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Abstract: The purpose of this study was to predict the
total phenolic content (TPC) and total flavonoid content
(TFC) in several horticultural commodities using near-
infrared spectroscopy (NIRS) combined with machine
learning. Although models are typically developed for a
single product, expanding the coverage of the model can
improve efficiency. In this study, 700 samples were used,
including varieties of shallot, cayenne pepper, and red
chili. The results showed that the TPC model developed
yielded R’cal, root mean squares error in the calibration
set, R*pred, root mean squares error in prediction set, and
ratio of performance to deviation values of 0.79, 123.33,
0.78, 124.20, and 2.13, respectively. Meanwhile, the TFC
model produced values of 0.71, 44.52, 0.72, 42.10, and
1.87, respectively. The wavelengths 912, 939, and 942nm
are closely related to phenolic compounds and flavonoids.
The accuracy of the model in this study produced satisfac-
tory results. Therefore, the application of NIRS and machine
learning to horticultural products has a high potential of
replacing conventional laboratory analysis TPC and TFC.
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1 Introduction

Natural antioxidants are produced from plants with
secondary metabolites such as phenols and flavonoids.
Phenolic compounds are the largest group of com-
pounds that act as natural antioxidants. Furthermore,
polyphenols are the most common types of natural phe-
nolic compounds from which ether, ester, or glycoside
compounds, such as flavonoids, tannins, tocopherols,
coumarins, lignins, cinnamic acid derivatives, and poly-
functional organic acids, are produced. These phenolic
compounds influence the sensory properties of food,
with tannins contributing significantly to food astrin-
gency. The ability of antioxidants to reduce free radicals
increases as the total phenolic and flavonoid levels
rise [1].

Chemical analysis in the laboratory is generally used
to determine quality attributes of horticultural products,
which requires a significant amount of time and money. It
also generates chemical waste, which can harm the envir-
onment [2]. Therefore, a technique for measuring the quality
attributes of horticultural commodities without the need for
chemical analysis in the laboratory is required.

In recent decades, various techniques have been
developed as alternatives to chemical analysis, including
hyperspectral imaging [3], visible/near-infrared spectro-
scopy [4-6], acoustic vibration [7,8], nuclear magnetic
resonance [9], and electronic nose [10]. Near-infrared
spectroscopy (NIRS) has several advantages over other
techniques, including the ability to predict organic sam-
ples in solid, liquid, and gaseous forms. Various studies
have shown that the accuracy of NIRS, when used on
agricultural products, is generally high. Nieto-Ortega et al.
[11] used NIRS to predict the non-polysaccharide content
in monogastric cereal feed ingredients and obtained an
average accuracy value (R% of 0.90. According to Digman
and Runge [12], NIRS performed excellently (R> = 0.86) in
predicting the maturity of green peas. Reis [13] also con-
cluded that NIRS showed satisfactory performance in pre-
dicting meat attributes. Furthermore, the NIRS tool is easy
to use, allowing beginners to use it with ease.
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The agricultural industry has begun implementing
automation in areas such as harvesting, watering, ferti-
lizing, and pesticide application. Machine learning is a
branch of artificial intelligence that allows a machine to
learn from data. It is also the application of computers
and mathematical algorithms to generate future predic-
tions through data-driven learning [14]. In this case,
machine learning was combined with NIRS to predict
quality attributes and classify agricultural commodities
without damaging them. The application of NIRS and
machine learning allows for automation in grading agricul-
tural commodities based on prediction results of desired
quality attributes.

Most NIRS studies only develop models for specific
products, such as apples [15,16], peaches [17], pears [18],
and lemons [19,20]. Developing a model that predicts the
quality attributes of various agricultural commodities
can increase its efficiency. Therefore, this study aimed
to predict quality attributes, such as total phenolic and
flavonoid contents using NIRS combined with machine
learning on several horticultural commodities. This study
also tested several spectra preprocessing methods for
reducing noise in the spectral data.

2 Materials and methods

2.1 Sample preparation

The samples used in this study were shallot (var. Batu Ijo,
var. Bima, var. Trisula, and var. Sumenep), cayenne pepper
(var. Domba, var. Manik, and var. Ratuni UNPAD), and red
chili (var. UNPAD CB2, var. Lingga, var. Tanjung, and var.
Tanjung 2). Planting took place at an altitude of 829 m
above sea level (masl), with average daily temperatures
ranging from 20 to 30°C. The harvested samples were in good
condition and free of pests and diseases before transferring
them to the Laboratory of Horticulture, Faculty of Agriculture,
Universitas Padjadjaran, for further analysis. The sample was
thinly sliced, dried in an oven at 60°C for 24 h, and ground with
a mortar until smooth [21]. Furthermore, powdered samples
were prepared for spectral data collection.

2.2 Spectra data acquisition

NirVana AG410 (Integrated Spectronics Pty, Ltd., North
Ryde, Australia) with a wavelength of 702-1,065 nm was
used for data collection of spectra samples. The sample
was placed in a Petri dish with a black cardboard base.
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Each sample was then scanned four times before obtaining
the spectra data from the mean value of the measure-
ments. Spectral data in this study were collected in diffuse
reflectance mode and then converted into absorbance
values.

2.3 Phenolic and flavonoid analysis

Total phenolic content (TPC) and total flavonoid content
(TFC) measurements were carried out using a UV-Vis
spectrophotometer (Shimadzu, UV mini-1240, Tokyo, Japan).
The Folin—Ciocalteu method, developed by Lim and Murtijaya,
was used to measure TPC [22]. The extracted filtrate was
mixed with 2.5 mL of Folin—Ciocalteu reagent, followed by
2mL of sodium carbonate. After incubation for 1h, the
filtrate was measured at a wavelength of 765nm. Sytar
et al. developed a procedure for measuring TFC [23]. The
extracted filtrate was mixed with 2mL of methanol and
0.1mL of AICl;. Subsequently, 1M sodium acetate and
2.3 mL of water were added, before incubating for 30 min
and measuring at 432nm.

2.4 Multivariate data analysis

Preprocessed of the sample absorbance spectra was per-
formed using multiplicative scatter correction (MSC), stan-
dard normal variate (SNV), moving average (MA), baseline
correction, de-trending, first derivative (dgl), and second
derivative Savitzky—Golay (dg2). The spectra preprocessing
was done to reduce the variety of spectra produced by light
interference, temperature differences during data collec-
tion, and background information [24,25]. Furthermore,
spectra preprocessing was expected to improve the predic-
tive ability of the developed model [26]. Partial least squares
(PLS) regression was used in model development for pre-
dicting phenolic (TPC), and flavonoid content (TFC), while
data analysis and model development were carried out using
the Unscrambler X 10.4 software (Camo AS, Oslo, Norway).

3 Results and discussion

3.1 Measured data analysis

Table 1 shows the TPC and TFC of various horticultural
commodities. Several factors influence physiological
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properties in agricultural products, including genetics,
growing environment, plant cultivation techniques, post-
harvest handling, and analytical methods. Cayenne pepper
var. Ratuni UNPAD had values ranging from 1136.14 to
1982.53 mg/100 g dry weight (DW), with the highest mean
TPC value being 1453.87 mg/100 g DW. Meanwhile, shallot
var. Sumenep had the lowest mean TPC value of 455.79 mg/
100 g DW, with values ranging from 276.86 to 734.64 mg/
100 g DW. Shallot var. Trisula showed the highest mean TFC
value of 310.33mg/100g DW, with values ranging from
57.02 to 587.80 mg/100 g DW, while shallot var. Batu Ijo
had the lowest total flavonoid of 45.28 mg/100 g DW, with
values ranging from 18.09 to 73.87 mg/100 g DW. The dif-
ference in TPC and TFC values for each commodity and
variety is due to differences in chemical composition. The
range of TPC and TFC for powdered samples in this study
has values similar to that reported in previous studies
[27,28]. However, the analytical method for determining
TPC and TFC affects the measurement results. In this study,
phenolic compounds are sensitive to high temperatures,
but the samples used were powdered samples that had
been oven-dried. Therefore, the findings in this study are
lower than previous reports on TPC and TPF in fresh sam-
ples [29,30].

3.2 Spectra characteristics

The absorbance data reflect the characteristic spectra dis-
played by the sample. Differences in commodity, variety,
sample surface, and temperature affect the spectral data
obtained. In this study, spectral data with a wavelength
of 702-1,065nm covering the near-infrared region for
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model development were used. These areas detect various
quality attributes in agricultural commodities, including
water content, starch, sugar, and other physicochemical
properties [31-33]. Moreover, several other studies reported
using NIRS to monitor adulteration in agricultural commod-
ities, fruit pesticide residues, and early disease detection in
potatoes [34-37]. One of the challenges in analyzing NIRS
data is the amount of noise in the sample spectra. Therefore,
special handling is sometimes required to reduce the noise.
The sample spectra data were analyzed using various pre-
processing methods before the model development stage.
Based on the results of the spectral preprocessing shown in
Figure 1, the peak was not visible in the 702-1,065 nm
region in the original spectra, as well as in the MSC and
MA spectra. Furthermore, the SNV and MSC methods are
similar in that they normalize data by reducing the effect
of multiplicative and light scattering on the original spectra.
In several other studies, the application of MSC and SNV
showed similar spectral patterns, but this was not the case
in this study. MA works by averaging adjacent points and
using the value as a new point. Although the detrending
method is generally used to process grain samples [38], it
was used in processing powder samples in this study. Sev-
eral high peaks were seen in the baseline, SNV, detrending,
dgl, and dg2 spectra at 840, 900, 940, and 1,025 nm. The
peak was clearly visible, particularly in the detrending
spectra, dgl and dg2. The Savitzky—Golay derivative method
(dgland dg?2) is typically used to detect compounds in small
concentrations. Therefore, the peaks in the spectral data
are more clearly observed with this method. It is necessary
to have the right strategy in determining the spectra
preprocessing method since the Savitzky—Golay deriva-
tive method sometimes increases the error value in the
resulting model. Despite preprocessing, this study was

Table 1: Wet chemistry data of total phenolic (TPC) and flavonoid content (TFC) derived from several horticultural products

Commodity Variety TPC (mg/100 g DW) TFC (mg/100 g DW)
Range Mean Range Mean
Shallot Batu ljo 270.65-669.70 526.18 18.09-73.87 45.28
Bima 614.18-1612.53 944.64 65.78-475.59 212.66
Trisula 717.36-1531.78 1045.32 57.02-587.80 310.33
Sumenep 276.86-734.64 455.79 48.02-461.12 174.93
Cayenne pepper Domba 1129.29-1358.46 1221.30 162.69-210.31 187.03
Manik 1025.49-1279.43 1153.44 169.75-232.72 204.98
Ratuni UNPAD 1136.14-1982.53 1453.87 30.83-625.56 117.50
Red chili UNPAD CB2 784.16-1418.33 1078.20 76.88-324.29 224.60
Lingga 893.42-1242.37 1065.22 112.98-282.14 173.19
Tanjung 606.47-1571.25 945.63 112.34-406.96 243.87
Tanjung 2 968.61-1209.78 1082.45 167.46-419.49 262.03




4 —— Kusumiyati Kusumiyati and Yonathan Asikin

Absorbance

T T T T T T
750 800 850 900 950 1000
Wavelength (nm)

a)

Absorbance

T
1050

T T T T T T
750 800 850 900 950 1000
Wavelength (nm)

<)

Absorbance
o o o
o 5 =
o o o

=
o
o

T
1050

T T T T T T
750 800 850 900 950 1000
Wavelength (nm)

e)

0.020
0.015
0.010
0.005

0.000 - &

Absorbance
S
°
&
1

-0.010

-0.015 4

-0.020

2

T
1050

\

T T T T T T
750 800 850 900 950 1000
Wavelength (nm)

2)

T
1050

Absorbance

T T T T T T 5
750 800 850 900 950 1000 1050

Wavelength (nm)

b)

Absorbance

T T T T T T T
750 800 850 900 950 1000 1050
Wavelength (nm)

d)

0.10 4

Absorbance

-0.10 |

-0.15 T T T T T T T
750 800 850 900 950 1000 1050

Wavelength (nm)

f)

0.002 4
0.001 4
0.000 - =

-0.001

Absorbance

-0.002 4

-0.003 4

-0.004

T T T T T T T
750 800 850 900 950 1000 1050
Wavelength (nm)

h)

DE GRUYTER

Figure 1: Original and preprocessed spectra of samples. (a) Original, (b) MSC, (c) SNV, (d) MA, (e) baseline, (f) detrending, (g) dg1, and

(h) dg2.
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still unable to determine the best spectra preprocessing
method for this dataset. This can be determined after
modeling the results of each preprocessing spectra.

3.3 Model development

Regression modeling involves spectral and wet chemistry
data. As shown in Table 2, 525 samples were assigned to
develop a regression model using PLS, while 175 samples
were used to test the reliability of the developed model.
The regression model was then validated using K-fold
cross-validation, and the samples were divided into 20
segments, each segment containing 26—-27 samples. This
cross-validation aimed to determine the optimum prin-
cipal components and avoid overfitting, a condition in
which the model fails to predict an unknown sample. A
good model is expected to have a high R? and a low error
in the calibration and prediction set [39]. Therefore, to
improve the accuracy of the developed model, various
spectra preprocessing methods were tested. The determi-
nation of the best model was based on the coefficient of
determination in the calibration set (R’cal), root mean
squares error in the calibration set (RMSEC), coefficient
of determination in the prediction set (R*pred), root mean
squares error in prediction set (RMSEP), and the ratio of
performance to deviation (RPD). However, when com-
pared to other results, the original spectra (without pre-
processing) presented the best model in this study. R°cal,
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RMSEC, Rzpred, RMSEP, and RPD values for the TPC
model were 0.79, 123.33, 0.78, 124.20, and 2.13, while
the TFC model had values of 0.71, 44.52, 0.72, 42.10, and
1.87, respectively. This phenomenon sometimes occurs in
NIRS data analysis, where preprocessed spectra do not
improve model accuracy. It is possibly due to the high
variability of the dataset in this study. Spectra preproces-
sing reduces the variability or diversity in data spectra
samples. Therefore, the original spectra had the best per-
formance on both quality attributes. Similar results were
obtained in a study conducted by Zhao et al. [40], who
found that the original spectra outperformed the MSC and
SNV preprocessing results. Rubini et al. [41] reported that
the model developed from the SNV spectra was less accu-
rate than the original spectra in predicting levopimaric
acid and turpentine in maritime pine.

Figure 2 shows scatter plots for TPC and TFC obtained
from the best model, which is the original spectra. The
red data distribution is the result of the analysis of the
calibration set, while the yellow one is the prediction set.
The closer the regression line data distribution, the better
the resulting model. PLS is the most commonly used
regression method for NIRS data analysis. The advantage
of PLS is that it can reduce correlated independent vari-
ables (spectral data) and convert them into new, uncorre-
lated variables. PLS also involves the dependent variable
(wet chemistry data) in forming these new variables.
Therefore, the new variable contains information from
the dependent variable, affecting good model accuracy.
Kusumiyati et al. [42,43] conducted a study using NIRS

Table 2: PLS regression results for prediction of total phenolic (TPC) and flavonoid content (TFC) in horticultural products

Trait Preprocessing Calibration (n = 525) Prediction (n = 175) RPD
R?cal RMSEC R’pred RMSEP
TPC Original 0.79 123.33 0.78 124.20 2.13
MSC 0.53 185.16 0.50 187.87 1.41
SNV 0.75 136.12 0.70 143.87 1.84
MA 0.77 128.61 0.75 131.78 2.01
Baseline 0.77 128.07 0.75 130.89 2.02
Detrending 0.77 128.88 0.75 130.64 2.02
dgl 0.75 135.10 0.70 143.53 1.84
dg2 0.74 138.00 0.70 145.04 1.82
TFC Original 0.71 44,52 0.72 42.10 1.87
MSC 0.49 58.88 0.57 52.70 1.53
SNV 0.66 47.85 0.69 44.95 1.80
MA 0.70 44,88 0.72 43.05 1.88
Baseline 0.70 45.37 0.67 46.22 1.75
De-trending 0.65 48.65 0.63 48.68 1.66
dg1 0.67 47.26 0.67 45.84 1.76
dg2 0.65 48.66 0.67 46.02 1.75
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Figure 2: Scatter plot for calibration and prediction of total phenolic (TPC) and flavonoid content (TFC) in horticultural products.
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combined with PLS regression to predict SSC in sapodilla
and mango. The results revealed that NIRS combined with
PLS is effective for SSC prediction. Furthermore, accuracy
in model development is influenced by various factors,
including data variability, modeling techniques, and
instruments [44].

Agricultural commodities, particularly horticulture,
have a complex chemical composition that comprises a
large set of overtones and combination bands. In this
research, PLS regression employed NIRS spectra and
chemical composition, specifically TPC and TFC. The
regression coefficient is utilized for understanding the
calibration model resulting from PLS regression. As shown
in Figure 3, regression coefficients indicate which wave-
length contributes the most to the modeling of each
quality attribute, and these important wavelengths are
characterized by peaks and valleys. The regression coeffi-
cients were analyzed from the best model on both quality
attributes, namely the model developed using the original
spectra. Furthermore, peaks at wavelengths 912, 939, and
942 nm are associated with the third CH overtone and the
second overtone of OH vibrations. These are also asso-
ciated with the detection of antioxidants and phenol
groups [45].

4 Conclusion

Based on the result of this study, NIRS can be combined
with machine learning to predict TPC and TFC in horti-
cultural products. The results show that the developed
model has a fairly good performance with R’ > 0.7 and
that spectra preprocessing did not increase model accu-
racy. It could be because of the huge variance of the input
data. Spectra preprocessing generally operates by mini-
mizing the variability of data. Hence, the models gener-
ated from the preprocessed spectra performed no better
than the original spectra. Furthermore, the wavelength of
900-950 nm is essential in developing TPC and TFC
models. Therefore, the application of NIRS and machine
learning is reliable enough to replace conventional mea-
surement methods for TPC and TFC.
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