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Abstract: Visible–shortwave near-infrared spectroscopy
has been used for internal quality measurement, but
the optical penetration to the thickness of fruit skin
becomes a challenge. This research aimed to develop
partial least square regression model for the soluble solid
content (SSC) measurement of fruits having various skin
thicknesses, namely dragon fruit, tomato, guava, sapo-
dilla, and banana. The spectra of each fruit were taken in a
reflectancemode over a wavelength range of 400–1,000 nm.
The best models obtained from banana and sapodilla
yielded determination coefficient of prediction (R2

p) of
0.88 and 0.90 and root mean square error of prediction
(RMSEP) 0.39 and 0.38°Brix, respectively. The banana and
sapodilla SSC prediction models should be able to be used
carefully in a variety of applications. Tomato and guava
had moderately thinner skin but had the lower R2

p of 0.64
and 0.76 and the RMSEP of 0.17 and 0.26°Brix, respec-
tively. The poorest model was yielded by dragon fruit,
which had the thickest skin with the R2

p of 0.59 and
the RMSEP of 0.40°Brix. The model for guava, although
having low R2

p, can still be utilized as a screening criterion
and in some other ‘approximate’ applications. However,
the SSC prediction model for tomatoes and dragon fruit

is not recommended to use and requires additional
research. In addition to the effect of skin thickness,
other fruit morphological influences the result of this
study. Internal structure and seed number influence
the reflection optical geometry, which also affects the
SSC prediction model.
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1 Introduction

Fruits have various quality parameters, such as texture,
flavor, and other external and internal parameters, but
are susceptible to damage or deterioration. One of the
important quality parameters is soluble solid content
(SSC). SSC uses °Brix as a unit representing dry substance
concentration of solutions. In sugar industries, °Brix is
the percentage by weight of sucrose in a sugar solution
[1]. In case for fruits and vegetables °Brix does not neces-
sarily refer to sugar since not the only sugar components
contributing to SSC, but in fruit juices °Brix usually refers
only to the sugar content [2]. However, SSC (as °Brix) is
commonly used to indicate sweetness in fruits, which
influences consumer willingness to pay. Humans can
perform sensory evaluation of quality parameters, such
as aroma and appearance of fruit skin or color, but their
objectivity is low. Therefore, in the storage or distribution
of fruit to consumers, changes in SSC must be precisely
characterized throughout each production chain to guar-
antee consumer satisfaction.

SSC evaluation can be done by sensory evaluation,
hydrometer, high-pressure liquid chromatography, gas chro-
matography, colorimetric methods, or electronic tongue [2].
SSC can also be easily measured with a digital refractometer,
but it requires crushing of the samples especially for solid
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samples. Therefore, the method is not practical for analyz-
ing a significant number of samples. On the other hand, a
technique that uses infrared (IR) spectroscopy is proven to
determine SSC quickly and nondestructively. Instruments
with the principle of IR spectroscopy are the Fourier trans-
form infrared, near-infrared (NIR), or visible–shortwave
near-infrared (Vis–SWNIR) spectrometer. Spectroscopic
methods are also easy to use in the control process [3].

Several studies have reported the use of IR spectro-
scopy for SSC measurement in lemon and orange [4],
banana [5], pineapple [6], or pear [7]. In the IR region,
molecules of C–H–O in fruits are recorded as the amount
of energy absorbed, reflected, or transmitted [6]. Spectral
reflectance also conveys information about the fruit’s
external characteristics, such as shape, size, integrity,
external defects, surface color, and translucency [8].
The chemical composition and surface characteristics of
the tissue will be revealed by the spectral response of
fruit objects exposed to electromagnetic radiation [9].

Vis–SWNIR is an IR spectroscopy instrument that is
ideal for fast on-line applications in small industries
because it does not require expensive high-capacity sup-
porting components. This instrument combines spectral
measurements in the visible (Vis) light (350–700 nm)
range and the NIR (700–2,500 nm) range. The two distinct
wavelengths are used to estimate the chemical compo-
nents of fruits, pigments in epidermal cells, and external
tissue color [10]. The Vis–SWNIR spectroscopy has weak
absorption to water molecules; thus, it is appropriate for
determining low-concentration constituents, such as pH
[11,12] or acidity [4]. Its short wavelength at 400–1,000nm
causes the Vis–SWNIR spectroscopy to have high energy and
can penetrate deeper in fruits [13]. Research on IR spectro-
scopy regarding light penetration and its use for thick-
skinned fruit have been conducted. Lammertyn et al. in ref.
[14] reported thewavelength effect on the light penetration of
NIR radiation in apple; while Phuangsombut et al. [15]
reported the successful use of NIR spectroscopy to determine
dry matter in thick-skinned fruit. Factors that influence fruit
optical characteristics (e.g., cell size, cell packing arrange-
ments, skin thickness, chemical matrix) include cultivar,
growing conditions, and stage of ripening [16].

The spectrum of the fruit skin will play a role in
determining the fruit’s intact quality. Fruit skin will act
as an optical barrier to spectroscopy light penetration.
According to Arendse et al. [17], it is easier to observe
the internal composition of fruit with thin skin than thick
skin. Reported by Lammertyn et al. [14], light penetration
in “Jonagold” apples is at 4mm in the range of 700–900 nm
and then decreases to 3mm at 900–1,900 nm. The NIR
wavelengths are represented by these two regions. Vis
wavelength with a higher energy level than NIR allows for

greater light penetration. According to ref. [18], which pre-
dicted the internal quality of three species of fruit, the
model’s accuracy changes at the NIR wavelength. How-
ever, the previous studies used only one cultivar or
without comparing the results on different types of fruit
with different fruit skin thicknesses at the Vis–SWNIR
wavelength. Fruit has a complex physical and chemical
content; the studies of the influence of various skin
thicknesses on SSC developed using Vis–SWNIR spec-
troscopy are few.

For predicting concentrations, several methods can
be used for analyzing spectroscopy data, such as partial
least square regression (PLSR), principal component regres-
sion (PCR), multiple linear regression, or support vector
machine. A study in determining SSC and pH of banana
using Vis–NIR spectroscopy showed that PLSR performed
better compared to PCR [5]; therefore, in this study, PLSR
was used to predict the SSC of fruits. The fruit samples used
were selected based on their thin and thick skin, i.e., dragon
fruit, tomato, sapodilla, guava, and banana. The objective
of this study was to determine the SSC of fruits having
various skin thicknesses using the Vis–SWNIR spectro-
scopy. Preprocessing for the data transformation step is
performed prior to creating the PLS model. Pre-processing
is carried out for the purpose of optimizing the spectra from
possible noise that occurs from the environment or when
collecting spectral data, or other problems that can cause
difficulties in spectral analysis. Various spectra pre-proces-
sing was applied to produce the best PLSR model to deter-
mine the SSC of fruit samples.

2 Materials and methods

2.1 Sample and spectra measurement

Dragon fruit (Hylocereus polyrhizus), tomato (Solanum
lycopersicumcultivar Servo F1), sapodilla (Manilkara zapota),
guava (Psidium guajava L.), and banana (Musa Acuminata
B.)were used as fruit samples. Each cultivar has 100 intact
samples that were purchased from local markets in
Yogyakarta Indonesia. After samples were transported
to the laboratory, the reflectance spectral data of each fruit
were collected by a Vis–SWNIR spectrometer (Flame-T-
VIS-NIR Ocean Optics, Dunedin, FL, USA; 350–1,000 nm
with a resolution of 0.22 nm) equipped with a tungsten
halogen lamp (360–2,400 nm, HL-2000-HP-FHSA Ocean
Optics, nominal bulb power 20W, typical output power
8.4mW) and a reflectance probe (QR400-7 VIS-NIR Ocean
Optics). Spectra acquisition was set as shown in Figure 1.
Spectra capture settings are carried out before the spectra
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acquisition process using the OceanView 1.6.7 with a scan
to the average of 100, the integration time of 100ms, and
the boxcar width of 1. Spectra acquisitions were done inside
a black box to minimize environmental interference.

2.2 Chemical and physical analysis

2.2.1 SSC and skin water content analysis

The reference value of SSC in each fruit was measured by
using a destructive method. This step was immediately
conducted after collecting spectra data. For SSC measure-
ment, the flesh fruit was cut then crushed using a blender
(Philips Pro Blend 4 2IN1 HR-2102). Finally, a digital SSC
refractometer (PAL-α, Atago, USA) was used to obtain
SSC in °Brix with SEL ±0.2°Brix, which was measured
in triplicate and averaged. The water content of the
skin was used to determine the average water content
of the fruit skin in each observed fruit using the gravi-
metric method. The fruit peel samples were then placed
in the cup three times and dried at 105°C until a stable
weight was obtained. The water content was calculated
on a wet basis, and the results represent a percentage of
the water content of the fruit skin.

2.2.2 Diameter and skin thickness of fruit measurement

Fruit dimensions, namely diameter to express fruit size
and skin thickness, were measured. Skin thickness was
measured with digital calipers (Krisbow QRC5 150mm/6″).
The measurement scale was measured in millimeters (mm).
Skin thickness and diameter were measured in the fruit’s
equator region, which was also where the spectra were
taken three times and averaged.

2.3 Data analysis and PLSR model
development

The individual-cultivar studies were established to quan-
titatively determine the SSC in fruit. The whole spectra
of Vis–NIR spectrometer covers a wavelength range of
350–1,100 nm. However, due to its heavy noise, the initial
spectra at the Vis region were cut to which the remaining
spectra in the region of 400–1,000 nm were used to build
the PLSR model. Three spectra of fruits obtained from
different surface positions in the equator area were used
for analysis without being averaged. The total spectra of
each sample fruit were 300 each sample fruit

All reflectance spectra data were then analyzed using
the Unscrambler® X software (CAMO, Oslo, Norway).
Data were randomly divided into two-thirds of the data
serving as the calibration set and one-third data serving
as the prediction set. Several pre-processing techniques
were applied to the spectra, such as the Savitzky–Golay
second derivative (SGD2), Savitzky–Golay smoothing (SGS),
area normalization (AN), standard normal variate (SNV),
and multiple scatter correction (MSC). SGD and SGS are
used to remove vertical offsets and linearly sloping base-
lines [19]. Normalization pre-processing implies allocating
the same weight to all absorbencies. MSC and SNV are
related due to light scattering and particle size [20]. The
optimal spectra transformations that indicated the best
pre-processing spectra were chosen based on the highest
values of coefficient of determination (R2) and the lowest of
root mean square of error (RMSE) of PLSR models.

3 Results and discussion

3.1 SSC analysis

Table 1 shows the statistical data of SSC for all fruit samples.
A range of SSC fruits used in this research were 7.90–13.30,
3.40–5.90, 18.86–31.23, 9.43–25.93, and 5.35–9.85°Brix for
dragon fruit, tomato, banana, sapodilla, and guava, respec-
tively. SSC of tomato and guava was in a narrow interval,
compared to dragon fruit, banana, and sapodilla. High con-
tents of SSC were recorded for banana and sapodilla, while
low contents were recorded for dragon fruit, tomato, and
guava. The highest standard deviation (SD) was observed
for banana and sapodilla then followed by dragon fruit and
guava, while tomato had the lowest SD. A low SD implies a
small variation in SSC content. Although might generate a
high RMSE, a large SD is required to obtain a good regres-
sion model [21].

Figure 1: Spectra acquisition set up using Vis–SWNIR spectroscopy.
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3.2 Spectra profiles

Figure 2 is reflectance spectra of dragon fruit, tomato,
banana, guava, and sapodilla along the Vis and short-
wave near-infrared (SWNIR) region at the wavelength of

450–970 nm derived from original spectra (Figure 2a) and
SGD2 spectra (Figure 2b). The figure shows considerably
different profiles for each fruit. From both figures, peaks
or valleys of spectra were noticeable at the Vis region of
450–700 nm as a response to the presence of pigments
[22], differences in reflectance spectra in the Vis region
can be attributed to pigment differences in each fruit.
While at the SWNIR region of 700–970 nm, the spectra
were relatively flat. By applying the SGD2 method, the
peaks around 960–980 nm (Figure 2b) were Vis due to
the absorption of water and carbohydrate [23] and around
910–930 nm due to CH and CH2 stretching [24].

The fruit’s skin and flesh condition are related to
colorimetric measurements and pigment content. Colors
in fruits are created by a mixture of pigments, including
the green chlorophylls, red orange, yellow carotenoids,

Table 1: Statistical analysis of SSC (in °Brix) of fruit samples

Sample N Mean SD Min Max Range

Dragon fruit 100 10.75 1.16 7.90 13.30 5.40
Tomato 100 4.27 0.41 3.40 5.90 2.50
Banana 100 27.10 2.36 18.86 31.23 12.37
Sapodilla 100 19.56 2.43 9.43 25.93 16.50
Guava 100 7.09 0.90 5.35 9.85 4.50

N – number of samples; SD – standard deviation; Min – minimum;
Max – maximum.

(a)

(b)

Figure 2: Reflectance spectra of dragon fruit, tomato, banana, guava, and sapodilla developed using (a) original spectra and (b) SGD2
spectra.
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and red, blue, and violet anthocyanins, as well as other
pigments [25]. Chlorophylls, carotenoids, and anthocya-
nins are the most common pigments found in fruits,
which influence the coloration of the whole Vis reflec-
tance spectra of the fruit at 400–700 nm. From Figure 2a,
several peaks and valleys can be observed. Region
450–500 nm refers to the reflectance of carotenoid pig-
ment which exhibits yellow, orange, and bright red
colors. However, at slightly overlapped wavelength,
chlorophylls a and b are also present at 400–500 nm
[24]. In general, lower light intensity reflected by tomato
and sapodilla, which may be caused by higher absorption
of carotenoid, compared to banana, guava, and dragon
fruit. At 500–600 nm, fruit reflects intensity, which is
due to its anthocyanin pigment. Anthocyanins are respon-
sible for red, purple, and blue colors of fruits [25]. Higher
reflectance at the anthocyanin region was detected for
banana and guava, while lower reflectance was detected
for dragon fruit, tomato, and sapodilla. Reflectance values
observed at the wavelength of 680 nm are associated with
chlorophyll in which dragon fruit and banana reflect
higher intensity compared to guava, tomato, and sapo-
dilla. High reflectance at 680 nm means low absorbance
of chlorophyll at 680 nm. Dragon fruit having red color
reflects the highest light intensity at 680 nm compared to
other fruits (Figure 2a), which can be assumed that dragon
fruit contains the lowest chlorophyll content.

Chlorophyll is the primary pigment in photosynthesis
while carotenoids and anthocyanins are categorized as
accessory pigments taking a role in secondary metabo-
lites [26]. Chlorophyll is found in chloroplast, which
adsorbs light to drive the photosynthesis process into
which the chlorophyll converts CO2 and H2O into simple
sugars with the help of sunlight. In addition, anthocya-
nins are derived from non-sugar components (aglycone
or anthocyanidins), which are bound with sugar fraction
[27]. Those pigments appear in the Vis wavelength; there-
fore, the absorption of pigments recorded by Vis–NIR
spectroscopy can be used to determine SSC in fruits.

The reflectance level between fruits in the Vis and the
SWNIR region differs based on the spectral appearance
in Figure 2. The thickness of the fruit skin in Table 2 is
4.10mm for dragon fruit and 3.26mm for banana.Meanwhile,

tomatoes, sapodilla, and guavas are thin-skinned fruit
(0.16–0.29mm). At Vis wavelengths of 600–700 nm, the
reflectance from the lowest is tomatoes, sapodilla, guava,
banana, and dragon fruit. The order of low to high reflec-
tance is determined by the thickness of the fruit skin. How-
ever, at the SWNIR wavelength, guava has the highest
reflectance, even though the skin is thin. Despite the fact
that the dragon fruit skin is thicker, the reflectance spec-
trum is under guava. The guava’s thin skin should allow
light to penetrate into the flesh of the fruit.

The absorbance in the NIR region is 10–100 times
lower than the fundamental absorption band in the
IR electromagnetic spectrum regions [28]. That is what
may cause the reflectance of dragon fruit to be high. In
addition, the SWNIR area is mostly affected by water
absorption features [29]. According to Table 2, the fruit
skins with the highest water content are dragon fruit,
tomato, guava, banana, and sapodilla. On the other
hand, dragon fruit and guava have higher reflectance
spectra than banana and sapodilla. Wavelength drift
may be due to changes in the optical path [30]. Further-
more, [22] in the reflection optical geometry, the detector
can receive the illuminated part of the fruit in the form of
specular and diffuse reflectance. The shiny surface of the
fruit causes specular reflectance, while the rough surface
of the object causes diffuse reflectance [3].

3.3 PLSR analysis

Calibration and prediction datasets used for developing
PLSR predicting SSC of dragon fruit, tomato, banana,
sapodilla, and guava are shown in Table 3. The table
shows that the mean values of SSC from the highest are
banana, sapodilla, dragon fruit, guava, and tomato were
27.37, 19.86, 10.78, 7.25, and 4.25°Brix, respectively, for
calibration datasets. Moreover, for prediction datasets,
the mean values of SSC from the highest are banana,
sapodilla, dragon fruit, guava, and tomato were 27.33,
19.59, 10.63, 7.14, and 4.27°Brix, respectively. The values
of SD from the highest to the lowest are sapodilla,
banana, dragon fruit, guava, and tomato with the SD of

Table 2: Morphological characteristics of fruits used in this study

Parameters Dragon fruit Banana Sapodilla Guava Tomato

Diameter (mm) 88.19 32.07 53.33 59.45 51.65
Skin thickness (mm) 4.10 3.26 0.29 0.26 0.16
Water content of skin (w/b%) 92.17 85.59 79.28 80.54 91.82
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2.20, 2.11, 1.16, 0.92, and 0.39°Brix, respectively, for cali-
bration datasets. Meanwhile, for prediction datasets, SD
from the highest to the lowest is sapodilla, banana,
dragon fruit, guava, and tomato with the SD of 2.20,
2.15, 1.22, 0.88, and 0.35°Brix, respectively. In general,
selection data for developing calibration and prediction
model are appropriate since prediction datasets are within
the range of calibration datasets.

To evaluate PLSR performance in this research, it
is important to compare the sample characteristics as
shown in Table 3 with other research reports. SSC of
banana samples in this research was narrower compared
to the study by ref. [5] that used banana in the SSC of
5.5–28.4°Brix and the SD of 5.48°Brix which resulted in
the coefficient of determination of calibration (R2

C) of
more than 0.90. SSC of tomatoes was smaller compared
to samples used by ref. [31], which were in the SSC of
3.5–7.1°Brix and the SD of 0.64°Brix, resulting in the cor-
relation coefficient for calibration (RC) of 0.85 and the
root mean square error of prediction of 0.33°Brix. Sam-
ples of sapodilla in this research were within the sample
range of previous research conducted by ref. [32] that
used samples with the TSS of 11.7–32.20°Brix and the
SD of 2.21°Brix, which yielded the R2

C of 0.82. Guava sam-
ples analyzed in this study had wider values compared
to ref. [33] that measured TSS in guava using samples
with the TSS of 7.82–8.80°Brix, which resulted in the R2

C

of 0.85. Dragon fruits in this study were in a narrower
range compared to samples used by ref. [34] with the TSS
of 9.20–17.60°Brix, which yielded the coefficient correla-
tion (r) of 0.93 and the standard error of prediction of
0.66°Brix.

Table 4 shows the PLSR performance of calibration
and cross-validation models developed using original and
pre-processed spectra. The best calibration SSC model for
each fruit based on the highest R2

C and the lowest root

mean square error of calibration (RMSEC) was obtained
from SGS spectra for dragon fruit with the R2

C and RMSEC
of 0.70 and 0.52°Brix using six latent variables (LVs) and
tomato with the R2

C and RMSEC of 0.80 and 0.15°Brix using
seven LVs. Moreover, calibration models were developed
based on SGD2 using seven LVs, which resulted in the R2

C

of 0.88, 0.92, and 0.77, the RMSEC of 0.36, 0.36, and
0.34°Brix, for banana, sapodilla, and guava, respectively.

The reflectance in fruit samples is dominated by
specular reflectance [3] and influenced by fruit skin char-
acteristics [35]. Based on Table 4, low R2

C belonged to
dragon fruit and guava, which guava has the thinner
skin, and higher R2

C belonged to banana, sapodilla, and
tomato, which banana has thinner skin. Fruit skin influ-
ences the amount of light, which enters the fruit [36].
Subedi and Walsh [37] reported the thickness of the
banana skin affected the dry matter model. Likewise for
the determination of dry matter in avocado, by using
various Vis–NIR instruments, Subedi and Walsh [16]
reported the better R2 for PLSR in skin-removed com-
pared to intact fruits. Arendse et al. [38] reviewed several
studies of SSC fruits with thick rinds, which were mea-
sured using Vis–SWNIR (300–1,100 nm) and IR (up to
2,400 nm) regions. Some of results were satisfactory by
using the Vis–SWNIR region such as watermelon, melon,
passion fruit, and pomegranate. This is due to the higher
energy at Vis, which allows deeper light penetration. The
NIR wavelength is 700–900 nm, and the maximum light
penetration is 4mm. At higher wavelengths, 900–1,900 nm,
the maximum light penetration is only about 2–3mm [14].
Moreover, Guthrie et al. [39,40] obtained unsatisfactory
results for predicting SSC in pineapple and melon using
NIR spectroscopy. Furthermore, not just does the peel thick-
ness obstruct NIRS capability, yet also the non-uniformity of
internal fruit pulp as well as macrostructures including
hard black seeds [3]. Dragon fruit and guava were observed

Table 3: Calibration and prediction datasets used for predicting SSC (in °Brix) using PLSR

Sample N Mean SD Min Max Range

Calibration Dragon fruit 67 10.63 1.22 7.90 13.30 5.40
Tomato 67 4.25 0.39 3.40 5.07 1.67
Banana 60 27.37 2.11 18.87 31.23 12.36
Sapodilla 60 19.86 2.20 15.63 25.93 10.30
Guava 60 7.25 0.92 5.35 9.85 4.50

Prediction Dragon fruit 33 10.78 1.16 8.43 13.20 4.77
Tomato 33 4.27 0.35 3.60 5.07 1.47
Banana 40 27.33 2.15 19.17 31.20 12.03
Sapodilla 40 19.59 2.30 14.47 24.50 10.03
Guava 40 7.14 0.88 5.50 9.00 3.50

N – number of samples; SD – standard deviation; Min – minimum; Max – maximum.
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to have large amounts of small grains in the pulp, resulting
in the low performance of the calibrationmodel. In short, all
the best-selected calibration models have R2C between 0.70
and 0.92, which is applicable for screening even for quality
assurance [41].

Apart from skin thickness, concentrations of targeted
analyte also affect the performance of the PLSR calibra-
tion model. Sapodilla and banana have higher SSC com-
pared to dragon fruit, guava, and tomato. According to
Table 4, sapodilla and banana have higher R2

C and lower
RMSEC compared to dragon fruit, guava, and tomato. Sim
and Kimura [42] found that prediction of moisture in
transformer oil and lubricating oil was poorer in the
low moisture concentration samples compared to the
high ones. A similar finding was reported by ref. [37] in
which bananas containing higher SSC had higher R2 com-
pared to the lower ones. There is a high correlation
between SSC concentration and firmness, so that firm-
ness decreases as the concentration of sugars and/or
by-products increases, causing cell wall disassembly

and degradation, which induces increased absorption
above 900 nm [43].

Prediction of the SSC content is also affected by the
light absorption of fruit skin and internal fruit structure.
Skin or peel of fruit is critical in determining internal fruit
quality since the IR light is scattered or absorbed by peel
before it reaches the pulp [44]. Chlorophyll and other
color pigments in fruits are mostly present in the peel
[45]. Chlorophylls, which are the majority pigments pre-
sent in some fruits, are inversely related to SSC during
ripening [24] and, thus, can be used to predict SSC. Wang
et al. [45] reported that the PLS model yielded a higher
correlation (r) for navel orange intact fruits compared to
the peeled fruits. The inclusion of the Vis region in reflec-
tance mode produced better results compared to the only
SWNIR used in the PLSR model. Although the SSC of peel
of navel orange was higher compared to its pulp, Wang
et al. [46] confirmed that the spectra of peels contained
valuable information about SSC of pulp. However, in con-
trast, Wang et al. [47] achieved better results for banana
pulp compared to intact banana by considering the meso-
carp TSS content, which was highly correlated (R2 > 0.85)
with Hunter a and a/b skin color. Based on Table 4, fruits
that contain higher chlorophyll (perceived from the peel
color) such as tomato, banana, sapodilla, and guava,
show higher R2 and lower RMSE compared to red dragon
fruit. If the surface layer of the sample is the same as the
inner layer of the fruit flesh, the content of the fruit skin
can be used to provide information about dry matter,
dyes, sugars, and other constituents [8].

Not only peel, but also internal food structure affects
the light reflectance of fruit. Optical absorption and scat-
tering properties are induced by structural properties
and chemical changes of the product [18,43]. Tomato is
heterogeneous internal structure fruit with watery and
seeds. Although it has a thin skin, it is different from
sapodilla, which is included in the homogeneous pulp
thin skin with similar anatomical features such as the
homogeneous pericarp in apricot. Based on the results
of the reflectance spectra, the internal structure of tomato,
which contains high water, has lower reflectance intensity
than sapodilla at C–H and O–H absorption wavelengths.
Although guava also has a heterogeneous internal struc-
ture, the pericarp structure layer has a harder texture
than the pulp region, which also contains a lot of seeds,
resulting in a high reflectance spectra [47]. The experi-
mental results show that the SSC model’s prediction accu-
racy and the accuracy of SSC online sorting of peach are
higher than that of the navel orange. Therefore, it confirms
that under the same detection device, when the light
passes through the two kinds of fruits, the peach reflects

Table 4: PLSR calibration and cross-validation model performance
for predicting SSC (°Brix)

Fruit ORI SNV AN MSC SGS SGD2

Dragon fruit R2C 0.63 0.49 0.55 0.49 0.70 0.59
RMSEC 0.57 0.73 0.45 0.64 0.52 0.47
R2CV 0.57 0.43 0.48 0.42 0.65 0.53
RMSECV 0.62 0.78 0.49 0.69 0.57 0.51
LV 6 7 5 5 6 4

Tomato R2C 0.74 0.77 0.58 0.59 0.8-
0

0.5

RMSEC 0.12 0.13 0.17 0.18 0.15 0.14
R2CV 0.55 0.62 0.46 0.5 0.62 0.41
RMSECV 0.15 0.17 0.18 0.29 0.21 0.15
LV 5 5 4 4 7 2

Banana R2C 0.78 0.82 0.83 0.8 0.79 0.88
RMSEC 0.6 0.56 0.51 0.64 0.63 0.36
R2CV 0.71 0.73 0.76 0.71 0.74 0.82
RMSECV 0.69 0.69 0.63 0.77 0.71 0.46
LV 7 7 7 7 7 7

Sapodilla R2C 0.74 0.88 0.84 0.87 0.78 0.92
RMSEC 0.62 0.47 0.65 0.54 0.59 0.36
R2CV 0.65 0.81 0.77 0.8 0.72 0.87
RMSECV 0.73 0.62 0.78 0.68 0.67 0.46
LV 7 7 7 7 7 7

Guava R2C 0.67 0.66 0.61 0.65 0.57 0.77
RMSEC 0.42 0.45 0.47 0.44 0.5 0.34
R2CV 0.63 0.6 0.57 0.58 0.52 0.69
RMSECV 0.45 0.48 0.5 0.49 0.53 0.39
LV 6 4 7 6 6 7

ORI – original spectra, SNV – standard normal variate, MSC – mul-
tiple scatter correction, AN – area normalized, SGS – Savitzky–
Golay smoothing, SGD2 – Savitzky–Golay second derivative.
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more light. The soft flesh leads to a lower opacity and
greater light penetration [43]. The navel orange is a citrus
fruit with no or small grains inside, which does not affect
the optical path [47]. As in bananas with a thick skin but
small seeds in the flesh compared to guava and sapodilla,
at a wavelength of 700–1,000 nm, there is lower reflec-
tance than guava, sapodilla, and dragon fruit, but when
compared to tomatoes, the reflectance of bananas is much
higher. However, dragon fruit allows thick skin to act as a
barrier and prevents to predict the composition of internal
pulp [18]; the model results (Figure 3) show the dominant
color pigment information at Vis than SWNIR wavelengths.

The sensitive wavelengths reflecting the spectral char-
acteristics for SSC were obtained based on the regression

coefficients (B), in each fruit calibration model shown in
Figure 3 shows the peaks appear between 400–700 nm in
Vis area and between 840 and 980 nm in SWNIR. The peak
at 980 nm seems to be due to water stretching vibrations.
Water binds to solutes, such as sugar groups, such that
SSC information is still present on SWNIR [48]. The highest
positive and negative peaks, which are associated to H2O
and carbon-hydrogen functional group in SWNIR wave-
length, appeared at 969, 979, 985, and 990 nm in sapo-
dilla, 992 and 994 nm in tomato, 960, 979, and 989 nm in
banana, 979 nm in dragon fruit, and 938, 962, 979, and
986 nm in guava. All samples showed the same peak at
979 nm, except for tomato. According to the previous
research, regions that included the sugar information are

(c)

(e)

(a) (b)

(d)

Sapodilla 

Banana

Figure 3: Regression coefficient from the best PLSR model for (a) dragon fruit, (b) sapodilla, (c) tomato, (d) banana, and (e) guava.
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located below the wavelength of 1,000 nm, specifically
810–820, 868, 880–890, 910–940, and 980–995 nm [49].
The best result of the sapodilla, banana, and guava cali-
bration models that were preprocessed by SGD2 seems to
be more pronounced in the SWNIR area, which is the
overlay of the 3rd overtones of C–H stretch and the 2nd
and 3rd overtones of O–H [50]. Tomatoes and dragon fruit
were built by SGS. Tomatoes are one of the fruits that
contain highwater content, so the absorption is very easily
influenced by water (O–H bonds) in the SWNIR region [31].
The coefficient of regression of the tomato model is quite low
due to the dominance of water absorption, which causes

noise. The dragon fruit is fairly obvious in the Vis wavelength
range but not in the SWNIR region. The preprocessing
procedure is used to raise the spectra, but there is over-
smoothing and polishing of spectral data, which results in
the loss of valuable information [51].

The performance of the final predicted model was built
by following the calibration model result. First, the highest
coefficient correlation of calibration (R2C) and the lowest
RMSEC. Predictionmodel shown in Figure 4, the PLSmodels
from sapodilla and banana, showed satisfactory perfor-
mance, providing better prediction results than others.
According to the prediction model performance standards
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Figure 4: Scatter plots between actual SSC versus Vis–NIR-predicted SSC values of validation sets: (a) dragon fruit, (b) sapodilla,
(c) tomato, (d) banana, and (e) guava.
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[41], the coefficient correlation of prediction (R2p) in the
banana and sapodilla samples, namely 0.885 and 0.905,
should be used with caution in various applications. The
guava with the R2p score of 0.769 can still be utilized as a
screening criterion and in some other “approximate” appli-
cations [41]. Tomatoes and dragon fruit R2p 0.646 and 0.596,
respectively, are not recommended to be used and require
additional research [41]. The predictive model for tomatoes
was equally poor. Despite having the lowest RMSE, fruits
with thinner skin and the lowest SD in the observed data
(0.33%), led to a decrease in themodel [37]. Variability in the
chemical composition of the samples observed has the
potential to provide a robust and reliable predictive model
for several biomass species [52]. It is difficult to achieve an
acceptable fruit quality prediction model for SSC assessment
of rough and thick-skinned fruits such as dragon fruit com-
pared to smooth and thin-skinned fruits using the reflec-
tance mode due to the effects of light scattering and higher
skin thickness [53]. Dragon fruit has the lowest prediction
model for SSC with the highest RMSE value and at the same
time has a high skin thickness.

4 Conclusions

The coefficient correlation of prediction (R2
p) in the banana

and sapodilla samples should be used with caution in
various applications. The guava with R2

p score can still
be utilized as a screening criterion and in some other
“approximate” applications. However, the SSC prediction
model for tomatoes and dragon fruit is not recommended
to use and requires additional research. Pre-processing
of fruit spectra produced the best calibration model in
this study. Compared to using the calibration model on
the original spectra, the preprocessing technique was
very helpful in improving the prediction model in this
study.

The effect of skin thicknesses and fruit type on the
assessment of SSC quality parameters has been investi-
gated in this article. In addition to skin thickness, SSC
prediction model for different fruit types is influenced by
SSC concentration, optical reflectance geometry, and fruit
internal structure. To this end, dragon fruit has been
modeled and produces the lowest correlation coefficient
in the calibration and prediction models. The errors in the
estimates tend to increase with the increasing thickness
of fruit in this study. Although bananas have thicker
skins than guava, sapodilla, and tomatoes, the structure
of banana flesh with small seeds and banana skin pro-
vides information that is related to the internal composi-
tion of the fruit and can be used in SSC model building.

Even though the fruit skin acts as a barrier to light
reaching the flesh in thick-skinned fruit, the content
of fruit skins that have linearity to the chemical composi-
tion of the fruit flesh can help predictive models. Tomato
with heterogeneous internal structure, thin skin, and
high moisture content with a low standard derivative
of SSC has a low predictive model because it is influ-
enced by water absorption. It is possible to use the non-
destructive technique to measure the internal quality
of the fruit by taking into account the thickness of
the skin and the light-penetrating ability of Vis–NIR
spectroscopy.

Acknowledgments: Data used in this article are parts
of Evia Zunita Dwi Pratiwi’s Graduate (Master) thesis
report from the Department of Agricultural and Biosystems
Engineering, Faculty of Agricultural Technology, Universitas
Gadjah Mada. Great appreciation is delivered to Universitas
Gadjah Mada for financial support under Hibah Rekognisi
Tugas Akhir No: 2920/UN1/DITLIT/Dit-Lit/PT.01.05/2022.

Funding information: The study was funded by sources of
Universitas Gadjah Mada, grant number: 2920/UN1/DITLIT/
Dit-Lit/PT.01.05/2022.

Conflict of interest: The authors state no conflict of
interest.

Data availability statement: The datasets generated during
and/or analyzed during the current study are available
from the corresponding author on reasonable request.

References

[1] Dongare ML, Buchade PB, Awatade MN, Shaligram AD.
Mathematical modeling and simulation of refractive index
based Brix measurement system. Optik (Stuttg).
2014;125(3):946–9.

[2] Magwaza LS, Opara UL. Analytical methods for determination
of sugars and sweetness of horticultural products – A review.
Sci Hortic. 2015;5(2):179–92.

[3] Nicolaï BM, Beullens K, Bobelyn E, Peirs A, Saeys W, Theron KI,
et al. Nondestructive measurement of fruit and vegetable
quality by means of NIR spectroscopy: A review. Postharvest
Biol Technol. 2007;46(2):99–118.

[4] Masithoh RE, Haff R, Kawano S. Determination of soluble
solids content and titratable acidity of intact fruit and juice
of satsuma Mandarin using a hand-held near infrared instru-
ment in transmittance mode. J Infrared Spectrosc.
2016;24(1):83–8.

[5] Masithoh RE, Pahlawan MFR, Wati RK. Non-destructive deter-
mination of SSC and pH of banana using a modular Vis/NIR

10  Evia Zunita D. Pratiwi et al.



spectroscopy: comparison of Partial Least Square (PLS) and
Principle Component Regression (PCR). In IOP Conference
Series: Earth and Environmental Science. IcoSA 2020:
Proceeding of the 3rd International Conference on Sustainable
Agriculture, 2020 Oct 13–14, Yogyakarta, Indonesia, Bristol:
IOP Publishing Ltd; 2021.

[6] Chia KS, Rahim HA, Rahim RA. Prediction of soluble solids
content of pineapple via non-invasive low cost visible and
shortwave near infrared spectroscopy and artificial neural
network. Biosyst Eng. 2012;113(2):158–65.

[7] Travers S, Bertelsen MG, Petersen KK, Kucheryavskiy SV.
Predicting pear (cv. Clara Frijs) dry matter and soluble solids
content with near infrared spectroscopy. LWT-Food Sci
Technol. 2014;59(2 Pt 1):1107–13.

[8] Krivoshiev GP, Chalucova RP, Moukarev MI. A possibility for
elimination of the interference from the peel in nondestructive
determination of the internal quality of fruit and vegetables by
Vis/NIR spectroscopy. LWT-Food Sci Technol.
2000;33(5):344–53.

[9] Kasampalis DS, Tsouvaltzis P, Ntouros K, Gertsis A, Gitas I,
Siomos AS. The use of digital imaging, chlorophyll fluores-
cence and Vis/NIR spectroscopy in assessing the ripening
stage and freshness status of bell pepper fruit. Comput
Electron Agric. 2021;187:1–11.

[10] Hsieh C, Lee Y. Applied visible/near-infrared spectroscopy on
detecting the sugar content and hardness of pearl guava. Appl
Eng Agriculture. 2005;21(6):1039–46.

[11] Wati RK, Pahlawan MFR, Masithoh RE. Development of cali-
bration model for pH content of intact tomatoes using a low-
cost Vis/NIR spectroscopy. In IOP Conference Series.
Proceeding of The International Conference on Smart and
Innovative Agriculture, 2020 Nov 4–5. Yogyakarta, Indonesia,
Bristol: IOP Publishing Ltd; 2021.

[12] Priambodo DC, Saputro D, Pahlawan MFR, Masithoh RE.
Determination of Acid Level (pH) and moisture content of
cacao beans at various fermentation level using visible near-
infrared (Vis-NIR) spectroscopy. In IOP Conference Series:
Earth and Environment. IcoSA 2021: Proceeding of the 4th
International Conference on Sustainable Agriculture; 2021 Aug
25–26. Yogyakarta, Indonesia, Bristol: IOP Publishing Ltd; 2022.

[13] Carlini P, Massantini R, Mencarelli F, Carlini P, Massantini R,
Mencarelli F. Vis-NIR measurement of soluble solids in cherry
and apricot by PLS regression and wavelength selection.
J Agric Food Chem. 2000;48(11):5236–42.

[14] Lammertyn J, Peirs A, De Baerdemaeker J, Nicolaı B. Light
penetration properties of NIR radiation in fruit with respect to
non-destructive quality assessment. Postharvest Biol Technol.
2000;18(2):121–32.

[15] Phuangsombut K, Phuangsombut A, Talabnark A,
Terdwongworakul A. Empirical reduction of rind effect on rind
and flesh absorbance for evaluation of durian maturity using
near infrared spectroscopy. Postharvest Biol Technol.
2018;142:55–9.

[16] Subedi PP, Walsh KB. Assessment of avocado fruit dry matter
content using portable near infrared spectroscopy: Method
and instrumentation optimisation. Postharvest Biol Technol.
2020;161:1–10.

[17] Arendse E, Fawole OA, Magwaza LS, Opara UL. Non-destructive
prediction of internal and external quality attributes of fruit
with thick rind: A review. J Food Eng. 2018;217:11–23.

[18] de Oliveira GA, Bureau S, Renard CMGC, Pereira-Netto AB, de
Castilhos F. Comparison of NIRS approach for prediction of
internal quality traits in three fruit species. Food Chem.
2014;143:223–30.

[19] Jiao Y, Li Z, Chen X, Fei S. Preprocessing methods for near-
infrared spectrum calibration. J Chemom. 2020;34(11):1–19.

[20] Zeaiter M, Roger JM, Bellon-Maurel V. Robustness of models
developed by multivariate calibration. Part II: The influence of
pre-processing methods. TrAC-Trends Anal Chem.
2005;24(5):437–45.

[21] Kuang B, Mouazen AM. Calibration of visible and near infrared
spectroscopy for soil analysis at the field scale on three
European farms. Eur J Soil Sci. 2011;62(4):629–36.

[22] Walsh KB, Blasco J, Zude-Sasse M, Sun X. Visible-NIR ‘point’
spectroscopy in postharvest fruit and vegetable assessment:
The science behind three decades of commercial use.
Postharvest Biol Technol. 2020;168:1–17.

[23] Cayuela JA. Vis/NIR soluble solids prediction in intact oranges
( Citrus sinensis L.) cv. Valencia Late by reflectance.
Postharvest Biol Technol. 2008;47(1):75–80.

[24] Afonso AM, Antunes MD, Cruz S, Cavaco AM, Guerra R. Non-
destructive follow-up of ‘Jintao’ kiwifruit ripening through VIS-
NIR spectroscopy – individual vs average calibration model’s
predictions. Postharvest Biol Technol. 2022;188:1–11.

[25] Choo WS. Fruit pigment changes during ripening. In Melton L,
Shahidi F, Varelis P, editors. Encyclopedia of Food Chemistry.
Oxford: Academic Press; 2019.

[26] Khoo HE, Azlan A, Tang ST, Lim SM. Anthocyanidins and
anthocyanins: Colored pigments as food, pharmaceutical
ingredients, and the potential health benefits. Food Nutr Res.
2017;61(1):1–21.

[27] Saha S, Singh J, Paul A, Sarkar R, Khan Z, Banerjee K.
Anthocyanin profiling using UV-Vis spectroscopy and liquid
chromatography mass spectrometry. J AOAC Int.
2019;103:1–17.

[28] Magwaza LS, Opara UL, Nieuwoudt H, Cronje PJR, Saeys W,
Nicolaï B. NIR spectroscopy applications for internal and
external quality analysis of citrus fruit-A review. Food
Bioprocess Technol. 2012;5:425–44.

[29] Golic MI, Alsh KW, Lawson P. Short-wavelength near-infrared
spectra of sucrose, glucose, and fructose with respect to sugar
concentration and temperature. Appl Spectrosc.
2003;57(2):139–45.

[30] Zude M, Pflanz M, Kaprielian C, Aivazian BL. NIRS as a tool for
precision horticulture in the citrus industry. Biosyst Eng.
2008;99(3):455–9.

[31] Huang Y, Lu R, Chen K. Assessment of tomato soluble solids
content and pH by spatially-resolved and conventional Vis/NIR
spectroscopy. J Food Eng. 2018;236:19–28.

[32] Kusumiyati, Mubarok S, Sutari W, Farida, Hamdani JS, et al.
Non-destructive method for predicting sapodilla fruit quality
using near infrared spectroscopy. In IOP Conf Ser Earth Environ
Sci Proceeding of The 3rd Sustainable Agriculture And Food
Security (3rdICSAFS): Innovation And Technology; 2018 Aug
29–30. Bandung, Indonesia. Bristol: IOP Publishing Ltd; 2019.

[33] Kusumiyati, Hadiwijaya Y, Putri IE, Mubarok S, Hamdani JS.
Rapid and non-destructive prediction of total soluble solids of
guava fruits at various storage periods using handheld near-
infrared instrument. In IOP Conf Ser Earth Environ Sci
Proceeding of The 2nd International Conference on

Evaluation of SSC in fruits using Vis–SWNIR spectroscopy  11



Sustainable Agriculture; 2019 Jul 30–31. Yogyakarta,
Indonesia. Bristol: IOP Publishing Ltd; 2020.

[34] Budiastra IW, Dzikri MRS. Effect of chemometrics to accuracy
of NIR spectroscopy in predicting total soluble solid and
hardness of dragon fruit. In IOP Conf Ser Earth Environ Sci.
AESAP 2021: Proceefding of The 4th International Conference
on Agricultural Engineering for Sustainable Agriculture
Production; 2021 Nov 11.; Online. Bristol: IOP Publishing
Ltd; 2022.

[35] Manickavasagan A, Ganeshmoorthy K, Claereboudt MR, Al-
Yahyai R, Khriji L. Non-destructive measurement of total
soluble solid (TSS) content of dates using near infrared (NIR)
imaging. Emir J Food Agric. 2014;26(11):970–6.

[36] Vaudelle F, L’Huillier JP. Influence of the size and skin thick-
ness of apple varieties on the retrieval of internal optical
properties using Vis/NIR spectroscopy: A Monte Carlo-based
study. Comput Electron Agric. 2015;116:137–49.

[37] Subedi PP, Walsh KB. Assessment of sugar and starch in intact
banana and mango fruit by SWNIR spectroscopy. Postharvest
Biol Technol. 2011;62(3):238–45.

[38] Arendse E, Fawole OA, Magwaza LS, Opara UL. Non-destructive
prediction of internal and external quality attributes of fruit
with thick rind: A review. J Food Eng. 2018;217:11–23.

[39] Guthrie J, Walsh K. Non-invasive assessment of pineapple and
mango fruit quality using near infrared spectroscopy. Aust J
Exp Agric. 1997;37:253–63.

[40] Guthrie JA, Liebenberg CJ, Walsh KB. NIR model development
and robustness in prediction of melon fruit total soluble
solids. Aust J Agric Res. 2006;57(4):1–8.

[41] Williams PC. Implementation of near-infrared technology. In:
Williams PC, Noris K, editors. Near-infrared technology in the
agricultural and food industries. 2nd edn. Minnesota: The
American Association of Cereal Chemist, Inc; 2001.

[42] Sim SS, Kimura ALJ. Partial least squares (PLS) integrated
fourier transform infrared (FTIR) approach for prediction of
moisture in transformer oil and lubricating oil. J Spectrosc.
2019;2019:1–10.

[43] Cavaco AM, Pinto P, Antunes MD, da Silva JM, Guerra R.
“Rocha” pear firmness predicted by a Vis/NIR segmented
model. Postharvest Biol Technol. 2009;51(3):311–9.

[44] Silva L, Cavaco AM, Antunes MD, Guerra R. Effect of orange
peel in whole oranges’ spectra. Actas Portuguesas de
Horticultura. 2016;28(2):352–9.

[45] Wang A, Hu D, Xie L. Comparison of detection modes in terms
of the necessity of visible region (VIS) and influence of the
peel on soluble solids content (SSC) determination of navel
orange using VIS-SWNIR spectroscopy. J Food Eng.
2014;126:126–32.

[46] Wang A, Wang C, Xie L. Influence of the peel on predicting
soluble solids content of navel oranges using visible and near-
infrared spectroscopy. Trans ASABE. 2016;59(1):31–7.

[47] Wang G, Liu Y, Li X, Zhang Y, Wang J, Jiang X. Differences in
optical properties of fruit tissues between stone fruits and
citrus fruits. Infrared Phys Technol. 2021;112:1–10.

[48] Liu R, Qi S, Lu J, Han D. Measurement of soluble solids content
of three fruit species using universal near infrared spectro-
scopy models. J Infrared Spectrosc. 2015;23(5):301–9.

[49] Choi JH, Chen PA, Lee BHN, Yim SH, Kim MS, Bae YS, et al.
Portable, non-destructive tester integrating VIS/NIR reflec-
tance spectroscopy for the detection of sugar content in Asian
pears. Sci Hortic. 2017;220:147–53.

[50] Shao Y, He Y. Nondestructive measurement of the internal
quality of bayberry juice using Vis/NIR spectroscopy. J Food
Eng. 2007;79(3):1015–9.

[51] Qiao XX, Wang C, Feng MC, Yang W, de, Ding GW, Sun H, et al.
Hyperspectral estimation of soil organic matter based on dif-
ferent spectral preprocessing techniques. Spectrosc Lett.
2017;50(3):156–63.

[52] Rambo MKD, Ferreira MMC, Amorim EP. Multi-product cali-
bration models using NIR spectroscopy. Chemom Intell Lab
Syst. 2016;151:108–14.

[53] Jamshidi B, Minaei S, Mohajerani E, Ghassemian H. Reflectance
Vis/NIR spectroscopy for nondestructive taste characterization
of Valencia oranges. Comput Electron Agric. 2012;85:64–9.

12  Evia Zunita D. Pratiwi et al.


	1 Introduction
	2 Materials and methods
	2.1 Sample and spectra measurement
	2.2 Chemical and physical analysis
	2.2.1 SSC and skin water content analysis
	2.2.2 Diameter and skin thickness of fruit measurement

	2.3 Data analysis and PLSR model development

	3 Results and discussion
	3.1 SSC analysis
	3.2 Spectra profiles
	3.3 PLSR analysis

	4 Conclusions
	Acknowledgments
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


