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Abstract: During storage, wheat kernels undergo complex
biochemical changes that affect their quality. Therefore, accu-
rate and rapid measure of wheat freshness has immense
economic and societal value. Using biophotonics and deep
learning, this article explores the intricate relationship
between wheat's ultra-weak bioluminescence signatures
and its freshness. First, we select an advanced biophotonic
system to capture time-varying bioluminescence data from
kernels, which is then transformed into two-dimensional
image styles employing the innovative Gramian angular
field (GAF) method. Second, the image data serve as input
to our proposed GAF-ResNet-GCT network architecture,
which is specifically designed for wheat freshness classifica-
tion and discrimination. The results underscore the effec-
tiveness of our approach, demonstrating the model's
remarkable ability to swiftly and precisely identify fresh-
ness with accuracy and robustness. The findings presented
herein offer a groundbreaking scientific methodology for
rapid, non-destructive wheat freshness detection, thereby
advancing the application of biophotonics technology within
the agricultural sector.
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1 Introduction

With a booming global population and advances in the
food industry, food security has become a top concern
for governments and international organizations around
the world. As a cornerstone food crop globally, wheat
stands at the forefront of this discourse, with its yield
and quality intimately tied to food security and the stability
of national economies. During storage, wheat kernels
inherently consume their own nutrients to sustain vital
metabolic processes. However, with prolonged storage,
the enzymatic activity within the grains gradually
decreases or ceases, the respiration rates diminish, and
the protoplasmic colloidal structure loses its compactness.
The changes have a profound impact on the physical and
chemical properties of wheat, leading to a deterioration in
its edibility and processing performance.

As a crucial quality benchmark, the wheat kernel
freshness encompasses both the duration of post-harvest
storage and the subsequent series of quality changes that
occur. Fresh wheat is typically superior quality, whereas
prolonged storage can result in aged wheat, characterized
by protein denaturation, elevated fatty acid levels, and
alterations in chemical composition, all of which adversely
affect the baking quality and flavor of the resulting flour.
Consequently, accurate assessment of wheat freshness is of
paramount practical significance, influencing key aspects
of the grain procurement, storage, marketing, and proces-
sing chain.

Globally, the study of wheat freshness is a pivotal part
of grain science research endeavors. Across international
boundaries, a myriad of studies have delved into the
physiological and biochemical variations in wheat and
analyzed their impact on overall quality. Meanwhile,
domestically, scholars have directed heightened attention
toward exploring the intricate relationship between wheat
freshness and its edible qualities.

Currently, the methods for identifying wheat freshness
primarily encompass sensory evaluation and various bio-
chemical approaches [1]. Sensory evaluation relies heavily
on the subjective experience of the operator and is prone
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to interference from external factors, resulting in poor
reproducibility. The evaluation results vary from person
to person, making it suitable only as an auxiliary method.
Physical tests such as the measurement of color and hard-
ness are simple and easy to perform, but they lack accu-
racy. For example, Zhan et al. [2] conducted research on
wheat freshness using thermal analysis techniques; Zhao
et al. [3] used an electronic nose method to detect wheat of
different origins and varieties, finding that this method
also had a certain degree of effectiveness in identifying
the origin and variety of wheat samples. Chemical analysis,
such as the determination of protein content and fatty acid
value, although more accurate, involves complex opera-
tions and is time-consuming. It generally requires complex
pretreatment of the samples to be tested, and the various
chemical reagents used in the detection process can cause
certain environmental pollution. For example, He et al. [4]
used the guaiacol method for rapid identification of wheat
freshness; Yang et al. [5] applied the tetrazolium salt
method to judge wheat freshness. These methods have
certain limitations in practical applications, making it dif-
ficult to meet the demands of modern large-scale grain
circulation. Therefore, the development of a rapid, accu-
rate, and non-destructive technology for detecting wheat
freshness has important practical needs in enhancing the
efficiency and level of wheat quality management.

In recent years, some new testing technologies have
been introduced into the study of wheat freshness. Liu
et al. [6] used Fourier transform infrared spectroscopy to
study wheat with different storage durations. The results
showed that samples of the same variety produced in dif-
ferent years had similar spectra, but there were differ-
ences in the absorption intensity ratios, which increased
with the extension of storage time. Wu et al. [7] applied
near-infrared spectroscopy technology for non-destructive
analysis of the changing trends of major chemical compo-
nents during the short-term natural aging process of wheat
seeds and combined with support vector machines to
establish a rapid analytical model for discriminating the
degree of natural aging of wheat seeds. Additionally, some
studies [8] have utilized terahertz time-domain spectroscopy
to test wheat samples stored for different years, obtaining
optical parameters such as refractive index and absorption
coefficient at specific wavelength bands. The results indicate
that there are differences in the refractive index and absorp-
tion coefficient among wheat samples stored in different
years, providing a novel experimental method for detecting
and analyzing wheat freshness.

However, the above-mentioned detection methods all
have certain limitations. Some require extensive manual
intervention, which may compromise the objectivity of the
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detection results. Others lack a clear scientific correlation
between the detection indicators and the characteristics,
resulting in poor reproducibility of the results. Therefore,
there is an urgent need to introduce new data sources and
modern data analysis methods. Both theories and exten-
sive practices have shown that wheat quality is essentially
related to the activity and vitality of wheat grains.
Consequently, the research approach can be shifted to
exploring new information carriers of wheat's vital state
and, based on this, investigating the degree of correlation
between this information and its freshness. This serves as
the starting point of this paper.

Inspired by the rapid development of biophotonic
technology and deep learning, this research aims to inte-
grate biophotonic analysis technology with modern signal
processing and analysis theories. It seeks to explore, from a
novel perspective, the mapping relationship between the
freshness of wheat and the changing process of its biopho-
tonic radiation state in order to develop a new, rapid, com-
prehensive, and non-destructive method for assessing
wheat freshness. This research endeavors to broaden the
application fields and research avenues of biophotonic
analysis technology.

2 Related works

2.1 Biophotonics technology

Biophoton emission (BPE) pertains to the spontaneous
emission of photons by biomolecules within living organ-
isms during their transition from a higher to a lower
energy state without the need for external stimuli.
Although this emission is inherently feeble, modern photo-
electric detection technologies are adept at capturing its
subtle intensity. The spectral spectrum of BPE predomi-
nantly spans the 200-800 nm range, exhibiting a contin-
uous distribution. Based on the presence or absence of
external optical stimulation, BPE can be broadly classified
into two categories: spontaneous hioluminescence and
delayed bioluminescence. Amidst the relentless advancement
of ultra-weak light detection technologies and profound
investigations into biological information transmission,
remarkable strides have been achieved in the realm of BPE
research, as evidenced by studies [9,10].

In recent years, the burgeoning biophotonics tech-
nology has progressively garnered attention for its applica-
tion in grain quality analysis. Wu et al. [11] conducted
pioneering analytical research on the delayed lumines-
cence characteristics of wheat samples, exploring
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variations across varieties and harvest years. Their find-
ings underscored discernible differences in ultra-weak
luminescence intensity, attributed to both production
year and vitality within the same variety. Furthermore,
Liang et al. [12] achieved remarkable precision in distin-
guishing four wheat varieties through the innovative inte-
gration of ultra-weak spontaneous light signals with power
spectrum feature analysis. Previous investigations have
consistently highlighted significant disparities in the spon-
taneous photon emission levels of wheat samples from
diverse storage periods. Gong et al. [13,14], leveraging bio-
photonic instrumentation, conducted a meticulous study
on the biophotonic signals of five wheat samples with
varying storage histories. By incorporating an enhanced
multi-scale permutation entropy algorithm for feature
extraction from the photon signals, they revealed a com-
pelling trend: the permutation entropy values of photon
counts escalated with the prolongation of storage duration.
This groundbreaking discovery furnishes empirical evi-
dence for the efficacy of biophotonics in detecting wheat
freshness, opening new avenues for quality assurance in
the grain industry.

2.2 Feature extraction

Currently, the cornerstone of biophotonics research
revolves around utilizing biophotonic testing equipment
to accumulate photon emissions from experimental sam-
ples over time, generating one-dimensional time series
data. This data primarily undergoes feature extraction in
the statistical or frequency domains, subsequently lever-
aging diverse machine learning classification algorithms,
such as support vector machines and BP neural networks,
for discrimination. These methodologies fall under the
umbrella of Time Series Classification (TSC), where time
series data are arranged sequentially in time, capturing
the dynamic changes within a system or process. TSC poses
a pivotal yet intricate challenge in data mining, aimed at
grouping time series data into distinct categories based on
their inherent characteristics. To tackle this, researchers
have devised a range of sophisticated techniques,
including dynamic time warping [15], which aligns time
series to measure their similarity; Bag-of-SFA Symbols
[16], which captures local patterns; shapelet-based
methods [17], which identify discriminatory subsequences;
and Collective of Transformation Ensembles [18], an
ensemble approach. Additionally, a multitude of machine
learning algorithms [19] have been adapted to this domain,
further enriching the TSC toolkit.
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However, whether these extracted features are the
most suitable for determining wheat quality and whether
other more suitable features can be extracted from bio-
photon data remain to be seen. Most of these studies are
still at the laboratory stage and have not yet formed a
complete theoretical system or widely applied technical
standards. In recent years, deep learning, as an important
branch of artificial intelligence, is widely used in multiple
fields such as image recognition, natural language proces-
sing, and speech recognition. Convolutional neural net-
work (CNN) [20] is one of the most popular deep learning
models, which, unlike traditional "feature-based" classifi-
cation frameworks, do not require manual feature extrac-
tion. During the deep learning process, feature extraction
involves automatically learning and identifying useful fea-
tures from a large amount of data through multi-layer net-
work structures, significantly enhancing the performance
of models in various Al tasks. Their powerful feature
extraction and pattern recognition capabilities enable
them to perform excellently in processing one-dimensional
time series data, such as electroencephalogram analysis
[21], anomaly detection [22], etc.

Motivated by this inquiry, could the accumulated one-
dimensional biophoton data potentially be transformed
into two-dimensional images, facilitating further analysis
via deep learning techniques? In the realm of mathematics,
there exist proven methodologies for converting one-
dimensional data into two-dimensional images, including
but not limited to the relative position matrix [23], recur-
rence plot [24], Gramian angular field (GAF) [25,26], and
Markov transition field [27]. These methods offer pro-
mising avenues for transforming our biophoton data into
a format more amenable to deep learning-based proces-
sing and analysis.

In this study, we endeavor to transform the amassed
wheat biophoton data into two-dimensional visual repre-
sentations and subsequently leverage CNNs for feature
extraction and classification, thereby validating the feasi-
bility of differentiating wheat freshness utilizing biopho-
tonic techniques. Initially, we collect biophoton data from
wheat samples spanning multiple years and employ the
GAF method to transform these temporal data into two-
dimensional image data. Subsequently, we select the
ResNet architecture as our primary network for feature
extraction and classification tasks. To further refine classi-
fication performance, we integrate the Gaussian context
transformer (GCT) attention mechanism, enhancing the
network's ability to prioritize and learn from salient fea-
tures within its layers. This approach aims to improve the
accuracy and robustness of wheat freshness discrimina-
tion based on biophotonic analysis.



4 —— Weiya Shi and Liang Chen

The main contributions of this article are summarized
as follows:

(1) Propose the adoption of bhiophotonic technology to
address the method of distinguishing wheat freshness,
thereby catalyzing the transition of this advanced tech-
nology from the confines of the laboratory into prac-
tical, real-world applications.

(2) Innovatively propose the use of the GAF method to
encode biophotonic data, transforming the original
one-dimensional time-series data into two-dimensional
data, with the pixels of the GAF image maintaining the
correlation between the original time-series data.

(3) Leveraging the residual network architecture and the
attention mechanism, the GAF-ResNet-GCT network is
proposed, a novel approach designed to amplify both
the feature extraction capabilities and recognition per-
formance of deep learning networks, ushering in a new
era of enhanced accuracy and efficiency.

3 Materials and methods

To accurately discriminate wheat freshness, it is impera-
tive to first acquire biophoton data from wheat samples
spanning various years. This section delves into the experi-
mental apparatus utilized, outlines the experimental protocol,
and outlines the fundamental attributes of the gathered bio-
photon data. Then, the proposed GAF-ResNet-GCT architecture
and implementation steps will be introduced.

3.1 The experimental equipment and
configuration

This experiment employs the BPCL-ZL-TGC ultra-weak
photon acquisition instrument as the primary measuring
device, as depicted in Figure 1. The instrument is compre-
hensively designed, comprising four integral components:
a measurement darkroom, collection equipment, signal
analysis instruments, and a user-friendly front-end soft-
ware interface. The measurement darkroom serves as
the repository for test samples, ensuring optimal condi-
tions for photon detection. The collection equipment,
guided by software settings, diligently gathers the bio-
photon counts emanating from the samples within the
darkroom. Subsequently, the signal analysis instruments
meticulously process the collected data, performing essen-
tial analyses before seamlessly integrating the results into

DE GRUYTER

Figure 1: The BPCL-ZL-TGC ultra-weak photon acquisition instrument
(taken by the author using a mobile phone in the school's food proces-
sing laboratory, permission and authorization have been obtained from
the laboratory).

the intuitive front-end software for display, facilitating
straightforward interpretation and analysis.

Prior to the measurement process, the samples under-
went a rigorous pre-treatment phase within a darkroom
for a duration of 30 min. This step was crucial in mitigating
the disruptive effects of ambient light, ensuring the accu-
racy and reliability of the subsequent measurements.
Environmental conditions were meticulously controlled,
with an indoor temperature maintained at (28 + 2)°C, a
precise measurement temperature of (27.5 + 0.5)°C, and
an indoor humidity level kept within (45 % 5)%.
Furthermore, the test spectral wavelength range was set
to encompass 380 to 620 nm, and the equipment operated
at a standard voltage of 220 V, 50 Hz, ensuring optimal
performance throughout the experimental procedure.

The wheat samples with storage years of 2020, 2021,
2022, and 2023 were collectively purchased from the local
wheat seed market around October 2023. All relevant
experimental work was initiated shortly after sample col-
lection and completed between late 2023 and early 2024.
Each precisely weighed sample (10.00 + 0.02 g) underwent
a1,000-s measurement period, with biophoton counts meti-
culously recorded every second. Upon completion, we seg-
mented the data from each experimental sample into ten
equal parts, yielding a comprehensive dataset comprising
4,000 experimental samples, with 1,000 samples dedicated
to each year.

Figure 2 distinctly showcases the temporal variation of
photon counts for randomly selected wheat samples, span-
ning the years 2020-2023. The x-axis denotes time, while
the y-axis represents the photon count, providing a clear
visual representation of the dynamics. While these graphs
exhibit characteristics akin to time series data, each year's
sample data also possesses distinctive features, under-
scoring their uniqueness. Despite a discernible pattern in
the data distribution, it is not immediately apparent which
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Figure 2: Photon counts for wheat samples from each year from 2020 to 2023.

year's data corresponds to which graph. Therefore, to
effectively distinguish between these samples, the imple-
mentation of feature extraction techniques and the appli-
cation of classification algorithms becomes imperative.

The determination of specific features to extract from
the data often lacks a definitive criterion. Traditional
approaches encompass the extraction of statistical features
(e.g., mean, variance) and the transformation of time-series
data into the frequency domain through techniques like
Fourier transform and wavelet transform. However, this
article innovatively harnesses the power of deep learning,
which circumvents the manual selection of features by
enabling the autonomous discovery of discriminative char-
acteristics. To this end, we employ the GAF methodology,
transforming one-dimensional time-series data into two-
dimensional image data. This transformation facilitates
the utilization of deep learning algorithms, which can
then learn and extract the distinguishing features in an
automated fashion.

3.2 Related concepts of GAF representation

The GAF is a method that converts one-dimensional time-
series data into two-dimensional images. The core of the
GAF method lies in pairing the data points in the time
series, calculating the cosine of the angle between them,
and representing these calculations as pixel values in an

image. This method can effectively capture the dynamic

and periodic characteristics of time-series data, preserving

the complete information and temporal dependencies of
the time series. Specifically, the GAF encompasses two
forms: the Gramian angular summation field (GASF) and
the Gramian angular difference field (GADF). GASF gener-
ates an image by calculating the cosine of the sum of angles
between each pair of time series values in a polar coordi-
nate system, while GADF generates an image by calculating
the sine of the difference in angles.

The implementation of the GAF typically involves the
following steps:

(1) Preprocessing and normalization: Preprocess the raw
time series data by normalizing it to a specific interval
(e.g., [0,1] or (-1, 1) to eliminate potential impacts from
different scales on the results. This is typically achieved
using the min-max normalization method. Assuming
there is a time series X = (X, Xp,"**, Xp), the raw time
series data can be normalized using formula (1):

(x; -~ max (X)) + (x; - min (X))

%= max(X) - min (x) ' 0

(2) Constructing the Gram matrix: Treat each data point in
the time series as a vector in a high-dimensional space
and compute the inner product between these vectors
to form the so-called Gram matrix. Each element of this
matrix represents the similarity between two data
points. The Gram matrix is expressed as shown in for-
mula (2):
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where each element is the inner product of two time
series data points, as shown in formula (3):

n
(R %) = K&y = ) Rig % Ry
t=1

6)

As the elements in the Gram matrix follow a
Gaussian distribution centered at 0, it is difficult to
distinguish its information from Gaussian noise.
Moreover, since univariate time series are one-dimen-
sional, the dot product cannot differentiate between
valuable information and Gaussian noise, thus necessi-
tating a change in space. Inspired by polar coordinate
transformation, we will construct a bijective mapping
between the one-dimensional time series and a two-
dimensional space, mapping the preprocessed time
series values into a polar coordinate system, where
the timestamps serve as the radii, and the scaled values
are converted into angles through the inverse cosine
function. The transformation formula is as follows:

6; = arccos(X), X € X, 4
{i .
r= ¥ i €N, 5)

where ¢; is the timestamp.
As any operation analogous to an inner product
inevitably combines the information from two different

3

DE GRUYTER

observations into a single value, the following defini-
tions are typically used for performing inner product
calculations. This enables better preservation of the
complete information and temporal dependencies
within the time series, ensuring no information is lost

GASF = (cos (8; + 0;))nxn,

GADF = (SlIl (91 - 9/))n><n. (6)

Generate GAF image: Based on the definitions of GASF or
GADF mentioned above, the cosine or sine values of the
angles for each pair of values in the polar coordinate system
can be calculated to generate a two-dimensional image

GASF

- cos (6, + 6y)
- cos (0, + 6y)

cos (6, + 6y)
cos (6, + 0,)

cos (6, + 8,)

cos (0 + 0,) @)

’

cos (6, + 61) cos (0, + 6,) cos (6, + 6,)

GADF

- sin (64 + 6y)
- sin (6, + 6,)

sin (6, + 6,)
sin (92 + 61)

sin (6, + 0,)

sin (02 + 02) ®

sin (6, + 67) sin (6, + 0) sin (6, + 6,)

Figure 3 presents the GASF and GADF images corre-

sponding to the wheat biophoton data for different years
shown in Figure 2.

The advantage of the GAF approach lies in its unique

ability to seamlessly integrate temporal information from

Figure 3: The GASF and GADF images corresponding to biophoton data shown in Figure 2.
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time-series data with the prowess of deep learning algo-
rithms, which have garnered immense popularity in image
processing. This fusion not only elevates the efficiency of
feature extraction but also streamlines the entire data ana-
lysis process. By converting one-dimensional time-series
data into two-dimensional image representations, GAF
paves the way for the application of advanced deep
learning techniques, thereby simplifying and enhancing
the analysis.

3.3 ResNet

CNNs are widely utilized models in deep learning, charac-
terized by their core features of local connectivity, para-
meter sharing, and automatic feature extraction. Despite
CNNs' powerful feature extraction capabilities, they still
face challenges when dealing with extremely deep net-
works. As the number of network layers increases, the
training error tends to gradually decrease and reach
saturation, but then as the number of layers further
increases, the training error rises again, manifesting as
the so-called degradation problem. The emergence of
ResNet [28] effectively addresses this issue by introducing
shortcut connections, which not only ensures the depth of
the network but also optimizes gradient propagation,
making the network easier to train and converge. This is
of great significance for complex tasks in practical applica-
tions, such as high-precision image classification and large-
scale image processing.

Specifically, the residual block in ResNet comprises
two paths: one is the path for normal convolution opera-
tions, which typically begins with a convolution layer, fol-
lowed by a batch normalization layer and a ReLU activa-
tion function. This combination helps reduce internal
covariate shifts and accelerates the training process. The
ReLU activation function adds nonlinearity, enabling the
network to learn more complex patterns, followed by
another convolution operation and batch normalization.
The other path is an identity mapping path. As shown in
Figure 4, finally, the outputs of these two paths are added
together to form the final output of the residual block. This
output is then activated by a ReLU activation function,
generating the final output feature of the residual block.

As illustrated in the Figure 4, x represents the input,
and F(x) denotes the output of the residual block before the
second activation function. The core formula of the resi-
dual block can be expressed as H(x) = F(x, w;) + X, where
x and H(x) are the input and output of the block, respec-
tively, F(x, w;) represents the operations performed by the
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Figure 4: Residual block in ResNet.

stack of convolutional layers, and w; are the weights of
these layers.

This design has two key advantages: First, it simplifies
the learning process because instead of learning a com-
plete output, it learns a residual mapping. Second, it
provides a shortcut that allows skipping some layers, alle-
viating the problem of gradient vanishing, enabling deeper
networks to be effectively trained. The residual blocks in
ResNet are mainly classified into two types: basic residual
blocks and bottleneck residual blocks. A basic residual
block consists of two 3 x 3 convolutional layers, each fol-
lowed by a batch normalization layer and a ReLU activa-
tion function. The input passes through these convolu-
tional layers and is then added to the original input,
before being output through a ReLU activation function.
The bottleneck residual block contains three convolutional
layers: The first 1 x 1 convolutional layer is used to reduce
the number of channels, followed by a 3 x 3 convolutional
layer, and finally, another 1 x 1 convolutional layer to
restore the original number of channels. This design
reduces computational complexity while retaining suffi-
cient information.

3.4 GCT attention module

The primary role of introducing attention mechanisms into
CNN is to enhance the model's ability to focus on critical
information within the input data, thereby improving the
model's performance and efficiency, such as the channel
attention mechanism SE [29]. However, literature [30]
points out that the SE module tends to learn a negative
correlation between features, meaning that when the dif-
ference between the global context and the average value
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increases, the obtained attention excitation value will cor-
respondingly decrease. Based on this correlation, literature
[31] proposes GCT for modeling global context, where GCT
can directly replace the two fully connected layers in SE
with a Gaussian function that incorporates negative corre-
lation. Compared to SE, GCT is able to better learn the
negative correlation between global context and attention
activation values with fewer introduced parameters,
thereby enhancing the model's expressive power.

The basic structure of GCT is illustrated in Figure 5.
GCT comprises three parts: GCA (global context aggrega-
tion), normalization, and Gaussian context excitation. Spe-
cifically, a feature map of dimension X € R©H*R ynder-
goes global information aggregation in the spatial
domain of the feature map through GCA to obtain z, as
shown in the following equation:

1
HxW

W H
> > X)) : ke, ..., Clf. O
i=1j=1

avg(X) =z =

In the equation, C denotes the number of channels,
while H and W represent the width and height of the fea-
ture map, respectively. Afterwards, z undergoes feature
normalization using the function norm(), as shown in the
following equation:

1
z=—(z-u). (10)

~(z-u)

In the equation, z — u represents the mean shift, while
u= %Zgzlzk denotes the mean of z, and o is the global
context standard deviation used to ensure a stable distri-
bution of the function's output norm(). It is calculated
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The normalized result Z is then used as input to a
Gaussian function G(-) to obtain the attention activation
value g, as specifically shown in the following equation:

2

g=G@) = e a. (12)

Combining all the above operations into a single equa-
tion, we construct the GCT module, as shown in the fol-
lowing equation:

B norm(avg(X))?

Y=e 2c? X. 13)

3.5 Proposed GAF-Resnet-GCT network

This article proposes the integration of the GCT attention
mechanism within residual blocks, constituting a novel
architecture dubbed the GAF-ResNet-GCT network. This
attention mechanism augments ResNet's capabilities by
enabling it to autonomously discern and extract more dis-
criminative features across various levels, dynamically
learn optimal feature weights, and subsequently adjust
the significance of features across channels. As a result,
the representational prowess of the network is signifi-
cantly bolstered. The diagram of the network structure is
shown in Figure 6.

The entire network architecture consists of six resi-
dual blocks. The GAF image is initially passed through a
standard convolutional layer for extracting initial features,
followed by six residual blocks. In the third and fifth resi-
dual blocks, the first convolution halves the input image
size and doubles the number of channels; hence, a 1 x 1
convolution is used to implement the shortcut connection.
All other connections use identity mappings directly.
Within the residual blocks, batch normalization and the

avg : global average pooling

norm : normalization

G : Gaussian context excitation

Y

through
1 ¢
o= =Y (z-u?*+e (1n
Ciar
4 Z
X
‘ soavgl(- norm L
; H <0 norm()
w

Figure 5: Schematic diagram of the GCT network structure.
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ReLU function are applied after the convolutional layers.
In the output stage, global average pooling is used to adjust
the multi-channel data into a one-dimensional format,
which is then connected to three fully connected layers.
The numbers of neurons in these fully connected layers are
1,024, 512, and the number of classification categories (four
categories in this experiment), respectively. The middle
fully connected layer uses the ReLU activation function,
while the final layer employs the SoftMax function to cal-
culate the maximum probability value. In the residual
module, the GCTmodule receives the feature map from
the previous layer as input and generates a channel atten-
tion weight matrix through an attention layer. This weight
matrix is then used to perform a weighted summation on
the input feature map, resulting in a feature map that
contains global context information. This process not
only enhances the spatial representation capabilities of
the features but also enables the network to focus on the
information regions that are more critical to the task.

3.6 Diagnostic procedure of proposed
method

Figure 7 illustrates the diagnostic procedure of the pro-
posed GAF-Resnet-GCT.
The detailed procedures for freshness diagnosis are as
follows:
(1) To collect photon data from wheat samples spanning
multiple years using a BPCL-ZL-TGC ultra-weak photon
system

GAF

l
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(2) To transform biophoton data into two-dimensional
images used GAF.

(3) Construct the GAF-Resnet-GCT model, configure the
network hyperparameters such as learning rate, the
number of training iterations, and initialize the net-
work weights.

(4) The GAF-Resnet-GCT is trained utilizing the samples
from the training set, and the deviation between the
network's output and the sample labels is computed
utilizing the cross-entropy loss function. This error is
then propagated back through the network according
to the Adam gradient descent algorithm, leading to an
update of the network's weight parameters. The net-
work's performance is assessed using the validation set
after each training iteration; however, error backpro-
pagation and updates to the network weights are not
executed during this evaluation phase.

(5) The fully trained GAF-Resnet-GCT is employed to eval-
uate the test set and provide the ultimate diagnostic
outcome.

3.7 Evaluation metrics

Accurately assessing the performance of a model is crucial.
To ensure a comprehensive evaluation of the model, this
article adopts Accuracy, Precision, Recall, and F1 Score as
key indicators to evaluate the model's performance. Each
of these metrics reflects the model's performance from
different angles, complementing each other and collec-
tively providing a comprehensive measurement standard

conv 64, 373,5=2 v l
_ | .. e =
i e I o~ =
conv 64, 3*3,s=1 i conv 128, 3*3,5=2 i cony 256|, SiS:s22
1 H I 1
BN+ReLU i BN+RelLU i BN‘IRELU
| : | 1 T aE result
conv 64, 3*3,5=1 . conv 128, 3*3,5=1 | <ony 256], 878,551
1 ! 1 f BN
BN —y ! BN —y ! v
1
x2 o x2 i o x2| | 2 FCN SoftMax
i a i ) |
4 i = i FCN 512 ReLU
I |
@— i Re— A ® I
i 1 + FCN 1024 RelLU
¥ ! ¥ i —® I
&) e -® | | | T ‘ Avg Pool
ReLU RelU Relw ‘
| 1 I
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Figure 6: The diagram of the proposed GAF-Resnet-GCT network structure.
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Signal extraction
and transform

Update wights

Diagnostic freshness results

Figure 7: The diagnostic process of the proposed GAF-Resnet-GCT. Source: Created by the authors.

for model evaluation. Their calculation formulas are as
follows:

(TP + TN)
(TP + TN + FP + FN)’
TP
(TP + FP)’
TP
(TP + FN)’
Fl= 2 x Precision x Recall
(Precision + Recall) *

Accuracy =

Precision =
(14)
Recall =

where TP, FP, FN, and TN, respectively, represent the
number of true positives, false positives, false negatives,
and true negatives.

4 Results and discussions

To facilitate model training and evaluation, we partitioned
the experimental data into training, validation, and test
sets in an 8:1:1 ratio and employed a rigorous 10-fold
cross-validation approach to ensure the accuracy and relia-
bility of our experimental results.

The NVIDIA GeForce GTX 4090d graphics card was
utilized for model training, ensuring high-performance
computational capabilities. The training process was con-
figured with a batch size of 32, optimized using the Adam
algorithm, which is renowned for its efficiency in gradient
descent optimization. To enhance generalization and pre-
vent overfitting, a Dropout parameter of 0.5 was employed,

alongside an initial learning rate of 1 x 1073, After every ten
steps of model updates, a rigorous evaluation was con-
ducted on the validation set to identify the optimal weight
configuration that yields the highest accuracy, thus safe-
guarding against overfitting to the training data.

4.1 Comparative experiments with other
methods

To rigorously evaluate the efficacy of our proposed algo-
rithm, we selected a diverse array of deep learning algo-
rithms (CNN, ResNet) and traditional machine learning
algorithms (KNN, SVM, BP) as benchmarks for classification
performance comparison. Notably, traditional machine
learning approaches necessitate manual feature selection,
which encompassed six statistical features: median, mean,
quartile deviation, mean deviation, variance, and coefficient
of variance in this study. This comprehensive evaluation
framework allowed us to assess the strengths and limita-
tions of our algorithm in comparison to both modern deep
learning and established machine learning techniques.
Table 1 presents the experimental results.

The table reveals that among the three traditional
methods — KNN, SVM, and BP - the accuracy rates stand
at 81.6, 87.2, and 89.2%, respectively, with their precision,
recall, and F1 scores demonstrating relative parity.
Notably, the BP algorithm and SVM algorithm outshine in
classification performance. These methods rely on six
manually selected statistical features as inputs into various
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Table 1: Experimental results using different methods
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KNN SVM BP CNN ResNet GAF-ResNet-GCT
Accuracy 0.816 + 0.014 0.872 + 0.020 0.892 £ 0.016 0.912 + 0.009 0.918 + 0.007 0.931 + 0.011
Precision 0.817 £ 0.015 0.873 + 0.021 0.894 + 0.016 0.914 + 0.009 0.920 + 0.007 0.933 + 0.010
Recall 0.816 + 0.015 0.872 + 0.020 0.892 + 0.016 0.912 + 0.009 0.918 + 0.007 0.931 + 0.011
F1 score 0.816 + 0.014 0.872 + 0.021 0.892 £ 0.016 0.912 + 0.009 0.918 + 0.007 0.931 + 0.011

machine learning algorithms. Nevertheless, the manual
selection of features from the biophotonic time-series
data, lacking optimality, limits the optimality of classifica-
tion results. Consequently, there remains a pressing need
for feature optimization through diverse methodologies to
further enhance performance.

Both CNN and ResNet, rooted in deep learning algo-
rithms, eliminate the dependency on manual feature selec-
tion by enabling the network to learn autonomously. The
accuracy rates of these two methods stand at 91.2 and
91.8%, respectively, with ResNet marginally surpassing
CNN due to its innovative use of residual structures.
These structures facilitate more efficient updates and itera-
tions of network weights, contributing to slightly higher

accuracy. Notably, even with a moderately deep network
architecture in this experiment, the effectiveness of both
methods is expected to escalate with an increase in the
number of layers. Furthermore, this study validates the fea-
sibility of transforming one-dimensional biophotonic data
into two-dimensional GAF graphs and subsequently lever-
aging deep learning for feature extraction and classification,
underscoring the potential of this proposed approach.

Upon integrating the attention mechanism GCT, the
GAF-ResNet-GCT network achieved a notable improvement
in accuracy, reaching 93.1%, marking a 1.3% increase over
the baseline ResNet model. This enhancement underscores
the power of the attention mechanism in enhancing the
network's ability to prioritize key features and elevate

accuracy precision
—
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Figure 8: Experimental results using different methods.
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Table 2: Experimental results using GASF and GADF

GASF GADF GASF+GADF
Accuracy 0.931 + 0.011 0.943 £ 0.013 0.945 + 0.016
Precision 0.933 £ 0.010 0.944 + 0.014 0.947 + 0.017
Recall 0.931 £ 0.011 0.943 £ 0.013 0.945 + 0.016
F1 score 0.931 + 0.011 0.943 £ 0.013 0.945 + 0.016

classification precision, ultimately translating into higher
classification accuracy. Moreover, this achievement under-
scores the significant potential of incorporating attention
mechanisms into deep learning frameworks, as proposed
in this article, to bolster overall performance. To make the
results clearer, Figure 8 presents bar charts corresponding
to the results of different algorithms in Table 1.

4.2 Comparative experiment between GASF
and GADF

To assess the impact of the two GAF methods — GASF and
GADF - on experimental outcomes, additional experiments
have been conducted. While previous tests employed
GASF, the hyperparameters utilized in this section mirror
those for training GASF images, ensuring a fair compar-
ison. Table 2 summarizes the results. Initially, employing
GADF to generate the two-dimensional matrix and input-
ting it into the proposed network revealed a notable
improvement in accuracy, reaching 94.3%, a 1.3% increase

Confusion matrix
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Figure 9: Confusion matrix.
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over GASF. A closer examination of the two-dimensional
graphs from Figure 3 reveals that GADF outperforms GASF
in color intensity, detail rendering, and line proportion,
contributing to its superior detection accuracy. Further-
more, an intriguing discovery was made when both GASF
and GADF-generated graphs were shuffled and fed into the
network: the accuracy climbed even higher to 94.5%, sug-
gesting a slight yet significant enhancement over exclusive
GADF use, demonstrating the potential of combining both
methods.

4.3 Confusion matrix for classification
results

Figure 9 illustrates the confusion matrices for the final
classifications achieved using GDSF-ResNet-GCT and the
BP network for comparative purposes. Analyzing the
GDSF-ResNet-GCT matrix, we observe a marked improve-
ment in accuracy, with just three misclassifications in 2020,
two in 2021, and two in 2022, whereas all samples from 2023
were correctly identified. This heightened recognition accu-
racy hints at enhanced internal biological activity and more
robust BPE in the newer wheat seeds. Conversely, the BP
method's matrix reveals a higher degree of misclassification,
with four errors in 2020, four in 2021, three in 2022, and two
in 2023, underscoring the reduced freshness and weaker
biometric signals emanating from older wheat samples com-
pared to their fresher counterparts.

Contuston matnix
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2022 4
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5 Conclusion

This article presents the innovative application of biopho-
tonics and deep learning technology to assess the freshness
of wheat. The methodology involves transforming the col-
lected one-dimensional time series data into two-dimen-
sional image data through the GAF method, followed by
the employment of a deep learning approach to autono-
mously identify salient features. To boost algorithm speed
and efficiency, the GAF-ResNet-GCT network architecture is
introduced, which attention mechanism is introduced to
focus on important features. Experimental outcomes conclu-
sively demonstrate the superiority of the proposed method
over the existing ones in terms of classification accuracy.

Moreover, this work introduces a fresh perspective and
methodology for wheat freshness classification, highlighting
the potential of biophotonics in revealing intricate cellular
and molecular alterations during wheat storage. This insight
provides a solid scientific foundation for optimizing storage
conditions and prolonging wheat shelf life, presenting pro-
mising avenues for future research endeavors.
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