. The
summary records of the model are highlighted in Table 6.

Figure 2: Relationships between the observed energy costs and the
predicted ones in the European Union agricultural regions over the
period 2013–2021.

Table 3: Important predictors of energy costs in the European Union
regions over the period 2013–2021

Nodes Importance

(SE155) Sugar beet (€/farm) 0.025
(SE160) Oil-seed crops (€/farm) 0.025
(SE630) Decoupled payments (€) 0.034
(SE436) Total assets (€) 0.038
(SE025) Total Utilised Agricultural Area (ha) 0.040
(SE216) Cows’ milk and milk products (€/farm) 0.048
(SE485) Total liabilities (€) 0.057
(SE256) Other output (€/farm) 0.059
(SE490) Long and medium-term loans (€) 0.068
(SE140) Cereals (€/farm) 0.069

Table 4: LSVM model information to predict energy costs in the
European Union agricultural regions, over the period 2013–2021

Model information

Target field (SE345) Energy (€)
Model building method Linear SVM
Number of predictors input 10
Number of predictors in final model 8
Regularisation type L2
Penalty parameter (Lambda) 0.1
Regression precision (Epsilon) 0.1

Table 5: LSVM parameter estimates to predict energy costs in the
European Union agricultural regions, over the period 2013–2021

Parameter Estimates

Intercept 1072.519
(SE025) Total Utilised Agricultural Area (ha) 40.442
(SE140) Cereals (€/farm) 0.038
(SE155) Sugar beet (€/farm) −0.018
(SE160) Oil-seed crops (€/farm) 0.044
(SE216) Cows’ milk and milk products (€/farm) 0.053
(SE256) Other output (€/farm) 0.187
(SE436) Total assets (€) 0.003
(SE485) Total liabilities (€) 0.001
(SE490) Long and medium-term loans (€) −0.005
(SE630) Decoupled payments (€) 0.015
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4.2 Regression model findings

The results for the regression model confirm the importance
of some farming productions and the dimension of the farms
to predict the energy costs (Tables 7 and 8). Another relevant

Figure 3: Predictor importance of the energy costs in the European Union agricultural regions, over the period 2013–2021, considering LSVM model.

Table 6: LSVM records summary to predict energy costs in the European
Union agricultural regions over the period 2013–2021

Records Number Percentage

Included 579 99.66
Excluded 2 0.34
Total 581 100

Table 7: Predictor importance of the energy costs in the European Union
agricultural regions, over the period 2013–2021, considering a regres-
sion model

Nodes Importance

(SE155) Sugar beet (€/farm) 0.000
(SE490) Long and medium-term loans (€) 0.000
(SE140) Cereals (€/farm) 0.019
(SE485) Total liabilities (€) 0.049
(SE160) Oil-seed crops (€/farm) 0.077
(SE436) Total assets (€) 0.121
(SE216) Cows’ milk and milk products (€/farm) 0.128
(SE630) Decoupled payments (€) 0.166
(SE025) Total utilised agricultural area (ha) 0.207
(SE256) Other output (€/farm) 0.233

Five models and ten predictors for energy costs  7



finding is the relative importance of the decoupled payments
to predict the energy costs in the European Union farms. This
means that the CAP instruments may be taken into account to
improve the efficiency in energy use and in this way mitigate
the respective costs that represent about 8%, on average (for
the representative farms and over the period here consid-
ered) in the total input costs.

4.3 Random forest results

Figure 4 also highlights the relative importance of the fol-
lowing predictors: decoupled payments, total utilised agri-
cultural area, long and medium-term loans, total assets,
and cereals output. Nonetheless, considering the results
from the regression model, the long and medium-term

Table 8: Regression coefficients to predict energy costs in the European Union agricultural regions over the period 2013–2021

Unstandardised
coefficients

Standard error Standardised
coefficients

t Significance

(Constant) 390.694 181.179 2.156 0.031
(SE025) Total utilised agricultural
area (ha)

35.802 5.490 0.220 6.521 <0.001

(SE140) Cereals (€/farm) 0.007 0.010 0.022 0.723 0.470
(SE155) Sugar beet (€/farm) −0.028 0.030 −0.010 −0.958 0.338
(SE160) Oil-seed crops (€/farm) 0.084 0.017 0.104 4.838 <0.001
(SE216) Cows’ milk and milk
products (€/farm)

0.062 0.004 0.177 13.862 <0.001

(SE256) Other output (€/farm) 0.149 0.008 0.291 18.702 <0.001
(SE436) Total assets (€) 0.005 0.001 0.167 8.671 <0.001
(SE485) Total liabilities (€) 0.004 0.005 0.069 0.915 0.360
(SE490) Long and medium-term loans (€) −0.014 0.005 −0.192 −2.824 0.005
(SE630) Decoupled payments (€) 0.115 0.028 0.181 4.118 <0.001

Figure 4: Predictor importance of the energy costs in the European Union agricultural regions, over the period 2013–2021, considering a random
forest model.
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loans predict the energy costs in the farming context of the
agricultural regions in the European Union member-states
with a negative relationship.

4.4 Random tree findings

For this model, the results reveal that the most important
predictors are in decreasing order as follows (Figure 5): oil-
seed crops output, total assets, cows’ milk output, long and
medium-term loans, decoupled payments, sugar beet
output, and cereals output. The total utilised agricultural
area appears for this approach with a lower relative
importance. In this model, the levels of output of some

productions and the economic and financial structures
have higher importance.

4.5 C&R tree results

Considering the results presented in Figure 6, node 1 con-
tains the observations when a representative farm of the
European Union agricultural region has an oil-seed crop
output lower, or equal, to 40,749 euros. A random European
Union agricultural region has a 97% probability of belonging
to this node with a predicted value for energy costs of 7809
euros. Terminal node 6 reveals that farms with higher oil-
seed crop output have greater energy costs, and terminal

Figure 5: Predictor importance of the energy costs in the European Union agricultural regions, over the period 2013–2021, considering a random trees
model.
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node 21 presents that farms with lower oil-seed crop output,
lower long and medium-term loans, lower hectares, and
lower total assets have inferior energy costs.

5 Regression results with
panel data

To bring more insights into the energy cost explanation in
the representative farms of the European Union agricul-
tural regions, it seems interesting to simulate, through

panel data approaches, the relationships between the
energy costs in these farms and the variables identified
in the previous sections to predict these costs. The inde-
pendent variables were selected, taking into account the
findings obtained before with machine learning methodol-
ogies and the variance inflation factor (VIF) test for
multicollinearity.

In general, Table 9 shows that the energy costs in the
European Union farming regions have strong (and statisti-
cally significant) correlations with the dimension of the
farms, the level of output of some agricultural activities,
the financial structure, and the amount of decoupled

Figure 6: C&R tree results to predict the energy costs in the European Union agricultural regions, over the period 2013–2021.
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subsidies. When the total utilised agricultural area, oil-seed
crops output, cows’ milk output, and total assets, in these
farms, increase by 1%, the energy costs increase, respec-
tively 0.42, 0.04, 0.11, and 0.50% (Table 10). To deal with
statistical problems related to heteroscedasticity and auto-
correlation, Prais–Winsten regressions were considered.

To analyse the potential effects of inflation over the
period considered and the differences in the prices
between the European Union countries, the values in euros
were deflated through the harmonised indices of consumer
prices (HICP, all-items, 2015 = 100) and adjusted with the
price level indices (PLI, gross domestic product, EU27_2020
= 100). These indices were obtained from the Eurostat [88].
Generally, the results for Spearman’s rank correlation
coefficients (Table 11) and the panel data regressions
(Table 12) are not so different from those presented in
Tables 9 and 10, showing a non-relevant impact in these
relationships from the prices.

Tables 13 and 14 present the results for the values in
euros corrected with the HICP and PLI and considering the
ratio (SE345) Energy (€)/(SE025) total utilised agricultural
area (ha) instead of the variable (SE345) energy (€). The
intention is to assess the energy costs corrected by the
dimensions of the representative farms. In this case, Spear-
man’s rank correlation coefficients among the ratio and
the other variables are all negative (Table 13), and the
strongest correlations were found for the total utilised
agricultural area (−0.607) and the decoupled payments
(−0.419). When the total utilised agricultural area increases
by 1%, the energy costs by hectare decrease by 0.62%
(Table 14). The impacts from the other independent vari-
ables are similar to those verified before.

6 Discussion

The energy costs represent a relevant part of the total inputs in
the European Union farms, and in this perspective, it is impor-
tant to bring more knowledge for a better understanding of
these frameworks, namely to highlight themain predictors and
variables that may explain the level of these costs. Another
dimension is related to the identification of accurate models
and algorithms to assess the associated contexts. In these con-
ditions, this study aims to bring more insights into the explana-
tion and prediction of the energy costs in the European Union
agriculture, taking into account statistical information from the
FADN and Eurostat databases, as well as machine learning
approaches and panel data methodologies. The period of
2013–2021 was the period considered for the assessment here
presented. The intention was to consider a period after the last
enlargement of the European Union.

The literature review highlighted the relevant contribu-
tion of the digital transition for a better understanding of
several socio-economic dimensions, particularly for a better
analysis of the energy use in the farming sector [54]. An
efficient use of energy resources is crucial for more sustain-
able development in the farming sector. The new technolo-
gies associated with era 4.0 have contributed to the different
fields of energy use in the farms, since a more accurate pre-
diction of the crop’s diseases until a more adjusted manage-
ment of the related supply chains. This may contribute to
improving the profitability of the farmers and increase the
quality if the agrifood supply chains. Nonetheless, the use of
smart farming approaches has not only advantages; there are
also some concerns of the stakeholders with the use of these
new techniques, and some of them are linked with the

Table 10: Panel data regression results, through a linearised model with logarithms, for the European Union agricultural regions over the period
2013–2021

Prais–Winsten regression, heteroskedastic panels corrected standard errors, ln((SE345)
Energy (€))

Coefficient Standard error z P > |z|

ln((SE025) Total utilised agricultural area (ha)) 0.423 0.025 17.140 0.000
ln((SE155) Sugar beet (€/farm)) −0.008 0.006 −1.290 0.196
ln((SE160) Oil-seed crops (€/farm)) 0.040 0.013 3.030 0.002
ln((SE216) Cows’ milk and milk products (€/farm)) 0.111 0.013 8.530 0.000
ln((SE436) Total assets (€)) 0.500 0.021 24.180 0.000
_cons −0.458 0.204 −2.240 0.025
VIF 3.570
Hausman test 6.050 (0.417)
Modified Wald test for groupwise heteroskedasticity 1.6 × 1029 (0.000)
Wooldridge test for autocorrelation 58.856 (0.000)
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Internet of Things vulnerabilities, for example. The privacy
and trustworthiness of the systems, particularly in the trans-
mission of data, have concerned the scientific community. In
addition, the competition of these approaches with the
humans in some jobs, the skills and resources needed and
the complex structure of these systems are other focus of
discussion for the researchers [71].

The data analysis shows that for the period considered,
the energy costs represented around 8% of the total input
costs in the European Union farms. On the contrary, the
farms from Czechia, Slovakia, The Netherlands, and some
German agricultural regions have higher energy costs,
because of the dimension of these agricultural units, the
farming systems implemented, and the specificities of the
economic/financial context of the countries. Inversely, agri-
cultural regions from Croatia, Greece, Poland, Portugal, and
Romania have inferior energy costs in their respective farms.

The assessment of the data through machine learning
approaches highlighted the accuracy of the LSVM, regression,
random forest, random trees, and C&R tree models to predict
the energy costs in the farms of the European Union agricul-
tural regions. The important predictors identified are related
to the level of output of some productions (cereals, for
example), the dimension of the farms (total utilised agricul-
tural area), economic and financial structure (total assets and
liabilities), and policy measures (this means that the CAP
instruments may be eventually adjusted to mitigate energy
costs).

The regressions carried out with panel data methodolo-
gies confirmed the importance of the total utilised agricul-
tural farms of the farms to explain the energy costs, as well as
the level of output of some farming productions and the level
of total assets, including when the variables in euros were
corrected for the inflation and the differences in the level of

prices between the diverse European Union member-states.
When the energy costs are adjusted by the dimension of the
farms (energy costs/hectare), the strongest and negative
Spearman’s rank correlation coefficients appeared for the
number of hectares and the decoupled payments. Again,
the CAP instruments appear here as a tool that may be rea-
nalysed to better deal with the energy costs in the European
Union agricultural regions.

7 Conclusions

In terms of practical implications, for a more efficient use
of energy resources and to mitigate energy costs, the farms
of some European Union agricultural regions, particularly
the bigger and more dynamic ones, need to identify inno-
vative approaches to make compatible these dimensions
with a more sustainable development. Without a harmo-
nious development of the agricultural sector, the conse-
quence will be the abandonment of the activity with the
risk of desertification of the most disadvantaged rural
areas. Another implication will be the appearance of new
focuses on territorial asymmetries due to inappropriate
land management and incorrect definitions of policy
instruments. For policy recommendations, it is suggested
to adjust the CAP instruments (namely the decoupled pay-
ments) to promote the strongest sustainability in the
European Union farms. For future research, it could be
interesting to analyse further the impacts of the CAP mea-
sures on the energy costs of the farms, to better rethink
them. It would be important, also, to make more inferences
with the results, namely validate them with the context of
each country.

Table 12: Panel data regression results, through a linearised model with logarithms, for the European Union agricultural regions, over the period
2013–2021, with the variables in euros deflated with the HICP and corrected with the PLI

Prais–Winsten regression, heteroskedastic panels corrected standard errors, ln
((SE345) energy (€))

Coefficient Standard error Z P > |z|

ln((SE025) Total utilised agricultural area (ha)) 0.347 0.023 15.030 0.000
ln((SE155) Sugar beet (€/farm)) −0.004 0.006 −0.720 0.470
ln((SE160) Oil-seed crops (€/farm)) 0.062 0.013 4.980 0.000
ln((SE216) Cows’ milk and milk products (€/farm)) 0.106 0.011 9.670 0.000
ln((SE436) Total assets (€)) 0.466 0.023 20.030 0.000
_cons −3.260 0.106 −30.720 0.000
VIF 2.980
Hausman test 3.690 (0.718)
Modified Wald test for groupwise heteroskedasticity 5.7 × 1030 (0.000)
Wooldridge test for autocorrelation 83.887 (0.000)
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