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Abstract: Climate change has many negative effects on the
viticulture sector, as it does in all sectors. In recent years,
global climate change has also shown its effect in the form
of sudden climatic events. There is an urgent need to
develop preventive/protective activities for all plant spe-
cies in order to prevent the increasing world population
from being negatively affected by many negative conse-
quences of climate change such as increasing tempera-
tures, drought, floods, and sudden climatic events. Grape
industry is among the sectors that feel the negative effects
of climate change the most, and this effect is increasing
every year. Along with global warming, there are also
important problems in accessing water. Particularly, there
is a need to develop cultivars that are more resistant to
drought stress and to make applications that will protect
grapevine plants from drought stress. One of the most
important issues to be overcome is to develop new culti-
vars that can withstand different stress conditions and to
use them more in production. In addition, environmental
and human health awareness is increasing day by day.
Adaptation strategies to be taken against the negative
effects of climate change and the studies to be carried
out, as well as the use of new environmentally friendly
varieties (requiring less input costs) to be developed in
accordance with the sustainable agriculture model, will
make significant contributions to protecting both the envir-
onment and human health.

Keywords: adaptation strategies, stress factors, grape,
extreme climate events, sustainable viticulture

* Corresponding author: Arif Atak, Department of Horticulture,
Agriculture Faculty, Bursa Uludag University, 16059, Bursa, Turkey,
e-mail: arifatak@uludag.edu.tr, tel: +90 505 4804130

ORCID: Arif Atak 0000-0001-7251-2417

1 Introduction

The total vineyard area in the world is about 6.7 million
hectares, and the production from this area is around 73.5
million tons. The countries with the highest vineyard area
in the world are Spain (13%), China (12%), France (11%),
Italy (9%), and Turkey (6%) (Figure 1). These five countries
represent about half of the global vineyard area [1].

Despite the fact that grapes are produced quite a lot in
terms of area and quantity, they have been rapidly affected
by the changing climatic conditions in recent years and
some negative results of this effect have begun to be seen
in the vineyard areas. The effects of climate change have
become a global threat that has increased in recent years
and caused very important problems, and it has many
negative effects on the viticulture sector as in all sectors.
When the data of last years are compared, significant
decreases are observed in terms of both area and amount.
It is reported that this situation is significantly related to
the increasing negative effects of climate change [2].

Among the most important effects of climate change,
increasing air temperatures and their significant abiotic
stress on plants, resulting in negative effects on plant
growth and fruit quality, can be shown. Especially, the
table grape sector is one of the sectors that feel the nega-
tive effects of climate change the most, and this effect is
increasing every year [3,4]. With global warming, water
resources are limited and there are significant problems
in accessing water. As a solution, there is a need to develop
varieties that are more resistant to drought stress and to
make applications that will protect grapevine plants from
heat [5].

In recent years, global climate change has also shown
its effect in the form of sudden climatic events (excessive
precipitation, heavy wind, hail, etc.) [6].

Especially in many countries where grapes (mainly
table grapes) are grown, different covering systems have
started to be used in more areas to protect the grapevine
plants against increasing extreme weather and climatic
events/disasters [7].

In addition, today’s developing technology can help us
fight against the negative effects of climate change. With
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Figure 1: Grape production amounts of countries on the world map [1].

the integration of smart agriculture and artificial intelli-
gence applications into vineyard areas, preventive mea-
sures can be taken with preliminary information against
many extreme weather events, the frequency of which has
increased as a result of the negative effects of climate
change [8].

In recent years, with the negative effects of climate
change, diseases seen in grapevine plants and different
Vitis species have diversified and their scope has expanded.
In addition, pathogens have become more immune to many
drugs used to protect grapevines against disease-causing
agents. Against this situation, unfortunately, many growers
use more chemicals in order to maintain efficiency and
quality. Sometimes excessive application of chemicals used
against fungal diseases poses a significant threat to human
and environmental health. Some strict laws are needed to
prevent the overuse of these fungicides and to prevent them
from causing toxic effects. The increasing disease pressure,
especially with climate change, increases the need for these
regulations [9-11].

Scientists report that different biotic and abiotic stress
conditions are among the negative effects of climate change
on viticulture. In this case, new varieties that are more
resistant to these stress conditions should be developed
and used more in production. It is predicted that these
new varieties, developed especially by taking advantages
of biotechnology, will constitute a large part of the produc-
tion in the near future [12,13]. With the increasing world
population, more and healthier food is needed [14]. How-
ever, in order to meet the negative effects of climate change
in viticulture, there is a need to focus on breeding studies
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and to revise the methods and techniques used in viticulture
in a way that will reduce the negative effects of climate
change.

In this study, a detailed information is given about
climate change, whose negative effects have increasingly
increased in recent years, in areas where different Vitis
species are grown, especially table grapes, and what needs
to be done by scientists and grape growers against these
negative effects.

2 Effects of climate change on
viticulture

Climate change has many negative effects on viticulture.
Farmers who produce for us have to cope with many nega-
tive effects of climate change, such as increasing tempera-
tures, drought, water stress, diseases, and extreme weather
conditions. Among those experiencing this problem are
table and wine grape growers [8,15-17]. The most impor-
tant negative effects of climate change are given in the
following sections:

2.1 High temperature

Although many people think that human-induced climate
change will occur in the very distant future, this is not
actually the case. Unfortunately, climate change is still
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actively ongoing and has been occurring for over a cen-
tury. It is reported that global temperatures have increased
by more than 1°C. In fact, it is understood that climate
change is not only limited to the increase in temperature
but also causes many adverse conditions [18].

Rising temperatures caused by global warming have
become a major threat in many areas of agricultural pro-
duction, as increased temperatures may inhibit both devel-
opment and plant growth and cause their complete death
in extreme conditions [19,20]. As a result of extensive
research conducted in recent years, it has been explained
that chloroplasts are highly sensitive to heat stress, which
affects various photosynthetic processes such as chloro-
phyll biosynthesis, CO, assimilation, photochemical reac-
tions, and electron transport. In order to protect these
photosynthetic organelles, heat stress response mechan-
isms have been defined by plant cells (Figure 2). In addi-
tion, in recent years, it has been reported that chloroplasts
have important roles in inducing the expression of some
nuclear heat response genes during the response to heat
stress [21].

In some studies conducted in recent years, it has been
reported that many growth and development stages in the
grapevine begin at an earlier period, considering that it is
highly related to temperature increases. As a result of
increasing global temperatures, the duration of many phe-
nological stages has been shortened, and the composition
and quality of grapes and their products have been nega-
tively affected. As a result of all these changes, in order to
keep the quality of the final product at the desired level,
vineyard areas are transferred to more northern regions
or high-altitude regions where the average temperature is
slightly lower [22,23].

High temperatures can cause serious irreversible
damage to grapevine plants in the period close to harvest.
Against this situation, studies conducted in recent years
on the identification of key genes in the molecular regu-
latory network of grapevines against heat stress and sub-
sequent breeding of new high temperature-resistant vari-
eties containing these genes attract attention [24].

Changes in air temperature, and especially increases,
affect vine phenology, fruit metabolism, and composition
very significantly. Global warming poses a serious threat to
both grape and wine production in many viticulture regions
around the world [25,26]. Above the optimum condition [20],
heat stress disrupts cellular homeostasis, leading to a signif-
icant retardation in growth and development and some-
times even death. While increasing temperatures in the
vine encourage vegetative growth, it disrupts the carbon
balance of the plant and negatively affects flower formation
and young fruit development [27].
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Increasing temperatures also affect the primary and
secondary metabolism of fruit, disrupt the harmony of
sugar and organic acid metabolism, and delay the accumu-
lation of sugar and polyphenols during ripening. As a
result, it can significantly affect the organoleptic properties
of wine and cause deterioration in its quality [25,28]. High
temperatures greatly disrupt carbohydrate and energy
metabolism, and it has been reported that these effects
depend on the stage of development and duration of treat-
ment. Also, transcript amounts were weakly correlated
with protein expression levels in fruits of high tempera-
ture, highlighting the value of proteomic studies in the
context of heat stress (Figure 3). It has been reported that
high temperatures alter essential proteins that enable fruit
development and ripening. Potential markers and proteins
for the development or selection of grape varieties that can
adapt to warmer climates have been found by researchers
[29,30].

2.2 Drought

Drought has become an increasing problem and has
increased its impact in many countries. Higher tempera-
tures can cause plants to lose or transcribe more water,
which means that farmers have to give them more water.
Growers and vineyard owners began to use more water,
especially for agriculture. This situation, which emerged
in places where resources were limited, caused growers
to seek different solutions [31].

Climate changes, which cause increased water use by
plants, increase the frequency and magnitude of water
stress in plants along with the decrease in available water
resources. In terms of viticulture, this situation requires
the development of new grape varieties that are more
drought-resistant or increasing the dependence on irriga-
tion to maintain productivity. Strategies to relieve plant
water stress present significant challenges. The most impor-
tant strategy is that the grapevine plant is a perennial plant.
Since the grapevine plant will remain in its area for many
years, the negative effects of climate change in the coming
years should be taken into account when choosing the
variety, rootstock, and vineyard area [32].

Accessing water is one of the important problems after
the climate change for the table grapes. Due to increased
water competition with other related sectors of the economy
and climate change, water used for agriculture will become
more scarce in the future, leading to more frequent
droughts [33]. Drought stress is a major problem for Vitis
species, and in recent years, researchers have begun to use
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Figure 2: Sensitivities and responses of chloroplasts under high temperature stress: (a) main effects of heat stress on chloroplasts include heat
inactivation of photosystem II, degradation of chlorophyll (Chl), inactivation of Rubisco, and disruption of protein translation; (b) chlorophyllase and
Chl-degrading peroxidase activity are seen in heat stress condition. Under normal conditions, the biosynthesis and degradation of Chl are at constant
rates, while under heat stress, the activity of chlorophyllase and chlorophyll-degrading peroxidase increases, resulting in a severe decrease in Chl
content. In the case of exogenous application of zeatin riboside, a higher Chl content is observed (b); and (c) illustration of retrograde signaling
pathways in chloroplasts under heat stress [21].
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Figure 3: Diagram showing the effects of heat stress on fruits of Cabernet Sauvignon (the up and down arrows reflect the accumulation levels of the
corresponding transcripts, proteins, or metabolites in the heated fruit) [29].

different techniques such as rootstock breeding, subsur-
face irrigation, and integration of agrivoltaic (AV) systems
into vineyards, to recover drought problem.

2.3 Flooding

Snow is one of the most important fresh water resources
and also plays a very important role in preserving the
existence of many underground and surface water resources.
However, due to global warming, snowfall is decreasing and
ultimately causes a serious threat to the amount and conti-
nuity of freshwater resources [34]. In this case, unfortunately,
many resources used to irrigate the vineyards dry out and
the effects of drought increase.

Changes in water resources have great effects on our
world and plants. As our climate changes, extreme cli-
matic events such as floods have become an increasing
problem. Since the beginning of the 20th century, many
countries experience stronger and more frequent extreme
and heavy rainfalls. Especially with the emergence of
increasing climate changes in many countries, the issue

of predicting flood events attracts considerable attention
[35].

The most important problem seen in plants during
flood is O, deficiency. Severe reduction in O, availability
due to waterlogging affects plant metabolism and hence
crop growth and productivity. Information regarding the
responses of grapevine (Vitis spp.) to waterlogging is not
very clear, and basic information regarding the molecular
and metabolic responses of grapevine roots to hypoxia has
not yet been adequately elucidated. Due to the fact that
cultivated grapevines are hybrid plants resulting from dif-
ferent rootstockxscion combinations and therefore the
complex interactions between different genotypes and the
environment, the mechanism related to flooding cannot be
fully explained [36].

Comprehensive metabolic and transcriptomic studies
should be carried out to explain how Vitis species used as
broodstock, such as V. riparia, V. rupestris, and V. berlan-
dieri, are affected by waterlogging in the short and long
term. It is also reported that the hormonal regulation
occurring in the roots of different Vitis species and geno-
types may differ significantly [37].
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2.4 Extreme weather events

With climate change, extremes began to be seen in many
climatic events. The incidence of many undesirable climate
events such as floods, drought, uncontrollable fires, strong
winds, hail, extreme heat, extreme cold, and heavy snow
has increased. With the changing climate, extreme weather
events, which are under threat today and occur more and
more frequently, bring many problems for traditional viti-
culture [38-40]. It has become very important to follow all
climate events regularly and to be informed about possible
anomalies in advance. It can be very useful for strategic
climate communication to predict the current consequences
of climate change and to create longer-term climate strate-
gies in the future [41].

Among the sudden climatic events seen in viticulture,
especially hailstorms cause serious damage. There is a
significant increase in hail events all over the world.
Depending on the phenological stage of the vine, hail
can damage shoots, leaves, and fruits and sometimes
even cover systems [42].

In addition, strong winds and typhoons are a signifi-
cant threat to both vineyards and trellis systems. In recent
years, there has been a significant increase in the number
of these sudden climate events and they cause serious
damage [43,44].

2.5 Other effects

Climate change actually means much more than it seems.
Many things that we depend on and value — such as water,
energy, transportation, wildlife, agriculture, ecosystems,
and human health — are experiencing the effects of a chan-
ging climate [45]. Our food supply is highly dependent on
climate and weather conditions. While farmers and scien-
tists can adapt some farming techniques and technologies
or develop new ones, managing some changes really is not
as easy as it seems [46]. With the changing climate, serious
problems have begun to occur in the field of viticulture all
over the world. Table grapes, wine grapes, and dried
grapes are all significantly affected by these changing cli-
mate and climatic events. Unfortunately, this situation has
a largely negative effect and causes undesirable situations
in both the yield and quality of the grapes. For wine grapes,
this situation generally occurs when increasing tempera-
tures change the chemical content of the berries [29]. For
table grapes, these negative effects are increased water
need, increased disease pressure, and increases in produc-
tion costs [47]. Although the problems in dried grapes are
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largely similar to those in table grapes, sudden climatic
events, especially during the drying of grapes, also pose
an additional problem [48].

With climate change in the coming years, grape growers
will face rising temperatures and changing precipitation
patterns. Especially, the vine phenology and the water
availability in the soil will be among those most affected.
Unsuitable conditions in summer, especially (hotter sum-
mers), affect both the chemical composition and flavor of
the grapes. Higher evapotranspiration rates will be seen
due to rising temperatures and vines will grow in more
water stress conditions as a result of changing precipita-
tion ratio. It is strongly expected that these changing con-
ditions will have significant effects on grape yield as well as
quality. In light of these expectations, species and cultivars
that can more easily adapt to forcings in grapevine phe-
nology and limited water availability in the soil will come
to the fore [49,50].

When the transcriptomic and metabolic reactions of
fruits as a result of heat and drought stress in wine grapes
were examined, it was reported that heat stress not only
alone but also in conjunction with water stress had sig-
nificant effects on important quality parameters such as
organic acid content, pH, and titratable acidity of the fruit.
It is also reported that environmental stresses show a
distinct organ-specific response, in contrast to previous
research for grape leaves and fruits that respond more
strongly to water stress. Heat stress has been reported to
have a much more significant effect on gene expression in
grape fruits than water stress [51].

Researchers have reported that fruits of different spe-
cies (especially V. labrusca) with a more biochemically rich
content under arid conditions can be an excellent genetic
resource [52].

Global warming increases sugar and decreases antho-
cyanins and acidity in grapes. Climate adaptation strate-
gies are essential to face global warming in viticulture.
Certain viticultural techniques may delay grapevine ripening
close to 15 days. Forcing bud regrowth delays ripening 2
months, which is essential in very warm areas [22].

3 Adaptation strategies in response
to climate change

The viticulture sector is going through an important pro-
cess for adaptation to climate change [53]. In viticulture,
climate change not only has effects on the yield and quality
of grapes, but is also important because of some difficulties
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brought by the social demand for environmentally friendly
farming techniques [54,55]. Viticulture must adapt to these
changing conditions in order to guarantee its sustain-
ability. Climate change will create major problems for all
sectors of viticulture in the coming years.

In recent years, in most viticulture regions, both fruit
and wine quality have improved, while yields have decreased
due to rising temperatures and lack of water. This situation
may negatively affect the quality in the near future. Growers
need new and sustainable strategies for quality production at
economically acceptable yields in a warmer, drier climate.
Especially for this purpose, varieties developed from dif-
ferent breeding programs seem to be one of the best solution
proposals due to their environmentally friendly and more
cost-effective production advantages [55,56].

3.1 Cultivar/variety and rootstock breeding
programs

Rootstock selection is important for adaptation to climate
change in viticulture. Rootstocks commonly used in viticul-
ture were obtained from crosses of some American species.
Rootstocks obtained from different Vitis species and hybrids,
especially V. berlandieri, V. riparia, and V. rupestris species,
are widely used. These American grapevine rootstocks are
resistant to phylloxera and have also been reported in many
studies to provide resistance or tolerance to various patho-
gens and biotic/abiotic stress conditions [57,58]. In addition,
grape rootstocks can affect the grape berry quality and
make the varieties grafted on them more resistant to dif-
ferent abiotic stress conditions [59,60]. Rootstocks can pro-
vide resistance or tolerance to a wide variety of abiotic
stresses, in addition to their ability to help the scion cope
with different biotic stresses. It is known that rootstocks
have significant effects on the grapevine’s tolerance to
abiotic stress factors (especially high salinity, drought, and
iron deficiency). These stress factors are among the very
important factors that limit the productivity of the grape-
vine plant and cause serious yield loss [61]. The breeding of
new grape varieties and rootstocks that use water more
efficiently is a very important strategy against global climate
change. According to global climate models, which predict
that drought will increase in the future, there will be sig-
nificant reductions in water resources and this will be
among the main limiting factors of vineyard areas. There-
fore, rootstocks are expected to play an important role in
limiting crop loss by improving water use, plant survival
potential, growth capacity, and adaptation of items to dif-
ferent stress conditions.
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One of the priorities of today’s viticulture research is
to develop new rootstocks that are more drought resistant.
The biggest advantage of adapting the cultivars to increasing
drought stress is that these rootstocks are drought resistant,
and their biggest advantages are that they make a signifi-
cant contribution to reducing production costs [62].

Rootstocks and varieties grafted on them differ in their
resistance to drought. For example, rootstocks such as 101-
14 and Schwarzmann are less drought tolerant, while root-
stocks such as Kober 5 BB, 1103P, Richter 110, and 140R are
more resistant and can provide higher drought tolerance
to grafted scions [5,63]. The ability of rootstocks to tolerate
water stress is related to some structural characteristics.
Stomata, which have particularly important roles in regu-
lating water loss, are organs that need to be taken into
consideration in managing water stress. Closure of stomata
is one of the earliest responses in grapevines during a lack
of water. Stomatal closure is guided by many factors, such
as phytohormone accumulation. Abscisic acid (ABA) is one
of the most studied hormones in grapevine plants, as in
many plant species, and is very sensitive to water stress.
Therefore, ABA synthesis is among the fastest plant
responses under abiotic stress conditions [64,65].

Salt stress is another important abiotic stress factor
and negatively affects both the growth and yield of grape-
vines. High salt levels cause problems in the uptake of
micronutrients as well as water uptake of the soil, and as
a result, the toxic ion concentration increases and some
deteriorations in the soil structure may occur. Salt stress
can affect plants in different ways. First of all, this negative
effect is seen as affecting photosynthesis in the leaves.
Tolerant varieties defend against this negative effect with
their own mechanisms, and sometimes they can eliminate
this effect. It has also been reported that different grape
species, varieties, and genotypes have significant differ-
ences in the main signaling pathways and gene expressions
that cause salt stress [66]. In recent years, it has been
reported that engineered nanoparticles give positive results
in combating abiotic stress factors such as salinity in dif-
ferent species, including vine plant [67].

Iron (Fe) chlorosis is among the most important abiotic
stressors affecting grapevines grown in calcareous soil.
Iron chlorosis caused by iron deficiency is among the
main nutritional disorders seen in susceptible grape vari-
eties or genotypes due to high bicarbonate levels in the soil.
Fe deficiency causes a decrease in the productivity of the
grapevine plant, reducing both its growth and yield [68].
Moreover, as a result of some wrong practices over many
years, the negative effects of climate change are becoming
more evident in grapevine plants. For example, many
acidic fertilizers used excessively can sometimes cause
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Figure 4: Commonly used vine rootstocks and abiotic stress responses: low (L), medium (M) and high (H) (Scion vigor) and different degrees of
tolerance to abiotic stress (phylloxera, salinity, drought, and iron chlorosis) [75].

some negative effects on vine leaves and therefore on crop
yield. Particularly, in high pH and calcareous soils, it is
necessary to prevent chlorosis by creating very careful
plant fertilization programs for the uptake of microele-
ments and iron [69].

Non-vinifera rootstocks have higher tolerance or resis-
tance to both phylloxera and nematode damage than V. vini-
fera, provide better resistance to grafted varieties against
these pests. In Figure 4, the characteristics of some com-
monly used rootstocks and their abiotic stress resistance
status are reported. Also, a diagram of commonly used root-
stocks and their parents is given in Figure 5. The breeding of
new rootstocks that can provide tolerance or resistance to
biotic/abiotic stresses and improve positively to grape ripening
and also quality is a very important stage for the next-genera-
tion viticulture. In this regard, breeding studies are still con-
tinuing in different institutions and countries [63].

3.2 Site and cultivar/variety selection

Choosing the right place in viticulture is a very important
issue, and climate change has increased the importance of

this issue even more. Establishing a connection to a wrong
place at the beginning of such an investment will both
affect the efficiency and quality and increase the produc-
tion costs significantly. For a sustainable viticulture, it is
necessary to examine the place where the vineyard will be
established for both wine and table grape cultivation in
terms of many characteristics, including mainly climate
and soil data [70]. With climate change, it is expected
that there will be changes in the determination of suitable
areas for viticulture.

While determining new vineyard areas, bioclimatic
indexes are used and these indexes provide important infor-
mation for suitable areas. It is predicted that new areas
suitable for viticulture will emerge with the increasing tem-
peratures, especially in the north of Europe [71-74].

New areas will be selected for viticulture; they will be
areas with higher altitudes, higher annual precipitation, and
less impact on vines from higher temperatures. However, as
different plant species are already grown in these new
areas, the grapevine may have to compete with them [75].

In order to be protected from the negative effects of
climate change in viticulture, particular attention should
be paid to the selection of location, direction, and variety.
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Figure 5: Main rootstocks and their parents [75].

Local differences are very important to reduce the negative
effects of climate change on viticulture [76].

It is possible for grape growers to benefit from local
conditions such as topography, slope, and direction to
adapt to climate change. Temperatures in the higher eleva-
tions differ from those in the lower elevations by several
degrees. Grape growers can adapt their vineyard areas to
changing temperatures by taking advantage of these local
differences. With climate change, the risk of sudden frost
events in many vineyard regions has started to increase in
recent years [77].

Although the most effective method for active protection
from frost events is the operation of suspended sprinkler
systems during frost events, wind machines and different
heating applications are also widely preferred [78]. The
most effective passive methods against late spring frosts
include choosing a suitable location and choosing the appro-
priate grapevine cultivars. Grape growers may be advised
not to plant vineyards in regions where frost events occur
frequently or to plant cultivars that bud burst late [79]. In
order to be protected from the negative effects of climate
change in viticulture, it will be necessary to pay more atten-
tion to the selection of varieties. In studies carried out for this
purpose, local varieties that may be less affected by high
temperature conditions are determined, and new hybrid
varieties are developed with breeding programs [80-83].

3.3 Covered systems

In many countries where table grapes are grown, different
covering systems to protect the grapevine plants and fruits

on them against the increasing extreme weather and cli-
mate events/disasters have started to be used in more
areas [84]. In addition, with the integration of smart agri-
culture and artificial intelligence applications into these
systems, it has become possible to have prior knowledge
and preventive action against many extreme weather
events [85,86]. There is a significant correlation between
fungal diseases and climate change. Because increasing
temperatures may create more favorable conditions for
these diseases [87].

Producing more sustainable production and using
decreasing water resources effectively in arid and semi-
arid regions where table grapes are produced is a very
challenging issue. Water use is significantly affected by
some climatic conditions (such as excessive solar radiation,
high air temperature, strong wind, high humidity). In
recent years, table grapes have been covered with different
plastic materials in different countries of the world in
order to reduce the negative effects of climate-related
increasing temperatures, strong winds, hail damage, frost
damage and excessive rainfall. This situation has a direct
relationship with the negative effects of climate change
[88,89]. These covers are used protection for hail, high
temperature, wind, and botrytis disease. In the coming
years, it is inevitable that they will be used more widely
against the increasing negative effects of the climate [90].
Sometimes bunches are partially or completely covered for
different purposes. While almost all of the table grape
vineyards are covered, especially in countries such as
Korea and Japan, the number of covered table vineyards
is also quite high in Italy and Spain. It is estimated that the
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use of these systems will increase in the case of an increase in
grape prices in countries such as Chile, South Africa, Turkey,
Egypt, and Iran, where table grape production is high [91].

Agronomic and physiological measurements were com-
pared in the studies carried out by covered cultivation with
different plastic films. Plastic covers are very effective in pro-
viding specific leaf area with adequate shoot growth rate.
When grapevines without plastic cover are compared with
those with which plastic cover is applied, great differences
are observed in terms of values such as leaf area, leaf chlor-
ophyll content, and pruning weight. Additionally, plastic cover
for grape vines causes low photosynthesis, transpiration, and
stomatal conductance. It has been reported that plastic covers
do not change the amounts of important components such as
starch, glucose, and fructose in the leaves, but only trans-
parent plastic covers can reduce the amount of sucrose in
grape leaves. In addition, plastic cover increased the water
potential of leaves and stems, reduced rotting, and increased
bunch weight, resulting in higher yields. Also, berries under
common plastic showed the highest concentration of antho-
cyanins. These results show that greenhouse cultivation
gives very advantageous results, especially under increasing
temperatures and limited irrigation opportunities [92,93].

Along with climate change, excessive precipitation
that can sometimes be seen in summer causes significant
quality loss in table and wine grapes harvested in this
season. Moisture-related rain increases the incidence of
vine botrytis as well as other fungal diseases. Additionally,
increased soil moisture due to increased rainfall destabilizes
plant growth and increases pH and acid content in grape
berries. In addition, excessive shoot growth shades the ber-
ries and negatively affects the anthocyanin content and
therefore color formation [94,95].

AV is a new concept that can protect plants from the
harmful effects of climate for quality production, while
providing the energy needed in agricultural production
by placing photovoltaic panels a few meters above the
soil surface and vegetation. In the current situation of
energy demand from renewable sources, AV systems with
grape plants under photovoltaic panels tend to become
increasingly common. It has been determined that photo-
voltaic panels affect the microclimate of the vineyard. While
vine productivity parameters (especially yield, number of
clusters, and weight) affect it to a limited extent, it has
been reported that anthocyanins, total soluble solids, and
polyphenols are reduced in grape must. These findings have
been reported in studies that affect the vine microclimate
and physiology of the panels and that yield decreases may
occur under photovoltaic panels, but the results should be
evaluated together for both energy and fruit production in
hot and dry weather conditions [96].
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3.4 Soil management practices

As a result of the effects of climate change on grapevine
plants, especially the issue of soil management has gained
importance in this process. When we look at the studies
carried out to protect from the negative effects of the cli-
mate in the vineyards produced for different purposes, we
see that the issues of soil cultivation, weed control, and
optimum utilization of the decreasing water resources
come to the fore [3,8]. It has been reported that the yield
in the grapevines with irrigation and tillage is generally
increased by almost two times compared to the tillage
system without irrigation. The lack of tillage can reduce
the negative impact of the no-irrigation system on yield.
Decreases in leaf stomatal conductivity were observed in
vines that were not irrigated during the veraison period,
regardless of whether or not tillage was done. In addition,
at veraison, tillage in non-irrigated vines can significantly
increase the phenolic substance ratio compared to the no-
tillage system. The grapevines can accumulate more N, P,
and K and less Mg during the flowering stage compared to
the veraison. During the veraison period, reductions in K
content in vines with irrigation and tillage and in Mg con-
tent in vines without tillage were noted. The total amount
of soluble dry matter and anthocyanins of the berries
increased in irrigation and no-tillage systems. It was
observed that there was an increase in total phenolics
with tillage in plants grown both irrigated and non-irri-
gated [97]. Soil management practices in grapevine plants
are used to better manage water resources and also to
prevent soil erosion. In Europe, demands for environmental
precautions are increasing after increasing environmental
awareness, and in recent years, alternative suggestions
against the use of herbicides and new soil cultivation tools
have started to be used more frequently. It is possible to
reduce summer drought problems with less evaporation
as a result of more superficial cultivation of the soil. The
use of grass cover increases the soil’s bearing capacity of the
soil, especially during rainy periods, and can further limit
the vigor of the grapevine [98].

The adaptation of the roots, which is the hidden and
often overlooked part of the grapevine in the soil, to dif-
ferent soil types has a significant effect on the adaptation of
grapevine plants to climate change. Due to the complexity
of soil-root interactions, it is necessary to determine stra-
tegies to improve the adaptation of viticulture to the
existing and possible threats to be encountered in the
future, with a comprehensive approach that will combine
different disciplines such as physiology, genetics, and
pathology. Rootstocks have played an important role in
viticulture since the introduction of phylloxera into
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Europe at the end of the 19th century. In order to adapt to
climate change, new rootstocks with different soil types
and resistant to stress conditions need to be developed for
both wine and table grapes. To cope with the effects of
climate change and emerging soil-borne pests and patho-
gens, rootstocks need to be addressed with soil manage-
ment [99,100].

3.5 Irrigation

One of the most important effects of climate change in
viticulture and especially in table grape cultivation is
related to irrigation water. Increasing temperatures not
only cause more water consumption in plants, but also
decrease irrigation water resources. It is reported that irri-
gation management in table grapes has become more
important with climate change [101].

It is reported that water availability for table grapes
will decrease further as a result of increased water demands
and competition forecasts, which may affect high sensitivity
and uncertainty for both production and human consump-
tion. Conventional surface-applied irrigation methods can
include easier installation and maintenance, along with
lower infrastructure costs. However, these irrigation methods
promote water loss through evaporation and seepage of soil
water, which reduces water-use efficiency, which is a critical
problem in semi-arid and arid regions [102,103]. Different
microirrigation methods, a low-pressure, low-flow irrigation
technique, with a relatively higher initial cost, have the
capacity to reduce the use of water resources and increase
the yield and economic return of vine crops. Although drip
irrigation has become the most common microirrigation
method used in vineyards, it is insufficient to use water
more efficiently with increasing temperatures [104].

Direct root zone irrigation is a novel subsurface drip
irrigation strategy for water conservation. When surface
drip irrigation and direct root zone irrigation are com-
pared, it can improve grape yield by 9-12% and crop
water-use efficiency by 9-11% in different climatic condi-
tions. It has been reported that direct root zone irrigation
can potentially promote deep rooting in vines under drought
stress to alleviate water stress and can be used as a suc-
cessful tool to increase yield and quality [105].

Irrigation of vines is an important part of vineyard
management, and it is especially important for table grapes.
In addition, increasing temperatures and decreasing
water resources due to climate change have increased this
importance even more. With more precise and efficient
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programming of water resources, water needs can be met
more efficiently. Typically, irrigation plans are created using
mathematical models. While irrigation systems can be
created with the help of technology in many developed
countries, such models often have significant problems in
implementation in most developing countries, often due
to incomplete data [106,107].

3.6 Smart (precision) viticulture

Climate change is becoming an increasingly big problem for
the grape industry on a global scale, affecting all aspects of
the different development stages of the vine and also dete-
riorating the quality of the fruits. Because grapevine devel-
opment is highly dependent on the weather and some
climatic conditions, climate change can affect production costs
and growth in different regions. Innovative technologies are
needed against these problems. One of the most significant
and recent conceptual developments in viticulture is pre-
cision viticulture (PV). With PV, it can be applied effectively
especially in the following topics: weather monitoring, pest
management, water management, harvest management,
soil management, canopy management, and weed man-
agement. Recently, different remote sensing systems have
begun to be used to monitor the microclimate of vineyard
areas and vine plants. Different sensors integrated with
drones, mini planes, or satellites began to be used for
irrigation programs. Also, soil electrical conductivity sen-
sors for soil mapping have also been developed in recent
years. Soil and vine water-monitoring devices will be
used more in vineyard areas in order to protect from
the negative effects of climate change due to more tech-
nological developments such as sensitive viticulture and
artificial intelligence in vineyards [108,109]. It is based on
combining technical advances in global positioning system
(GPS), onsite or aerial measurements of local microclimatic
conditions, details of vineyard water and nutrient status,
with measurements of several vine physiological para-
meters. These data can be correlated with the level of
individual vines and their topographic details. It can
help to make protective applications in the vineyard in
advance, especially against sudden climatic events and
the negative effects of climate change [110-112].

It is reported that by combining sensor monitoring and
precision farming techniques, it can provide yield and
quality improvements in grape production in plants under
plastic cover systems [113].
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4 Medium-long-term adaptive
strategies

In order to ensure sustainability in the production of Vitis
species, measures must be taken to adapt to climate change.
Adaptation strategies should be evaluated meticulously, and
the results must be analyzed well. After all factors are eval-
uated for the region together with these results, effective
applications may be taken together with all decision-makers
for a sustainable viticulture model. This situation should be
taken into account sufficiently when determining the real
effects of climate change and adaptation mechanisms. It
would be beneficial to urgently develop medium-long-
term adaptation strategies against the negative effects of
climate change on viticulture. Many studies have been
conducted on the adaptation mechanisms of climate change
in viticulture. Looking at the contents of these studies, it has
been reported that adaptation studies are carried out in
three different ways (experimental, modeling, and expert
judgment) on irrigation, plant material, vineyard design,
canopy management, management of soil, site/location
selection, farm strategy, and harvest management (Figure 6)
[114]. In these studies, particular emphasis has been placed on
experimental studies, and it is expected that these studies will
soon include more application-oriented solutions that will be
recommended to growers.

There is a need to develop biotechnology for varieties,
clones, and rootstocks that are more resistant to abiotic
stress such as water scarcity, thermal, and radiation

DE GRUYTER

excess. By examining the genetic mechanisms of local
varieties in terms of adaptation to changing radiation,
temperature, lack of vapor pressure, and water avail-
ability more effectively, suitable varieties can be deter-
mined and used in breeding studies.

Some cultural practices can be partially combated
against climate change factors that significantly affect
the quality of wine grapes. First of all, different applica-
tions can be selected by re-evaluating the criteria for the
selection of growing systems and vine spacing. However,
while doing this, too many changes should not be made in
traditional methods that may adversely affect the quality.
For example, a later maturation can be achieved with a
simple application such as postponing the winter pruning.
In addition, grain sugar accumulation and fruit alcohol
content can be limited by using methods such as natural
antitranspirant and new canopy management techniques
[115,116].

5 Conclusions

Climate change is causing increasing damage to table,
wine, and raisin grapes around the world. Climate change
brings with it many negativities for vineyard areas, but it is
important to prevent loss of income for growers by devel-
oping adaptive strategies to this situation in the short,
medium, and long term. Nowadays, scientists first try to
understand the negativities in the grapevine plant with

Experimental . Modeling . Expert judgment

Irrigation

Plant material
Canopy management
Soil management 1

Vineyard design

Adaptation

Site selection 1

Farm strategy 1

Harvest management

0 10

20 30 40 50
Number of studies

Figure 6: Type, number, and content of publications on the adaptation mechanisms of climate change in viticulture [114].
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their studies, and on the other hand, they try to produce
solutions that can be developed against this situation.
Using the opportunities provided by technology, very pro-
mising results have begun to be achieved in recent years.

The important thing here is that we must raise aware-
ness of all segments of society against climate change, be
better prepared for different future scenarios, and accel-
erate research studies.
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