

Review Article

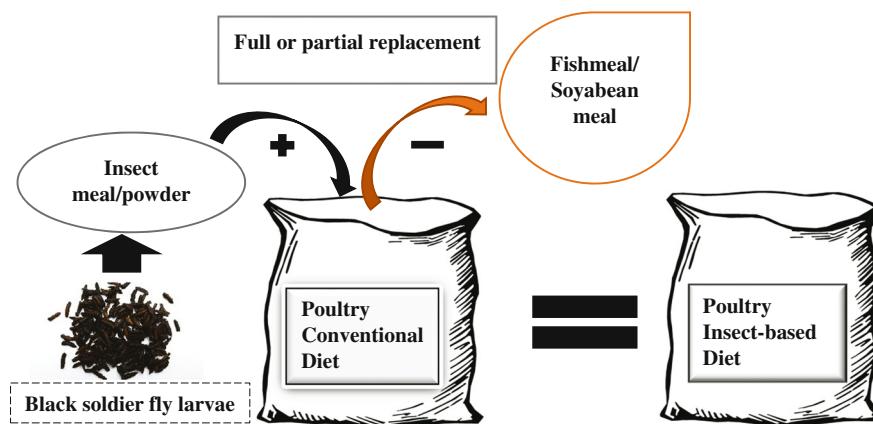
Sekobane D. Kolobe, Tlou G. Manyelo, Nthabiseng A. Sebola, Emmanuel Malematja, Mabelebele Monnye*

A transformative poultry feed system: The impact of insects as an alternative and transformative poultry-based diet in sub-Saharan Africa

<https://doi.org/10.1515/opag-2022-0202>
received February 18, 2023; accepted April 16, 2023

Abstract: There is growing interest in the transformation of costly, unsustainable feed systems to help address malnutrition and food insecurity in sub-Saharan Africa (SSA). In the poultry production industry, dietary insect meals were identified as a possible solution to aid in transforming poultry feeds by replacing expensive and environmentally threatening protein feed ingredients including soyabean and fish meal. Hence, playing an important role in helping to feed the ever-growing human population size through the production of more poultry meat and meat products. The potential of edible insects as highly nutritious, cost-effective, and biofriendly alternative protein feed ingredient in poultry diets is currently one of the most trending topics in animal nutrition worldwide. This review will provide a recent overview of the utilisation of insect-based diets by poultry-producing farmers in SSA, to improve poultry production at low costs with little effect on climate change. Therefore, the perspectives of various farmers towards using insect-based diets in poultry production; recent findings on the effect of insect-based diets on poultry production and performance; benefits of insect-based poultry meat; adoption and awareness of insect farming; and opportunities and constraints of rearing insects for animal feeding in SSA were discussed. Hence, there is still a need to improve insect farming infrastructure, educating and training insect and poultry-producing farmers on insect rearing and marketing, enforcing laws and policies on

insect farming operation, investing and conducting more research on local insects in poultry diets, as well as conserving wild insects and the environment in general.


Keywords: insect meal, poultry production, insect farming, entomophagy, sub-Saharan Africa

1 Introduction

The production of adequate and sustainable food to curb global food insecurity by 2030 is some of the targets that falls under 17 Sustainable Development Goals set by the United Nations [1]. These targets are also reflected in the Agenda 2063 “Africa we want” and the National Development Plan of South African which also focus on improving nutrition and complete eradication of poverty and hunger in African countries. However, it is nearing 2030 and most targets are still far from being achieved [2,3]. The poultry industry, particularly chicken production, is one of the main meat protein sources produced in large quantity compared to meat from other livestock and, hence, contributes more to the Gross Domestic Product of African countries [4,5]. However, the continent, especially countries in sub-Saharan Africa (SSA), is experiencing a decline in poultry farming, particularly chicken production due to high feed costs, mainly protein sources such as fish meal and soyabean meal as shown in Figure 2 [6,7]. For instance, according to Vernooij et al. [8] and Abro et al. [9], the total poultry protein feed demand by the entire poultry sector (broilers, layers, and indigenous chickens) in Africa is approximately 1,306,004 tonnes. Hence, poultry-producing farmers tend to provide their flock with low-quality feeds which consequently leads to low production and performance. As such, most countries in the Sub-Saharan regions rely on imports of chicken meat from countries such as Brazil and the United States. Recently, there is an increased interest in the transformation of unsustainable animal feed [10]. This is because the production of soya and

* Corresponding author: Mabelebele Monnye, Department of Agriculture and Animal Health, University of South Africa, College of Agriculture and Environmental Sciences, Florida, 1710, South Africa, e-mail: mabelm@unisa.ac.za, tel: +27 114 713 983

Sekobane D. Kolobe, Tlou G. Manyelo, Nthabiseng A. Sebola, Emmanuel Malematja: Department of Agriculture and Animal Health, University of South Africa, College of Agriculture and Environmental Sciences, Florida, 1710, South Africa

Figure 1: The transformation of poultry diets through inclusion of dried insect meals.

fishmeal as feed for livestock has been reported to cause adverse effects on the environment and contribute to climate change through: damage of marine ecosystem, soil contamination, air and water pollution, and large land utilisation, resulting in biodiversity loss [11–13]. Hence, the determination of novel solution to meet the animal protein requirement balancing of production animals is key to the development of animal industry in future trends [14].

Alternatively, insect meals have been widely documented as a potential protein feed ingredient to replace the main conventional feedstuffs in poultry diets [7,15–17]. Furthermore, they have long been known to be consumed by poultry species, especially free-range and indigenous chickens in rural areas [18]. There are about 500–1,500 edible insect species discovered in Africa [1,19–21]. This includes beetles, grasshoppers, locusts, crickets, termites, and stinkbugs [20]. Although the poultry sector contributes about 11% of total greenhouse gases in livestock production [11], insect production is considered environmentally friendly since it emits less ammonia and greenhouse gases while requiring limited space of land and water for rearing, hence, reducing climate change [14,20–22]. However, edible insects such as termites, locusts, and grasshoppers are highly recognised as important agricultural pests known to destroy homes and agricultural lands in SSA [23]. Despite vast literature reported on the nutritional status and performance of various insects as a potential protein source in the diets of animals such as fish, pig, rabbit, and poultry [24], there are limited reports on the current state utilising insect-based diets for poultry production in SSA. This is because insects as poultry feeds in the African commercial sector have not been fully explored [22,25].

Therefore, this review aims to discuss the recent updates and progress on the transformation of African poultry feed

systems by using insect meals as an alternative protein ingredient in poultry feeds. Thus, discussing the perspectives of various farmers towards using insect-based diets in poultry production; recent findings on the effect of insect-based diets on poultry production and performance; benefits of insect-based poultry meat; adoption and awareness of insect farming; and opportunities and constraints of rearing insects for animal feeding in SSA will aid in concluding whether there is a positive progress in farming and utilisation of insects for poultry production in Africa.

2 Literature research strategy

This study uses data from pre-revised and published articles conducted on the adoption and awareness of insect farming, perspectives of various farmers towards using insect-based diets in poultry production, recent findings on the effect of insect-based diets on poultry production and performance, benefits of insect-based poultry meat, and governments action towards improving insect farming in SSA from electronic database such as Google scholar, Research gate, Directory of Open Access Journals, Science direct, and JURN. First, the electronic database was searched by using key words and other terms relevant for this topic such as insect meal, insect farming, poultry production, and SSA. The second step was to select relevant articles for the transformation of African poultry feed systems using insect-based diets. Third, the identified articles were further evaluated, sorted, and screened by their abstracts for relevancy. If the abstract passed the evaluation and screening phase, full articles were retrieved and read to be included as part of the manuscript.

3 Discussion

3.1 Adoption of insect farming practice in SSA

The consumption and rearing of edible insects for commercial production are rapidly gaining more attraction across Africa, particularly sub-Saharan countries due to increased demand for animal feeding including poultry species [5,7,20,26–28], with more youth and women entering the insect farming business [10,18]. The insect sector helps harvesters and small-scale producers generate more income in the market in countries such as Nigeria, Kenya, and South Africa [2]. Furthermore, insect markets in SSA also involve imports and exports of harvested insects between neighbouring countries such as Mozambique and Zimbabwe when there are high demands [29]. Although this creates competition between consumers and farmers who harvest insects to incorporate into poultry diets, the market size for insects is determined by the demand for consumption of insects and insect-based products [16].

Generally, insects farming on a large scale are reported to be economically beneficial in that it reduces feed costs when replacing conventional protein feedstuffs in animal diets [30]. Based on Table 1 and Figure 2, insects as a feed source are proving to be reasonable compared to the ever-increasing prices of conventional feed sources, specifically fishmeal and soyabean meal over past recent years. Furthermore, crickets and black soldier flies are proving to be the most dominant insect species farmed for animal feeding in SSA. Hence, Kenya and Uganda specialise in the mass production of black soldier flies for poultry feeding. They are the only SSA countries reported to contain higher number of insects producing farmers than the rest of the continent [4,31]. This is because in previous years, insect rearing as well as research studies on insect incorporation in poultry diets is limited in most African countries [25,32]. However, recently, there has been a steady increase in the utilisation of edible insects as feed in most parts of the continent [8,26,32].

3.2 Opportunities of rearing insects for animal feeding in SSA

3.2.1 Farming with commonly reared insects

In general, edible insects are globally recognised food and feed [33]. They could be easily reared on rearing mediums such as manure, and organic waste, especially at the larvae stage [20,34]. The utilisation of Agro by-products and weeds to feed reared insects could help clean the environment worldwide including SSA [35]. Insects despite being entomophagous, their environmental benefits include the ability to perform vital functions such as soil fertilisation, bioturbation and soil formation, decomposition of organic matter, and vegetation growth and diversity [10,36]. Furthermore, their wastes can be effectively utilised as a source of organic fertiliser that could be beneficial for plant-producing farmers in the continent [37]. Below are the opportunities of farming with commonly reared insects that are already available in the market and potential insects originating in the continent.

Commercial breeding of insects is considered sustainable, cost-effective, and profitable due to fast growth, high reproductive efficiency, and ability of reared insects to convert waste into valuable protein [38–42]. Thus, the approval of insects as feed (United Nations, September 2021) has stimulated more interest in using insect-based diets countries for poultry production worldwide including SSA countries [28]. Chia et al. [43] reported that about 70% of poultry farmers in Kenya have familiarised themselves with the incorporation of insects in diets. Most of them have accepted and are willing to purchase insect-based feeds from insect-rearing traders. Moreover, SSA countries in collaboration with international insect investors have established private companies including Agriprotein (South Africa), FasoPro (Burkina Faso), Ghana Aspire (Ghana), InsectiPro (Kenya), and Bioduu (Tanzania) which mainly focus on the mass production of insect species such as black soldier flies, yellow mealworms, and palm weevil larvae, hence, playing a significant role in many communities in

Table 1: Insect distribution, prices, and insect farmers producing insects as feed in Africa

Insect type	Country	Insect prices (US\$/kg)	No. of insect-producing farmers
Black soldier fly (<i>Hermetia illucens</i>)	Egypt, Ghana, Kenya, Tanzania, Uganda	1.29	14
Crickets (<i>Acheta domesticus</i>)	Kenya, Rwanda, Uganda, Zimbabwe	12.07	48
Silkworms (<i>Periplaneta americana</i>)	Tanzania	3.62	1

Source: Verner et al. [18].

terms of research and creating more job opportunities to curb unemployment rate and food insecurity [4,18,21].

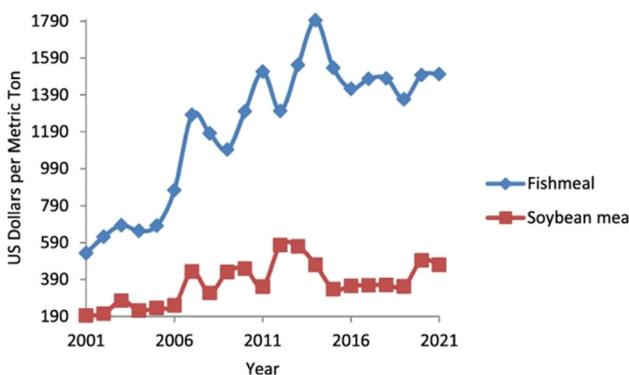
Hence, commercialisation and processing of insects on a large scale remain one of the priorities targeted by most African governments [21,22]. For that, Verner *et al.* [18] recently reported about 850 insect-producing farmers for food and feed in Africa. However, only 63 farmers reported to produce insects for animal feeding (Table 1). In addition, the INFEED, an internationally funded project in partnership with Cultivate Africa's Future Fund (CultiAF), conducted different feeding trials which aimed at utilising insect-based diets in sub-Saharan regions, specifically Kenya and Uganda to monitor the progress of insect farming. Hence, the project has proven to be beneficial in helping small- and medium-scale insect farmers of all genders including adults and youth to generate income, thus, improving the livelihoods of many communities, particularly in rural areas in terms of nutrition [7,21,31,44]. Moreover, various stakeholders engaging in insect farming for animal feeding in Africa include international agencies, policymakers, research organisations, private sectors, NGOs, and research organisations [18].

3.2.2 Potential farming with local African edible insects

Most poultry farmers using insect based diets in sub Saharan region rely on harvesting local insects in the wild than rearing than purchasing farmed insects in the market [41]. However, the harvesting method is considered unsustainable as it disturbs the ecosystem and also leads to overharvesting, which consequently result in the depletion of wild edible insects [38]. Hence, educating farmers about the benefits of insect utilisation and market opportunities will stimulate more consumers and farmers' interest and acceptability in insect rearing and consumption [22,43]. Moreover, there is a need to train and recruit more emerging insect-producing farmers around the continent to help promote insect farming and marketing for animal feeding [7]. It has been reported that farming of local insects could also be considered for poultry feeding since endemic insects pose no environmental harm to the area they originate from [18]. The most common edible insects used as food and feed in SSA include locusts, grasshoppers, termites, palm weevil larvae, stinkbugs, and mopane worms [45,46]. As shown in Table 2, the feeding trials of the potential inclusion of the above-mentioned local insects in poultry diets have already been documented.

Furthermore, research studies are closely monitoring the possibility of farming with swarming insects such as locusts and grasshoppers in fish and poultry diets [47–51]. This is because insect swarming of insects has been widely

reported to be a serious concern to plant-producing farmers in SSA countries such as Botswana, Madagascar, Mozambique, Namibia, South Africa, Zambia, and Zimbabwe. Their outbreaks damage crops and also play a role in modifying ecological processes such as food chain, consequently, resulting in soil erosion, runoff, and lower yields [1,52,53]. In addition, South African farmers, particularly in the East and Western Cape have been adversely affected by seasonal swarming of locust species in recent years. It is alerted that the swarming will further continue in the next coming seasons; hence, it is advisable for farmers to always be on the lookout in those regions [54]. Therefore, poultry farmers could also consider swarming seasons as an opportunity to harvest insects for rearing and animal feeding purposes since it is cost-effective, and tons of insects could be easily collected. Furthermore, the utilisation of swarming insects in poultry diets could play an important role in helping to prevent damages made by insects while preventing the use of harmful pesticides to control insect outbreaks.


3.3 Potential of insect-based diets in poultry production

Edible insects have been widely documented as a possible alternative feed ingredient in poultry diets [14,23,39]. More so, it has been reported that there is huge recognisable competition between human, fish, and terrestrial animal industries for ingredients, particularly commercial protein sources such as soyabean and fish meal [40]. Hence, it is important to find ways of transforming poultry diets using novel feeds such as insect meals [39]. Figure 1 shows the transformation of poultry diets through incorporation of insects as a protein source to fully or partially replace conventional protein feed ingredients whereas, the recent literature reported in Africa on the effect of insect-based diets on poultry production and performance are indicated in Table 2. Based on the findings, the inclusion of various edible insects from different countries could improve the growth performance and meat quality parameters of poultry species.

However, insects have been reported to contain harmful and toxic elements such as heavy metals which could adversely affect the performance of animals consuming them; hence, their accumulation in large quantities indirectly threatens the health of humans [55]. In addition, the high chitin has also been observed to limit the utilisation of insects in poultry diets [14]. This is because chitin levels are considered the main anti-nutritional factor that is highly associated with adverse

Table 2: Recent findings on the effect of insect-based diets on poultry growth and performance in Africa

Study location (country)	Poultry type	Insect type (dry)	Insect meal replacement level	Findings	References
Egypt	Japanese Quail	Egyptian cotton leafworm (<i>Spodoptera littoralis</i>) larvae	Up to 100% of bone meal	Improved body weight gain and Feed conversion ratio without any effect on performance, carcass characteristics, haematological and serum biochemical indices	[56]
Kenya	Broiler chickens	Black soldier fly (<i>Hermetia illucens</i>) larvae	Up to 75% of fishmeal	Could be included in diets without compromising performance	[57]
Kenya	Broiler chickens	Black soldier fly (<i>Hermetia illucens</i>) prepupae	At 150 g/kg of soyabean meal	Could be included in diets without any effect on performance and meat quality	[6]
Kenya	—	Black soldier fly (<i>Hermetia illucens</i>) larvae	From 5 to 50% of fishmeal and soyabean meal	Economic benefits	[5]
Kenya	Indigenous chicken	Grasshopper meal (<i>Ruspolia nitidula</i> , <i>Acanthacris ruficornis</i> , <i>Schistocerca gregaria</i>)	Up to 100% fishmeal	Improved feed conversion ratio, crude protein digestibility, and sensory attributes. Reduced feed intake and did not affect weight gain	[48]
Niger	Indigenous chickens	House fly (<i>Musca domestica</i>) larvae	Up to 50% of fishmeal	Improved growth rate and feed consumption without any effect on body weight, feed conversion ratio, and carcass traits	[58]
Nigeria	Broiler chickens	African palm larva (<i>Rhynchophorus phoenicis</i>) and termite (<i>Macrotermes bellicosus</i>)	Up to 100% of fishmeal	Improved all growth performance parameters	[59]
Nigeria	Broiler chickens	Grasshopper meal	Up to 100% of fishmeal	Improved growth performance parameters	[49]
South Africa	Jumbo Quails	Mopane worm (<i>Imbrasia belina</i>)	At 150 g/kg of soyabean meal	Could be included without any adverse effect on performance, health and meat quality	[60]
South Africa	Broiler chickens	Mopane worm (<i>Imbrasia belina</i>)	Up to 12% of soyabean meal of	Positively affected growth performance, meat quality, and sensory attributes	[61]
South Africa	Broiler chickens	Black soldier fly (<i>Hermetia illucens</i>) prepupae	Up to 15 of fishmeal%	Could be included without any effect on carcass, sensory or meat quality characteristics	[62]
South Africa	Jumbo Quails	Black soldier fly (<i>Hermetia illucens</i>) larvae	At 54 g/kg of soyabean meal	Improved gut morphology without any adverse effect on weight gain and meat quality	[63]

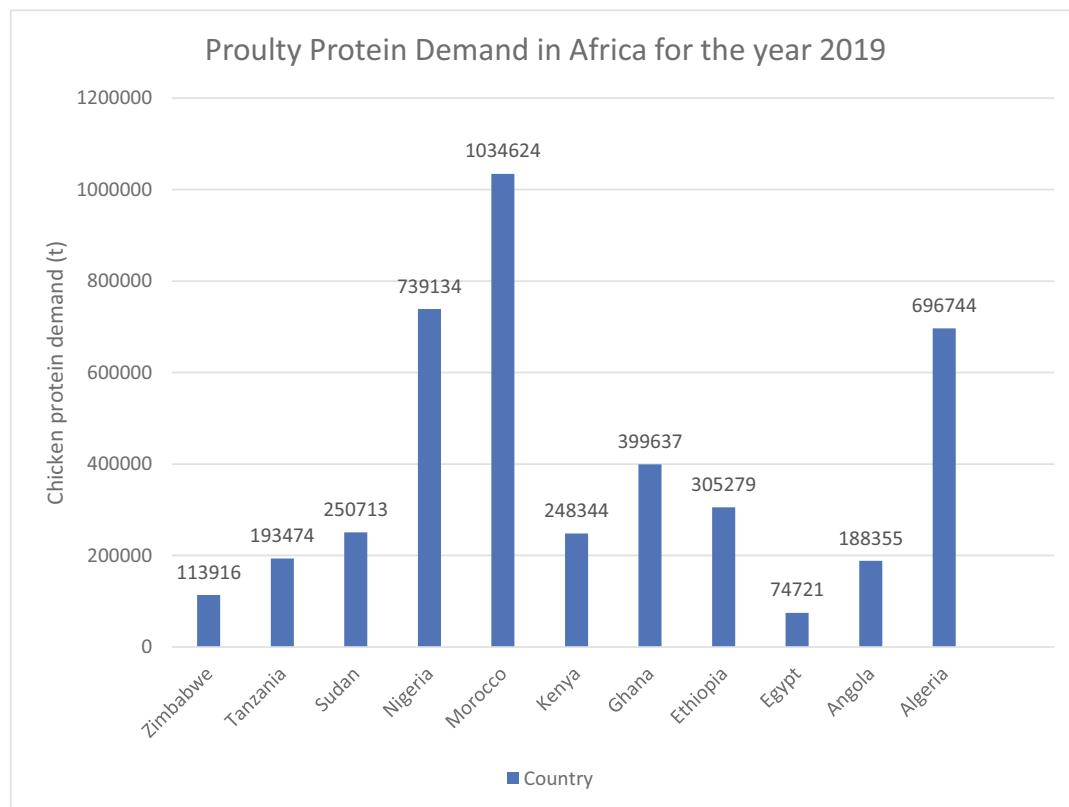
Figure 2: Prices of conventional protein sources (fishmeal and soyabean meal) from 2001 to 2021. Source: Nagappan *et al.* [71].

reduction in intake, absorption, digestibility, meat quality, and performance [14,34,40]. However, chitin content in insects could be reduced by removing their exoskeletons [64]. It has been also observed that chitin can be digested efficiently using enzyme chitinase [35]. Hence, knowledge and understanding of chitin as a limiting antinutritional factor as well as the optimal inclusion levels of insect meals in animal diets for better utilisation is vital [40]. This includes knowing the type of substrates including mixed organic wastes, food wastes plant materials and animal feeds fed to farmed insects since they influence the nutritional and health status of insects as well as animal-fed insect diets [18].

3.4 Benefits of insects in diets and poultry meat

3.4.1 Insect-based diets

Most edible insects are heavily documented to be rich in protein, lipids, vitamins, amino acids, and minerals required by livestock [16,32,65]. They outperform common meat such as beef, pork, fish, and chicken in terms of nutritional value [2,20,66]. Furthermore, their palatability and taste make them a suitable feed ingredient for poultry species during feed shortages [21,22]. Moreover, the processing techniques such as drying and grinding could also help improve insect utilisation as poultry feed [21]. Hence, there is a need for sustainable production and processing of insects as feedstuff for poultry species in SSA [25]. Although insects have nutritional, medicinal, economic, and environmental benefits when utilised as feed [20,22,32], they indirectly contribute to human diets when used as feeds for poultry [31]. For instance, the chitin present in insects' exoskeleton could possess anti-oxidative, anti-inflammatory, anti-microbial, and


immunostimulatory activities, which could improve immunity and health status poultry species when incorporated in diets [2,16], subsequently, helping to prevent chronic diseases such as diabetes type in humans who consumed insect-based poultry meat [2]. They could, thus, influence the willingness of consumers to purchase insect-based products [22]. This is because there are different perspectives towards the acceptability of insect-based meat and meat products by consumers from various countries. For instance, most people especially in Western countries reject the consumption of insect-containing meat and by-products [22,33,67].

3.4.2 Insect-based meat

Although there is a continuous increase in costs of main protein feed ingredients as shown in Figures 2 and 3, the demand for protein from poultry meat, especially meat from broiler chickens in most African countries, continues to increase due to high population growth in the continent. Hence, the introduction of insect-based diets could serve as a sustainable solution to poultry production industry. For that, Mtolo *et al.* [32] conducted a study in South Africa on students' views towards consuming meat from chickens fed insect-based diets. It was concluded that above 50% of students from different universities are fully aware of insect inclusion in poultry diets and are willingness to consume insect-fed chicken meat with less concerns about the health risks associated with insects. However, the nutritional value along with the safe consumption of insects and insect-based poultry meat must always be taken into consideration when including insect meals along with other ingredients in animal diets to meet their nutrient requirements while maximising production and good health status [40].

3.5 Constraints of farming insects in SSA

In SSA, there is a lack of legislations and regulatory constraints involving feeding, welfare, harvesting, breeding, processing, and marketing [33,68–70]. Insects are only mentioned under food law, wildlife resources, and pest management [3]. However, according to the recent reports, countries including Kenya, Uganda, and Rwanda, have developed regulation standards, which focus on the use of dried insects such as cricket and termites as a protein source in animal feeds. The regulations strictly require wildlife permits for production and transportation on a large scale [18]. Moreover, other countries such as Botswana are still in the early stage of drafting and

Figure 3: Poultry protein demand per ton (t) from chicken meat in Africa for the year 2019. Source: Verner et al. [18].

implementing laws and policies that will restrict insect utilisation to avoid overharvesting and prevent unauthorised hunting, harvesting, and farming of insects [3]. This could be done through successful approaches and procedures used by countries such as Thailand in Asia [18].

Although the legislations on insect hygiene and safe consumption are highly recommended [3], there is a lack of regulations on the safe utilisation of insects as feed in SSA [13,21,31], unlike in Europe where insects such as yellow mealworm and migratory locust novel food have been recently authorised as safe to consume by human and animals [18]. The ignorance of the safe consumption of insects could be that insects have long been utilised without any consideration of the health risks they pose to animal-fed insects [32]. However, the unsafe consumption of insects has been heavily reported to threaten animal health due to the possibility of insects containing disease pathogens, contaminants, allergens, toxins, and pesticide residues [3,33,55,68].

Nonetheless, in general, there is a lack of financial support for insect-rearing farmers to sustain the production and marketing of insects [10]. Although insect-based meals have been highly documented to be cost-effective feed than commercially produced diets for animal production [3,30].

In terms of substrate availability, labour, fuel, transport, and housing costs, the current insect farming systems for large-scale production have been observed to be more expensive than the production of traditional poultry feeds [18,24,72] (Figure 3). They could also report the increasing prices over time for conventional protein feed sources, animal products, and insect feed. Other challenges faced by already existing small- and medium-scale insect farmers in SSA include poor infrastructure and lack of advanced technologies for efficient production [1,32]. Moreover, they are constrained by insufficient knowledge and skills in various production systems including cage system, pens for large-scale production, open farming system, and captive production system to rear insects on a large scale for animal feeding [4,22,31]. According to Conti et al. [73], finding a suitable production system to produce novel animal feeds will promote sustainable agriculture with increased output and less harm to the environment.

4 Conclusion

The utilisation of insect-based diets could sustainably play a critical role in maximising poultry production at a

reasonable feed cost to help address food insecurity in SSA. The insect-farming industry could be highly beneficial to many communities through income generation and creation of more jobs, thus improving the livelihood of Africans as a whole. Although there are concerns about the safe consumption of meat from poultry reared on insect-based diets, people in SSA accept the idea of consuming insect-based products including poultry meat. However, the lack of finance, knowledge and skills, and marketing and production systems to breed and process sufficient insects on a large scale for poultry feeding is still a serious concern for emerging and small-scale insect-producing farmers, which, consequently, discourages most people not to consider entering insect farming business in SSA. Hence, the governing bodies and different stakeholders involved should employ more strategic plans aimed at promoting insect farming for livestock feed in Africa. This could be achieved by providing financial support to insects and poultry-producing farmers through funding projects and research trials, finding ways to encourage and educate more farmers on sustainable insect farming and enforcing proper laws and policies that will help maximise insect production and minimise harm to the environment.

Acknowledgments: Authors would like to acknowledge the University of South Africa, College of Agriculture and Environmental Sciences for provision of resources required to complete this review paper.

Funding information: The authors state no funding involved.

Author contributions: Contributions to the conception or design of the work: SDK and MM. Drafting, acquisition, and interpretation of data for the work: SDK. Revising the review article critically for important intellectual content: TGM, NAS, EM, and MM. Final approval of the version to be published: SDK, TGM, NAS, EM, and MM. Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved: SDK and MM.

Conflict of interest: The authors state no conflict of interest.

Data availability statement: Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

- [1] Raheem D, Dayoub M, Birech R, Nakiyemba A. The contribution of cereal grains to food security and sustainability in Africa: potential application of UAV in Ghana, Nigeria, Uganda, and Namibia. *Urban Sci.* 2021;5(1):8. doi: 10.3390/urbansci5010008.
- [2] Adegbeye ARA, Bawa M, Keith R, Twefik S, Tewfik I. Edible Insects: Sustainable nutrient-rich foods to tackle food insecurity and malnutrition. *World Nutr.* 2021;12(4):176–89. doi: 10.26596/wn.2021124176-189.
- [3] Grabowski NT, Tchibozo S, Abdulmawjood A, Acheuk F, M'Saad Guerfali M, Sayed WA, et al. Edible insects in Africa in terms of food, wildlife resource, and pest management legislation. *Foods.* 2020;9(4):502. doi: 10.3390/foods9040502.
- [4] Orinda M, Magara H, Ayieko M, Nyakeri E. GREEINSECT Technical Brief#2 Report: Insect production systems for food and feed in Kenya; 2018. <https://www.researchgate.net/publication/327573356>.
- [5] Abro Z, Kassie M, Tanga C, Beesigamukama D, Diiro G. Socio-economic and environmental implications of replacing conventional poultry feed with insect-based feed in Kenya. *J Clean Prod.* 2020;265:121871. doi: 10.1016/j.jclepro.2020.121871.
- [6] Onsongo VO, Osuga IM, Gachuiri CK, Wachira AM, Miano DM, Tanga CM, et al. Insects for income generation through animal feed: effect of dietary replacement of soybean and fish meal with black soldier fly meal on broiler growth and economic performance. *J Econ Entomol.* 2018;111(4):1966–73. doi: 10.1093/jee/toy118.
- [7] Tanga C, Dorothy N. Final technical report: INSFEED2: insect feed for poultry, fish and pig production in Sub-Saharan Africa-phase. 2021;2:10–25. <https://idl-bnc-idrc.dspacedirect.org/bitstream/handle/10625/60979/IDL%20-%2060979.pdf>.
- [8] Vernooy A, Masaki MN, Meijer-Willems D. Regionalisation in poultry development in Eastern Africa (No. 1121); Wageningen Livestock Research. 2018. <https://library.wur.nl/WebQuery/wurpubs/541134>.
- [9] Abro Z, Kassie M, Tanga C, Beesigamukama D, Diiro G. Socio-economic and environmental implications of replacing conventional poultry feed with insect-based feed in Kenya. *J Clean.* 2020;265:121871. doi: 10.1016/j.jclepro.2020.121871.
- [10] Tanga CM, Egyony JP, Beesigamukama D, Niassy S, Emily K, Magara HJ, et al. Edible insect farming as an emerging and profitable enterprise in East Africa. *Curr Opin Insect Sci.* 2021;48:64–71. doi: 10.1016/j.cois.2021.09.007.
- [11] Mottet A, Tempio G. Global poultry production: current state and future outlook and challenges. *World's Poult Sci J.* 2017;73(2):245–56. doi: 10.1017/S0043933917000071.
- [12] Akhtar Y, Isman MB. Insects as an alternative protein source. In: *Proteins in Food Processing.* Sawston, Cambridge: Woodhead Publishing; 2018. p. 263–88. doi: 10.1016/B978-0-08-100722-8.00011-5.
- [13] Dobermann D, Swift JA, Field LM. Opportunities and hurdles of edible insects for food and feed. *Nutr Bull.* 2017;42(4):293–308. doi: 10.1111/nbu.12291.
- [14] Adli DN. The effect of replacing fish meal with Sago larvae meal (SLM) on egg production and quality of laying hens. *LRRD.* 2021;33(7):1–8.

[15] van Huis A. Edible insects are the future. *Proceedings of the Nutrition Society*; 2016, Vol. 75, Issue 3, p. 294–305. doi: 10.1017/S0029665116000069.

[16] Mousavi S, Zahedinezhad S, Loh JY. A review on insect meals in aquaculture: The immunomodulatory and physiological effects. *Int Aquat Res.* 2020;12(2):100–15. doi: 10.22034/iar(20).2020.1897402.1033.

[17] Terova G, Gini E, Gasco L, Moroni F, Antonini M, Rimoldi S. Effects of full replacement of dietary fishmeal with insect meal from *Tenebrio molitor* on rainbow trout gut and skin microbiota. *J Anim Sci Biotechnol.* 2021;12(1):1–14. doi: 10.1186/s40104-021-00551-9.

[18] Verner D, Roos N, Halloran A, Surabian G, Ashwill M, Vellani S, et al. Insect and Hydroponic Farming in Africa: The New Circular Food Economy. Washington, D.C.: World Bank Publications; 2021.

[19] Kelemu S, Niassy S, Torto B, Fiaboe K, Affognon H, Tonnang H, et al. African edible insects for food and feed: inventory, diversity, commonalities and contribution to food security. *J Insects Food Feed.* 2015;1(2):103–19. doi: 10.3920/JIFF2014.0016.

[20] Ebenebe CI, Ibitoye OS, Amobi IM, Okpoko VO. African edible insect consumption market. In African edible insects as alternative source of food, oil, protein and bioactive components. Cham: Springer; 2020. p. 19–51. doi: 10.1007/978-3-030-32952-5_2.

[21] Matandirotya NR, Filho WL, Mahed G, Maseko B, Murandu CV. Edible insects consumption in Africa towards environmental health and sustainable food systems: a bibliometric study. *Int J Environ Res Public Health.* 2022;19(22):14823. doi: 10.3390/ijerph192214823.

[22] Selaledi L, Hassan Z, Manyelo TG, Mabelebele M. Insects' production, consumption, policy, and sustainability: what have we learned from the indigenous knowledge systems? *Insects.* 2021;12(5):432. doi: 10.3390/insects12050432.

[23] Hermans WJ, Senden JM, Churchward-Venne TA, Paulussen KJ, Fuchs CJ, Smeets JS, et al. Insects are a viable protein source for human consumption: from insect protein digestion to postprandial muscle protein synthesis *in vivo* in humans: a double-blind randomized trial. *Amer J Clin Nutr.* 2021;114(3):934–44. doi: 10.1093/ajcn/nqab115.

[24] Gasco L, Biasato I, Dabbou S, Schiavone A, Gai F. Animals fed insect-based diets: State-of-the-art on digestibility, performance and product quality. *Animals.* 2019;9(4):170. doi: 10.3390/ani9040170.

[25] Ssepuya G, Namulawa V, Mbabazi D, Mugerwa S, Fuuna P, Nampijja Z, et al. Use of insects for fish and poultry compound feed in sub-Saharan Africa—a systematic review. *J Insects Food Feed.* 2017;3(4):289–302. doi: 10.3920/JIFF2017.0007.

[26] Madau FA, Arru B, Furesi R, Pulina P. Insect farming for feed and food production from a circular business model perspective. *Sustainability.* 2020;12(13):5418. doi: 10.3390/su12135418.

[27] Fombong FT, Kinyuru J, Ng'ang'a J, Ayieko M, Tanga CM, Vanden Broeck J, et al. Affordable processing of edible orthopterans provides a highly nutritive source of food ingredients. *Foods.* 2021;10(1):144. doi: 10.3390/foods10010144.

[28] Veldkamp T, Schiavone A, Gasco L. Introducing the special issue 'Insects on the monogastric menu'. *J Insects Food Feed.* 2022;8(9):951–2. doi: 10.3920/JIFF2022.x005.

[29] Teffo LS. Nutritional and medicinal value of the edible stinkbug, *Encosternum delegorguei* Spinola consumed in the Limpopo Province of South Africa and its host plant *Dodonaea viscosa* Jacq. var. *angustifolia* (Doctoral diss, Univ of Pretoria); 2007. <http://hdl.handle.net/2263/26961>.

[30] Khan S, Khan RU, Alam W, Sultan A. Evaluating the nutritive profile of three insect meals and their effects to replace soya bean in broiler diet. *J Anim Physiol Anim Nutr.* 2018;102(2):e662–8. doi: 10.1111/jpn.12809.

[31] Nyangena DN, Mutungi C, Imathiu S, Kinyuru J, Affognon H, Ekesi S, et al. Effects of traditional processing techniques on the nutritional and microbiological quality of four edible insect species used for food and feed in East Africa. *Foods.* 2020;9(5):574. doi: 10.3390/foods9050574.

[32] Mtolo M, Ikusika OO, Mpendulo TC, Haruzivi C. Consumers' perception of poultry meat from insect-fed chickens: University students focus study. *Cogent Food Agric.* 2022;8(1):2140471. doi: 10.1080/23311932.2022.2140471.

[33] Abdullahi N, Igwe EC, Dandago MA, Yunusa AK. Consumption of edible-insects: the challenges and the prospects. *Food SciTech J.* 2021;3(1):1–24.

[34] Elahi U, Xu CC, Wang J, Lin J, Wu SG, Zhang HJ, et al. Insect meal as a feed ingredient for poultry. *Anim Biol.* 2022;35(2):332. doi: 10.5713%2Fab.21.0435.

[35] Magara HJ, Niassy S, Ayieko MA, Mukundamago M, Egonyu JP, Tanga CM, et al. Edible crickets (*Orthoptera*) around the world: distribution, nutritional value, and other benefits—a review. *Front Nutr.* 2021;7:257. doi: 10.3389/fnut.2020.537915.

[36] Yeyinou Loko LE, Orobiyi A, Agre P, Dansi A, Tamò M, Roisin Y. Farmers' perception of termites in agriculture production and their indigenous utilization in Northwest Benin. *J Ethnobiol Ethnomed.* 2017;13(1):1–12. doi: 10.1186/s13002-017-0187-2.

[37] DiGiacomo K, Leury BJ. Insect meal: a future source of protein feed for pigs? *Animal.* 2019;13(12):3022–30. doi: 10.1017/S1751731119001873.

[38] Mnisi CM, Oyeagu CE, Ruzvidzo O. Mopane Worm (*Gonimbrasia belina* Westwood) Meal as a potential protein source for sustainable quail production: A review. *Sustainability.* 2022;14(9):5511. doi: 10.3390/su14095511.

[39] Tilami SK, Turek J, Červený D, Lepič P, Kozák P, Burkina V, et al. Insect meal as a partial replacement for fish meal in a formulated diet for perch *perca fluviatilis*. *Turkish J Fish Aquat Sci.* 2020;20(12):867–78. doi: 10.4194/1303-2712-v20_12_03.

[40] Freccia A, Tubin JSB, Rombenso AN, Emerenciano MGC. Insects in aquaculture nutrition: an emerging eco-friendly approach or commercial reality? In Emerging Technologies. Environment and Research for Sustainable Aquaculture. London, UK: IntechOpen; 2020. p. 119.

[41] Musundire R, Osuga IM, Cheseto X, Irungu J, Torto B. Aflatoxin contamination detected in nutrient and anti-oxidant rich edible stink bug stored in recycled grain containers. *PLoS one.* 2016;11(1):e0145914. doi: 10.1371/journal.pone.0145914.

[42] Orsi L, Voege LL, Stranieri S. Eating edible insects as sustainable food? Exploring the determinants of consumer acceptance in Germany. *Food Res Int.* 2019;125:108573. doi: 10.1016/j.foodres.2019.108573.

[43] Chia SY, Macharia J, Diiro GM, Kassie M, Ekesi S, van Loon JJ, et al. Smallholder farmers' knowledge and willingness to pay for insect-based feeds in Kenya. *PLoS one.* 2020;15(3):e0230552. doi: 10.1371/journal.pone.0230552.

[44] Hlongwane ZT, Slotow R, Munyai TC. Indigenous knowledge about consumption of edible insects in South Africa. *Insects.* 2020;12(1):22. doi: 10.3390/insects12010022.

[45] Rumbos CI, Karapanagiotidis IT, Mente E, Psokafis P, Athanassiou CG. Evaluation of various commodities for the development of the yellow mealworm, *Tenebrio molitor*. *Sci Rep.* 2020;10(1):11224. doi: 10.1038/s41598-020-67363-1.

[46] Koutsos EA, Patterson PH, Livingston KA, Freel TA. The role of insects for poultry feed: present and future perspective. *Mass Production of Beneficial Organisms*. Cambridge, Massachusetts: Academic Press; 2023. p. 493–509. doi: 10.1016/B978-0-12-822106-8.00002-6.

[47] Van Itterbeeck J, Rakotomalala Andrianavalona IN, Rajemison FI, Rakotondrasoa JF, Ralantoinaivo VR, Hugel S, et al. Diversity and use of edible grasshoppers, locusts, crickets, and katydids (Orthoptera) in Madagascar. *Foods*. 2019;8(12):666. doi: 10.3390/foods8120666.

[48] Nginya ES, Ondiek JO, King'ori AM, Nduku JM. Evaluation of grasshoppers as a protein source for improved indigenous chicken growers. *LRRD*. 2019;31(1). <http://www.lrrd.org/lrrd31/1/shilo31002.html>.

[49] Mohammed FA, Suliman HMA, Yousif RA, Mohamed AA, Alhafez AM, et al. Effect of different levels of locust meal on growth, feed conversion and carcass composition for Nile tilapia fry (*Oreochromis niloticus*). *Int J Oceanogr Aquac*. 2020;4(2):000188. doi: 10.23880/ijoac-16000188.

[50] Yousif AR, Zehra S, Mohamed AF. Use of locust meal as alternative protein source to fish meal in practical diets for fingerling oreochromis niloticus. 2022;17(1):16–27. https: 10.3923/ajava.2022.16.27.

[51] Makkar H, Heuzé, Tran G. Locusts and grasshoppers: nutritional value, harvesting and rearing for animal feed, and other applications. *CABI Rev*. 2022. doi: 10.1079/cabireviews202217038.

[52] Latchininsky A, Sword G, Sergeev M, Cigliano MM, Lecoq M. Locusts and grasshoppers: behavior, ecology, and biogeography. *Psyche*. 2011;2011:1–4. doi: 10.1155/2011/578327.

[53] FAO. The future of food and agriculture—Trends and challenges. Annual Report. 2017;296:1–180.

[54] Majavu A. High tech early warning system could curb next South African locust swarms. Mongabay News and Inspiration From Nature's Frontline. 2022. <https://news.mongabay.com/2022/06/high-tech-early-warning-system-could-curb-next-south-african-locust-swarms/>.

[55] Mabelebele M, Kolobe SD, Malematja E, Sebola NA, Manyelo TG. A comprehensive review of the importance of selected trace elements present in edible insects. *Biol Trace Elem Res*. 2022;201:3520–7. doi: 10.1007/s12011-022-03423-z.

[56] Hatab MH, Ibrahim NS, Sayed WA, Sabic EM. Potential value of using insect meal as an alternative protein source for Japanese quail diet. *Braz J Poult Sci*. 2020;22(1):1–10. doi: 10.1590/1806-9061.2017-0700.

[57] Mutisya MM, Baleba SBS, Kinyuru JN, Tanga CM, Gicheha M, Hailu G, et al. Effect of *Desmodium intortum* and black soldier fly larvae (*Hermetia illucens*) based meal on sensory and physico-chemical properties of broiler chicken meat in Kenya. *J Insects Food Feed*. 2022;8(9):1001–13. doi: 10.3920/JIFF2021.0103.

[58] Hamani B, Moula N, Taffa AG, Leyo IH, Mahamadou C, Detilleux J, et al. Effect of housefly (*Musca domestica*) larvae on the growth performance and carcass characteristics of local chickens in Niger. *Vet World*. 2022;15(7):1738–48. doi: 10.14202/vetworld.2022.1738-1748.

[59] Amobi MI, Ebenebe CI. Performance of broiler chicks fed on two insect based-diets in South-East Nigeria. *J Insects Food Feed*. 2018;4(4):263–8. doi: 10.3920/JIFF2017.0078.

[60] Mararen M, Mnisi CM. Growth performance, serum biochemistry and meat quality traits of Jumbo quails fed with mopane worm (*Imbrasia belina*) meal-containing diets. *Vet Anim Sci*. 2020;10:100141. doi: 10.1016/j.vas.2020.100141.

[61] Moyo S, Masika PJ, Muchenje V, Jaja IF. Effect of *Imbrasia belina* meal on growth performance, quality characteristics and sensory attributes of broiler chicken meat. *Ital J Anim Sci*. 2020;19(1):1450–61. doi: 10.1080/1828051X.2020.1848463.

[62] Pieterse E, Erasmus SW, Uushona T, Hoffman LC. Black soldier fly (*Hermetia illucens*) pre-pupae meal as a dietary protein source for broiler production ensures a tasty chicken with standard meat quality for every pot. *J Sci Food Agric*. 2019;99(2):893–903. doi: 10.1002/jsfa.9261.

[63] Mbhele FG, Mnisi CM, Mlambo V. A nutritional evaluation of insect meal as a Sustainable protein source for Jumbo quails: Physiological and meat quality responses. *Sustainability*. 2019;11(23):6592. doi: 10.3390/su11236592.

[64] Kim TK, Yong HI, Kim YB, Kim HW, Choi YS. Edible insects as a protein source: A review of public perception, processing technology, and research trends. *Food Sci Anim Resour*. 2019;39(4):521. doi: 10.5851%2Fkosfa.2019.e53.

[65] Mulazzani L, Madau FA, Pulina P, Malorgio G. Acceptance of insect meal in aquaculture feeding: A stakeholder analysis for the Italian supply chains of trout and seabass. *J World Aquac Soc*. 2021;52(2):378–94. doi: 10.1111/jwas.12766.

[66] Orkusz A. Edible insects versus meat – Nutritional comparison: Knowledge of their composition is the key to good health. *Nutrients*. 2021;13(4):1207. doi: 10.3390/nu13041207.

[67] Musundire R, Ngonyama D, Chemura A, Ngadze RT, Jackson J, Matanda MJ, et al. Stewardship of wild and farmed edible insects as food and feed in Sub-Saharan Africa: A perspective. *Front Vet Sci*. 2021;8:601386. doi: 10.3389/fvets.2021.601386.

[68] Lotta F. Insects as food: the legal framework. In: *Edible Insects in the Food Sector*. Cham: Springer; 2019. p. 105–18. doi: 10.1007/978-3-030-22522-3_8.

[69] Goumeris T. Insects as food: risk assessment and their future perspective in Europe. In: *Edible Insects in the Food Sector*. Cham: Springer; 2019. p. 1–9. doi: 10.1007/978-3-030-22522-3_1.

[70] Mariod AA. The legislative status of edible insects in the World. In: *African Edible Insects as Alternative Source of Food, Oil, Protein and Bioactive Components*. Cham: Springer; 2020. p. 141–8. doi: 10.1007/978-3-030-32952-5_9.

[71] Nagappan S, Das P, AbdulQuadir M, Thaher M, Khan S, Mahata C, et al. Potential of microalgae as a sustainable feed ingredient for aquaculture. *J Biotechnol*. 2021;341:1–20. doi: 10.1016/j.biote.2021.09.003.

[72] Meuwissen P. Insects as a new protein source.: A scenario exploration of market opportunities. 's-Hertogenbosch: ZLTO projecten; 2011. https://hdl.handle.net/21.15107/rcub_dais_10699.

[73] Conti MV, Kalmpourtzidou A, Lambiase S, De Giuseppe R, Cena H. Novel foods and sustainability as means to counteract malnutrition in Madagascar. *Molecules*. 2021;26(8):2142. doi: 10.3390/molecules26082142.