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Abstract: Gliomas are particularly challenging due to their
high invasiveness, frequent recurrence, and elevated mor-
tality rates. Despite the availability of treatments like sur-
gery, radiation, and chemotherapy, each of these methods
faces significant limitations. This has led to a pressing
demand for new strategies against gliomas. In this landscape,
mesenchymal stem cells (MSCs) have shown significant
potential in recent years. However, the application of MSCs
in glioma therapy encounters various challenges. A signifi-
cant advancement in this field is the utilization of exosomes
(Ex0), key secretions of MSCs. These exosomes not only carry
the benefits inherent in MSCs but also exhibit unique physi-
cochemical properties that make them effective drug carriers.
Consequently, MSCs Exo is gaining recognition as a sophisti-
cated drug delivery system, specifically designed for glioma
treatment. The scope of MSCs Exo goes beyond being just an
innovative drug delivery mechanism; it also shows potential
as a standalone therapeutic option. This article aims to pro-
vide a detailed summary of the essential role of MSCs Exo in
glioma progression and its growing importance as a drug
delivery carrier in the fight against this formidable disease.
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Introduction

Gliomas, as the predominant primary brain tumors within
the central nervous system, account for 80 % of all primary
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brain malignanciesm [1]. Among these, the World Health
Organization (WHO) grade IV glioblastoma multiforme
(GBM) stands out as the most aggressive form, characterized
by a median survival time of merely 15 months [2]. Despite
advancements in surgical techniques, radiation therapy, and
chemotherapy, the prognosis for glioma patients remains
grim [3]. These therapies face several limitations: the
impossibility of completely excising the tumor surgically, the
risk of radiation-induced damage to adjacent healthy brain
tissue, and significant challenges such as the difficulty for
chemotherapy drugs to penetrate the blood-brain barrier
(BBB) and the emergence of resistance to chemotherapy
[4, 5]. In light of these constraints, the focus of research is
shifting towards MSCs as an innovative therapeutic strategy
to overcome the shortcomings in glioma treatment [4, 6]. A
key attribute of MSCs is their natural tendency to home to
tumor sites, a characteristic that could be exploited for tar-
geted therapy [7]. Once localized at the tumor, MSCs exhibit
anti-tumor activities by suppressing tumor cell growth and
promoting apoptosis [6, 8, 9]. However, the interaction with
the tumor microenvironment (TME) can influence MSCs to
develop a pro-tumor phenotype, potentially exacerbating
tumor progression [10, 11]. This dual nature of MSCs in the
tumor context makes their role highly controversial.
Furthermore, MSC-based treatments are not just about cell-
to-cell contact but also involve the release of extracellular
vesicles (EVs), notably exosomes. These exosomes play a
crucial role in modulating the immune response and
reshaping the microenvironment, fostering conditions
favorable for tissue repair and potentially counteracting
tumor growth [8, 12].

Exo represents small vesicles excreted by a multitude
of cell types, containing proteins, RNA, DNA fragments,
lipids, and metabolites, they can migrate to target cells
through diverse mechanisms, modulating their functional
responsiveness [13-15]. In recent years, exosomes have
emerged as promising candidates for glioma treatment.
These vesicles are particularly effective in directly deliv-
ering chemotherapeutic drugs, such as Doxorubicin (DOX)
and Paclitaxel (PTX), to tumor sites [16-18]. This targeted
delivery not only reduces chemoresistance but also mini-
mizes the systemic side effects typically associated with
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such treatments. Further enhancing their therapeutic
potential, engineered exosomes can be modified to express
miRNA, mRNA, and siRNA, which are instrumental in
inhibiting glioma cell proliferation, invasion, and migration
[19-23]. Gliomas, characterized by high vascularization, can
also be targeted through the anti-angiogenic properties of
exosomes [24, 25]. Overcoming drug resistance, a significant
hurdle in effective glioma treatment is another area where
engineered exosomes show promise. By enhancing the
sensitivity of tumor cells to chemotherapeutic agents, these
exosomes can play a crucial role in treatment efficacy
[26-28]. Additionally, the immunosuppressive microenvi-
ronment of gliomas contributes to their heterogeneity and
treatment resistance. Here, exosomes can exert an immu-
nomodulatory effect, reshaping this microenvironment and
counteracting tumor invasion [29-31]. Despite their poten-
tial, one of the challenges with exosomes is their relatively
low targeting ability. Recent research has focused on engi-
neering modifications to improve their specificity towards
glioma cells [26, 32-37]. Moreover, combining exosome-
based therapies with other physical treatment methods,
such as focused ultrasound and local magnetic positioning,
shows promise in increasing their BBB penetration and
accumulation within the brain, thereby enhancing thera-
peutic outcomes [34, 38, 39].

MSCs Exo display both tumor-promoting and suppress-
ing functions [40, 41]. The outcomes of MSCs Exo’s actions
might depend on their origin, constituents, and the tumor’s
stage. Their potential as a drug delivery system is significant,
especially when compared to conventional nanocarriers,
as they can cross the BBB, are stable, and have reduced
immunogenicity and toxicity [42-44]. However, the chal-
lenge of targeting precision remains. In summary, this
article reviews the role of MSCs Exo in glioma progression
and their potential as a drug delivery system. It highlights
the advancements in using MSCs Exo for glioma treatment,
offering insights into their application in this challenging
field.

Mesenchymal stem cells and
exosomes

Mesenchymal stem cells

MSCs are multipotent, non-hematopoietic progenitor cells
found in tissues like adipose, bone marrow, dental pulp,
umbilical cord, and placenta [45]. These cells can differen-
tiate into various cell types, including osteocytes, chon-
drocytes, and adipocytes [46]. Notably, MSCs can modulate
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tumor cell proliferation and immune responses [47], exert-
ing either suppressive or promotive effects on tumor pro-
gression [10, 48]. They target multiple components in the
TME, including immune cells, endothelial cells, and fibro-
blasts [49], as depicted in Figure 1. Additionally, MSCs can
transform into tumor-associated MSCs (TA-MSCs), adopting
a tumor-supportive phenotype that facilitates tumor growth
[10, 11]. Despite their dual role in influencing tumor cells, the
mechanisms underlying MSCs’ functional transformation
and their homing to tumors remain areas of active research.
Some studies suggest that MSCs are drawn to tumors by
interactions between specific cytokines and chemokine
receptors, such as SDF-1/CXCR 4, SCF-c-Kit, HGF/c-Met, VEGF/
VEGFR, PDGF/PDGFR, and MCP-1/CCR 2 [50]. Their low
immunogenicity and strong tumor tropism, coupled with
ease of acquisition and rapid proliferation, make MSCs
promising carriers for anti-tumor biotherapeutics, including
cytokines, chemotherapeutic agents, and oncolytic viruses
[51, 52].

However, tissue-derived MSCs face challenges such as
donor variability and limited scalability. An alternative
source of MSCs is embryonic stem cells (ESCs) and induced
pluripotent stem cells (iPSCs). However, ESCs pose signifi-
cant immune rejection risks and ethical concerns, while
iPSCs are plagued by genetic instability. Human embryonic
stem cells (hESCs) can differentiate into MSCs, producing
uniform mesenchymal tissues without teratoma formation
and can further differentiate in vitro [53-55]. These
hESC-derived MSCs (hES-MSCs) offer advantages in scal-
ability and quality consistency and may have enhanced
immunomodulatory functions compared to MSCs [56]. In
tumor-bearing mice, the direct injection of hES-MSCs engi-
neered with adenovirus and lentivirus vectors into xeno-
grafts or into the contralateral hemisphere can inhibit tumor
growth and prolong survival time [57]. The differentiation of
iPSCs into MSCs is currently a highly researched area. Uti-
lizing a non-viral, non-integrating reprogramming platform
to generate iPSCs results in more stable pluripotent cells,
which can then differentiate more effectively. This method
leads to the production of iPSC-derived MSCs (iMSCs) that not
only tackle the challenges of heterogeneity and scalability
associated with traditional MSCs but also retain their sig-
nificant therapeutic benefits [58, 59]. iMSCs have demon-
strated effectiveness in inhibiting tumor proliferation and
metastasis in various cancer models [60-62].

MSCs are derived from a variety of tissues, including
adipose tissue, bone marrow, dental pulp, umbilical cord,
and placenta. These cells exhibit the potential to differen-
tiate into diverse cell types such as osteocytes, chondrocytes,
and adipocytes. In the TME, MSCs interact with different
cellular components including immune cells, endothelial
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Figure 1: Origin, differentiation, and effects of
MSCs on the TME (the figure was drawn using
Al and partly generated using Servier Medical
Art, provided by Servier, licensed under a
Creative Commons Attribution 3.0 unported
license).

cells, and tumor-associated fibroblasts. These interactions
are crucial in modulating the proliferation and immune
responses of tumor cells. MSCs play a dual role in tumor
progression, where they can either suppress or promote
tumor growth, depending on various factors in the TME.

Exosomes and their advantages as drug
delivery vehicles

Exosomes, a major type of EVs, are secreted by all cell types
and contribute to intercellular communication. These vesi-
cles vary in size, biogenesis, and content, encapsulating a
range of biomolecules such as signaling molecules, RNA,
proteins, DNA fragments, carbohydrates, and lipids [63]. EVs
are ubiquitous in bodily fluids including urine, blood, tears,
saliva, cerebrospinal fluid (CSF), and breast milk [64], and
play a critical role in regulating cell function, morphology,
and outcomes through various signaling pathways upon
reaching their target cells. According to the International
Society for Extracellular Vesicles (ISEV), EVs are classified
into three subtypes: exosomes (30-150 nm), microvesicles
(100-1,000 nm), and apoptotic bodies (1,000-6,000 nm),
distinguished by their size and biogenesis [63]. Originating
within multivesicular bodies (MVBs), exosomes are
released into the extracellular matrix and can target both
nearby and distant cells, significantly influencing cellular
processes in both normal and pathological conditions
[65-67].

Exogenous nanomaterials, commonly used as drug
carriers, face challenges such as triggering autoimmune
responses, causing thrombosis, generating cytotoxic effects,
and low clearance rates in organs [68]. These issues limit
their clinical application. In contrast, Exo offer advantages
due to their endogenous nature, providing greater stability
than synthetic polymers and liposomes. Exo exhibits prop-
erties conducive to immune surveillance, possesses an
extended half-life, and shows potential in targeting receptor
cells. Its ability to cross the BBB and carry diverse molecules
like proteins, lipids, RNA, and DNA fragments is notable
[69-71]. As such, Exo is emerging as a superior vehicle for the
systemic delivery of targeted drugs. Encapsulation of anti-
tumor drugs in exosomes enhances drug solubility,
bioavailability, and stability, while reducing rapid drug
clearance and unintended tissue deposition [72]. However,
the efficiency of exosome targeting in GBM is limited, as
intravenously administered Exo predominantly accumu-
lates in the spleen and liver, with only a small fraction
reaching the tumor site [73]. To overcome this, engineered
Exo with tumor-targeting capabilities can be developed,
enhancing their accumulation at tumor sites and marking a
novel trend in translational medicine [74].

Mesenchymal stem cell-derived exosomes

MSCs, recognized as a pivotal source for clinical cell therapy,
are widely considered the ideal carriers for anti-cancer



182 —— Ma et al.: Therapy of glioma

biological agents. Despite their potential, utilizing MSCs as
therapeutic carriers presents challenges, including unstable
differentiation, potential vascular clotting, and infection
risks. Exosomes, key secretions of MSCs, inherit many of
their parent cells’ advantages [75]. These exosomes, thanks
to their unique physicochemical properties, can surmount
the limitations of MSCs in drug delivery applications. It is
noteworthy that MSCs produce a higher quantity of exo-
somes compared to other cell types [76], and these exosomes
demonstrate strong tumor-targeting capabilities [77, 78],
reduced immunogenicity [79], and an enhanced ability to
penetrate the BBB [80].

Encapsulation of chemotherapy drugs using MSCs Exo
significantly enhances their ability to inhibit tumor pro-
liferation and progression, while maintaining high
biosafety. For instance, drugs delivered via MSCs exosomes
are less likely to cause myocardial damage compared to
free chemotherapeutic drugs [81]. MSCs have inherent
tumor-tropic properties, which are believed to be due to
their ability to home to tumor sites in response to inflam-
matory signals [82]. This characteristic is exploited to use
MSC-derived exosomes as vehicles for drug delivery to
tumor sites, including gliomas. The specificity of these
exosomes in targeting tumor cells arises from multiple
aspects: (1) surface proteins: exosomes express specific
surface proteins that interact with receptors or molecules
uniquely or overexpressed on tumor cells [83]; (2) micro-
environmental factors: the tumor microenvironment,
including hypoxia and inflammatory signals, may modu-
late exosome uptake by tumor cells [78, 84]; (3) genetic and
molecular targeting: exosomes can be engineered to carry
molecules like small siRNA, miRNA, circRNA, IncRNA,
or specific drugs that target molecular pathways critical
for tumor cell survival [85-89]. Additionally, further
enhancing MSC-Exo’s tumor-targeting by jointly altering
surface properties and contents through covalent modifi-
cations or genetic engineering shows their potential from
basic research to clinical application [83, 90, 91].

The effects and underlying
mechanisms of MSC-Exo on glioma
progression

Tumor-promoting effects

Research has established that exosomes from MSCs can
accelerate glioma progression (refer to Figure 2). Figueroa
et al. identified a novel element in the glioma matrix,
termed Glioma Associated-human Mesenchymal Stem Cells
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(GA-HMSCs). These cells, isolated from surgical specimens
and used within five generations in experiments, secrete
exosomes that carry miR-1587 to Glioma Stem Cells (GSCs),
leading to a reduction in nuclear receptor corepressor 1
(NCOR?1) expression. This interaction notably increases GSC
proliferation, clonality, and tumorigenicity in both in vitro
and in vivo environments, underscoring the vital role of
GA-HMSCs in tumor support and the significance of tumor-
stroma interactions in tumor development [92]. Extending
this research, Qiu et al. generated Glioma Associated
Mesenchymal Stem Cells (GA-MSCs) from bone marrow-
derived MSCs (BM-MSCs) from both mice and humans. They
discovered that exosomal miR-21 from GA-MSCs boosts
CD73 expression in myeloid-derived suppressor cells
(MDSCs). CD73, functioning as an ectonucleotidase, fosters
an immunosuppressive environment via adenosine pro-
duction. Moreover, subsequent investigations showed
glioma-derived exosomal CD44 triggers the miR-21/SP1/
DNMT1 feedback loop in MSCs. This increases miR-21 levels
in MSCs exosomes, thereby amplifying the immunosup-
pressive effects of glioma exosomes. Interestingly, the
study suggests that modified dendritic cell-derived exo-
somes carrying miR-21 inhibitors could target GA-MSCs and
reduce CD73 expression on MDSCs, potentially synergizing
with anti-PD-1 monoclonal antibody therapy. This indicates
that while GA-MSCs can promote glioma growth and immu-
nosuppression, there is potential for therapeutic intervention
through the modulation of exosomal content [93].

Specifically, MSCs Exo miR-1587 targets and reduces the
levels of NCORL. This reduction is directly associated with a
significant increase in both the growth and clonality of GSCs.
Additionally, MSCs play a crucial role as signal amplifiers.
They intensify the immunosuppressive effects exerted by
glioma exosomes, thereby contributing substantially to the
progression of glioma.

Tumor-suppressing effects

Recent research, as depicted in Figure 3, suggests that
MSCs-Exo might play a role in hindering glioma progres-
sion. Parsaei et al. conducted a study where C6 cells were
co-cultured with exosomes from varying concentrations of
rat bone marrow mesenchymal stem cells (rBMMSCs).
Their findings revealed that these exosomes predominantly
induce cell death by promoting apoptosis, and at the same
time, they noted a direct linear correlation between exo-
some concentration and cytotoxicity [94]. Further sup-
porting these findings, Xu and colleagues discovered that
exosomes from mouse BM-MSCs, containing miR-133b,
significantly inhibit the expression of EZH2. This inhibition
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likely suppresses the Wnt/p-catenin signaling pathway,
thereby reducing proliferation, migration, and invasion of
glioma U87 cells in vitro. Complementary in vivo studies
also demonstrate the capability of these exosomes to
impede the progression of gliomas [95]. Additionally,
research has indicated that long non-coding RNA PTENP1,
encapsulated in exosomes from human umbilical cord
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Figure 2: The promotive effects of exosomes
from MSCs on glioma (the figure was drawn
using Al and partly generated using Servier
Medical Art, provided by Servier, licensed
under a Creative Commons Attribution 3.0
unported license).

MDSCs

which leads to the inhibition of U87 cell proliferation and
promotion of apoptosis [96]. Yu et al. reported that exo-
somes from human MSCs (hMSCs) can transport miR-199a
to U251 glioma cells. This transport inhibits cell prolifera-
tion, invasion, and migration by modulating AGAP2
expression. Moreover, hMSCs overexpressing miR-199a
significantly enhanced the chemosensitivity to temozolo-
mide and curtailed in vivo tumor growth [97]. Table 1 pre-
sents a summary, encompassing the origins and passage
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Table 1: Effects and related mechanisms of MSCs Exo on glioma (“N/A” indicates not mentioned or not applicable).
Donor Receptor Passage Exo cargo Expression Mechanisms/ Function Study model Ref.
cell cell number of targets
cell
GA-HMSCs GSCs Within five miR-1587  Up NCOR1 Increase tumorigenicity of GSCs  In vitro and in vivo (GSCs- [92]
generations nude mice in situ tumor
formation)
GA-MSCs  MDSCs N/A miR-21 Up CD73 Amplifying immunosuppressive  In vitro and in vivo [93]
signals (GL261-C57BL/6 in situ
tumor formation)
rBMMSCs (6 The third N/A N/A N/A Promote c6 cell apoptosis, inhibit  In vitro [94]
passage migration and invasion
MSCs us7 The third miR-133b N/A Wnt/B-catenin- Inhibit glioma cell proliferation, In vitro and in vivo (U87- [95]
passage EZH 2 migration and invasion -nude mice subcutane-
ous tumor formation)
hUC-MSCs U87 Within 8 IncRNA N/A miR-10a-5 Promote U87 cell apoptosis, inhibit  In vitro [96]
passages PTENP 1 p/PTEN proliferation
hMSCs U251 The third miR-199a N/A AGAP 2 Inhibit glioma cell proliferation, In vitro and in vivo [971
passage migration and invasion; enhance  (U251-Balb/c nude mice

subcutaneous tumor
formation)

the chemosensitivity of
temozolomide

numbers of MSCs, as well as an overview of the roles, un-
derlying mechanisms, and experimental models associated
with MSCs-Exo in the context of glioma research.

MSC Exo is capable of transporting miRNA or IncRNA,
which through modulation of the expression or stability of
EZH2, AGAP2, and PTEN, impacts the apoptosis, growth,
migration, invasion, and drug tolerance of glioma cells,
constraining glioma advancement.

Advancements of MSCs Exo in
glioma therapy

Introduction to exosome drug loading
methods

As depicted in Figure 4, there are two primary methods for
loading therapeutic drugs into MSCs Exo: (1) the direct
method involves encapsulating drugs into exosomes using
various techniques; (2) the indirect method includes gener-
ating exosomes that carry different biomolecules (like
nucleic acids, proteins) through genetic engineering or by
co-incubating cells with therapeutic drugs. For direct drug
encapsulation into exosomes, techniques such as electro-
poration, incubation, extrusion, ultrasonication, saponifi-
cation, and freeze-thaw cycles are employed. Incubation,
being the most common method, is simple but has relatively
low efficiency in drug loading. Electroporation, in contrast, is

more efficient but risks disrupting exosome structure due
to electric field-induced protein or RNA clusters, potentially
reducing drug delivery effectiveness [98]. Ultrasonication is
noted for its high efficiency, but it can also damage exosome
structure and lead to protein aggregation [99]. While
ultrasonication is more damaging to exosomal integrity
compared to other methods [100]. Extrusion stands out by
producing uniform exosomes, thereby enhancing drug
delivery efficiency [101]. However, improper mechanical
pressure during extrusion can harm the exosome structure
[102]. Freeze-thaw cycles, commonly used in drug delivery
systems, may alter the physicochemical properties of the
exosome membrane and are less efficient than ultra-
sonication in drug loading [101, 102]. Currently, incubation
and electroporation are the most frequently used tech-
niques for drug loading in MSCs Exo. With their notable
drug delivery advantages, MSCs Exo have been extensively
utilized in tumor treatment strategies.

Two primary techniques are employed to produce exo-
somes containing therapeutic agents: the direct and indirect
methods.

A. The indirect method involves either incubating cells
with drug molecules or using transfection or trans-
duction with expression vectors. These approaches
prompt cells to release Exo that carry drug molecules,
viral proteins, nucleic acids, and proteins.

B. The direct method starts with isolating exosomes. Sub-
sequently, therapeutic drugs are loaded into these Exo
either through passive incubation or active methods
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such as electroporation, saponin treatment, freeze-thaw
cycles, ultrasonication, and extrusion.

Treatment of glioma with drug-loaded MSCs
exo

Del Fattore et al. successfully loaded vincristine into MSC EVs
derived from the umbilical cord using a co-incubation
method with drugs and cells. Their research demonstrated a
notably increased cytotoxic effect on U87 glioblastoma cells
compared to both free vincristine and unloaded EVs, thereby
confirming the efficacy of MSC EVs in delivering anti-tumor
drugs directly to glioblastoma cells [103]. Additionally,
researchers investigated the loading of various concentra-
tions of atorvastatin into exosomes from human endome-
trial mesenchymal stem cells (hEnMSCs) using an incubation
technique. These exosomes were then co-cultured with 3D
spheroids of U87 glioblastoma and human umbilical vein
endothelial cells (HUVECs). The findings indicated that
hEnMSCs-Exo loaded with atorvastatin significantly inhibi-
ted angiogenesis and tumor migration and proliferation.
Notably, higher concentrations of atorvastatin in the exo-
somes resulted in more pronounced anti-tumor effects [25]
(Figure 5A). In conclusion, encapsulating anti-cancer drugs
in exosomes not only enhances their solubility, bioavail-
ability, and stability but also prevents rapid drug degrada-
tion and undesirable distribution to various tissues. Due to
their nano-sized dimensions, exosomes are capable of
crossing the blood-brain barrier, enabling efficient and

Ma et al.: Therapy of glioma —— 185

Drug molecules

Viral proteins

Nucleic acids

Extrusion

Figure 4: Schematic diagram of exosome drug
loading techniques (the figure was drawn
using Al and partly generated using Servier
Medical Art, provided by Servier, licensed
under a Creative Commons Attribution 3.0
unported license).

targeted drug delivery to the brain. Consequently, exosomes
loaded with anti-tumor drugs, such as those from MSCs,
represent a highly promising and effective approach for
glioblastoma therapy, warranting further investigation.

MSCs Exo-mediated overexpression of
miRNA in glioma therapy

Enhance the sensitivity of chemotherapy or anti-cancer
agents

Sharif et al. discovered that miR-124, transported via exo-
somal mechanisms or independently, can be successfully
delivered to U87 GBM cells in conjunction with Wharton’s
jelly mesenchymal stem cells (W]-MSCs) from the human
umbilical cord. This process targets cyclin-dependent kinase
6 (CDK®6), thereby enhancing the chemosensitivity of U87
cells to temozolomide (TMZ) and reducing their migration
[27]. In the context of TMZ resistance, miR-9 is upregulated in
GBM cells and contributes to the expression of the drug
efflux transporter P-glycoprotein (P-gp). To mitigate miR-9’s
role in promoting drug resistance, a Cyanine 5(Cy5)-labeled
anti-miR-9 strategy was employed. This research revealed
that exosomes from hMSCs were crucial in the delivery of
anti-miR-9. Additionally, these hMSC-derived exosomes,
when overexpressing anti-miR-9, effectively reduced P-gp
levels, reversing TMZ resistance in U87 and T98G GBM cells
[28]. TNF-related apoptosis-inducing ligand (TRAIL) has
emerged as a promising anticancer agent. It’s been shown
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that therapeutic miR-7, overexpressed in TRAIL-BMMSCs
and loaded into cell-derived exosomes, enhances TRAIL
sensitivity by targeting and suppressing X-linked inhibitor of
apoptosis protein (XIAP), leading to significant apoptosis in
U87 cells. Moreover, in vivo studies highlight that mouse
BMMSCs co-expressing TRAIL and miR-7, through their
exosomes, synergize to exert an anti-tumor effect [104].

Inhibition of tumor proliferation and migration

Lang et al. utilized a miR-124a lentiviral vector to transduce
human MSCs derived from bone marrow. They co-cultured
these cells with GSCs using isolated MSCs-Exo-miR124,
which significantly reduced the viability and clonogenicity
of GSCs. When used to intervene in GSC267-bearing nude
mice, MSC s-Exo-miR124 enabled 50 % of the mice to achieve
long-term survival. Mechanistic studies revealed that
miR-124a suppresses tumor proliferation by silencing
Forkhead box A2 (FoxA2), leading to abnormal intracellular
lipid accumulation [21]. Katakowski’s work involved
transfecting rat bone marrow-derived MSCs with miR-146b
expression plasmids. By co-culturing overexpressing
miR-146b MSCs derived exosomes with 9L cells, the growth
ability of 9L cells was reduced. Further, intratumoral in-
jection of these exosomes in in situ brain tumor rat models
significantly diminished the growth of glioma xenografts
[22]. Kim et al. discovered that hMSCs Exo overexpressing
miRNA-584-5P inhibit u87 cell proliferation and migration
while promoting apoptosis. This effect is achieved by

Figure 5: Drug loading and miRNA
overexpression in MSCs exosomes for glioma
treatment (the figure was drawn using Al and
partly generated using Servier Medical Art,
provided by Servier, licensed under a Creative
Commons Attribution 3.0 unported license).
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targeting Cytochrome P450 2]J2 (CYP2]2) and suppressing
the Akt and mitogen-activated protein kinase (MAPK)
pathways. In subcutaneous tumor-bearing mice treated
with these MSCs Exo, tumor volume and weight were
notably reduced [20]. Research has shown that exosomes
from hMSCs overexpressing miR-375 inhibit U87 solute
carrier family 31 member 1 (SLC31A1) expression in glioma
cells, suppressing their proliferation, migration, and inva-
sion, and promoting apoptosis. In vivo experiments have
confirmed that these exosomes can inhibit the growth of
xenografted tumors in nude mice [105]. Yan et al. discov-
ered that bone mesenchymal stem cell (BMSC)-derived
exosomes containing miR-512-5p can suppress U87 cell
proliferation and induce cell cycle arrest by down-
regulating Jagged1 (JAG1) expression. BMSC-Exo-miR-512-5p
has been shown to inhibit the growth of mouse glioblas-
toma, thus prolonging survival [106]. Focused ultrasound
(FUS) facilitates a transient, reversible, and localized
opening of the BBB. Zhan et al. used hBMSCs-derived Exo as
carriers for the tumor-suppressing gene miR-1208. Post-FUS
exposure, an increased number of Exo carrying miR-1208
crossed the BBB, enhancing the uptake of miR-1208 by gli-
oma cells U251 and U373. Mechanistically, miR-1208 sup-
presses methyltransferase-like 3(METTL3) expression,
reducing the N6-methyladenosine (m6A) methylation level
of Nucleoporin 214 (NUP214) mRNA. This reduction leads to
decreased NUP214 expression and transforming growth
factor-p (TGF-B) pathway activity, effectively suppressing
tumor growth in vivo and in vitro [39].
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Anti-angiogenesis

Vasculogenic mimicry (VM) provides an alternative micro-
vascular circulation in tumors, independent of VEGF-driven
angiogenesis. This process results in the formation of highly
patterned vascular channels, particularly noted in gliomas,
where VM structures are formed by differentiated tumor
cells [107]. VM bypasses standard angiogenic mechanisms, a
critical factor in sustaining the malignancy progression in
GBM [108]. However, the molecular basis of VM formation
remains only partially understood, leading to a lack of tar-
geted therapies. In addressing this, Zhang et al. engineered
hMSCs to produce exosomes with increased miR-29a-3p
expression. This innovation inhibits glioma cell migration
and VM formation, presenting a potential augmentation to
current clinical treatments targeting angiogenesis [24]. In
summary, modulating miRNA overexpression within exo-
somes can influence glioma characteristics, including drug
resistance, growth, migration, apoptosis proficiency, and
angiogenesis, offering promising avenues for effective gli-
oma therapy (Figure 5B).

Engineering MSCs Exo for enhanced
targeting

Strategies for the engineered modification of Exo

The limited therapeutic effectiveness of chemotherapy
drugs largely stems from their systemic and non-targeted
nature. In contrast, exosomes, while promising as drug
delivery carriers, still face challenges in targeting efficiency.
To address this, researchers have developed engineered
exosomes for cell-specific targeting. By modifying their
surface molecules, these exosomes gain cell and tissue
specificity, allowing for the targeted delivery of specific
tumor treatment molecules. The surface modification of
exosomes can be achieved through genetic engineering or
chemical modification. Genetic engineering involves fusing
the gene sequences of guide proteins or peptides with those
of select exosomal membrane proteins, thus displaying these
guiding elements on the exosome surface. On the other hand,
chemical modification employs conjugation reactions or
lipid assembly to display a range of natural and synthetic
ligands. However, the intricate nature of the exosome sur-
face can sometimes reduce the efficiency of these reactions
and potentially compromise the integrity and functionality
of the carriers.

Currently, genetic engineering is a prevalent method
for modifying exosomal surface proteins. In this process,
ligands or targeting peptides are first fused with the genes of
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transmembrane proteins present on the exosome surface.
Donor cells are then transfected with plasmids encoding
these fusion proteins, leading to the production of exo-
somes that carry targeted ligands on their surface. A
notable example is the work of Michelle E, who designed
targeted peptide-Lamp2b fusion proteins with incorpo-
rated glycosylation sequences. These sequences protect
the peptides from degradation and increase the overall
expression of Lamp2b fusion proteins in both cells and
exosomes. The glycosylation enhances the stability of these
peptides, improving the targeting capabilities of the exo-
somes towards neuroblastoma cells [109].

Additionally, a technique known as “click chemistry”
has been developed for covalently attaching modifications to
the exosome surface. This method is advantageous due to its
compatibility and rapid reaction rates. Nonetheless, careful
control of several parameters, such as pressure, tempera-
ture, and osmotic pressure, is crucial during modification to
prevent exosome rupture [110]. For instance, researchers
have successfully targeted brain injury areas in cerebral
ischemia models by attaching c(RGDyK) peptides to the
exosome surface using bioorthogonal chemistry [111].
Another approach involves using non-covalent modifica-
tions to incorporate specific ligands or receptors onto exo-
some surfaces [110]. Kooijmans and colleagues, for example,
combined epidermal growth factor receptor (EGFR)-specific
nanobodies with phospholipid (DMPE)-polyethylene glycol
derivatives to create nanobody-polyethylene glycol (PEG)
micelles. These micelles can be integrated into exosome
surfaces without altering their morphology, size distribu-
tion, or protein composition, significantly extending their
circulation time and enhancing their tumor cell targeting
capabilities [112].

The role of engineered modified MSCs Exo in glioma
treatment

Rahmani et al. engineered MSCs Exo to merge with the anti-
EGFRVIII antibody (ab139 scfv) linked to transmembrane
protein Lamp 2b, and encapsulated both cytidine deaminase
(CDA) and miR-34a, genes known for inducing apoptosis. The
study revealed a significantly higher apoptosis induction
rate in US7EGFRVIII cells compared to U87 cells, showcasing
the selectivity of the engineered exosomes. Notably, after
introducing CDA, miR-34a, and CDAmiR, the mortality rates
in U87 cells were 6 %, 9 %, and 12 %, respectively, whereas
for US7EGFRVIII cells, they increased to 13 %, 21%, and
40 %. This indicates that bioengineered exosomes, carrying
two gene therapy agents and targeting EGFRVIII antigen,
substantially elevate apoptosis rates in GBM cells [32]
(Figure 6A). Addressing TMZ-resistant GBM cells, which
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exhibit high heme oxygenase-1 (HMOX-1) expression, re-
searchers modified bone marrow mesenchymal stem cell
exosomes (BMSC Exo) with HMOX-1 specific short peptides
(HSSP) and encapsulated TMZ and STAT3 specific small
interfering RNA (siSTAT3). In vitro and in vivo experiments
showed that HSSP-BMSC Exo effectively targeted anti-TMZ
GBM and, by silencing STAT3, modulated the STAT3-06
methylguanine DNA methyltransferase (MGMT) pathway
to induce apoptosis in TMZ resistant U251 (U251-TR) cells,
thereby restoring drug sensitivity in these gliomas
(Figure 6B). The allogeneic engineered HSSP-BMSC Exo thus
emerges as an excellent carrier for TMZ-resistant GBM,
characterized by outstanding biocompatibility, effective
BBB penetration, prolonged blood circulation time, and
specific targeting [33]. In conclusion, mesenchymal stem
cell exosomes offer a versatile platform for loading anti-
tumor drugs. By attaching protein encoding sequences or
polypeptide links to their surface, their targeting ability can
be significantly enhanced, optimizing the therapeutic
impact. The therapeutic actions and mechanisms of MSCs
Exo in glioma treatment are detailed in Table 2.

Surface modifications on exosomes enable the attach-
ment of protein-coding sequences or peptides, which
significantly enhances their targeting capabilities towards
glioma cells. Additionally, these exosomes, when loaded with
overexpressed gene therapy drugs or anti-tumor agents, can
markedly induce apoptosis in glioma cells. This approach not
only reduces chemotherapy resistance but also substantially
improves the effectiveness of anti-tumor drugs.
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Discussion and summary

There are still urgent issues to be resolved in the study of
MSCs Exo in regulating glioma progression and its use as an
engineered carrier for anti-tumor drugs. Current research
primarily explores the impact of non-coding RNAs within
MSCs Exo on glioma progression. However, future studies
should broaden their scope to include the roles of other
nucleic acids, lipids, proteins, and even mitochondria. Cur-
rent studies on MSC therapy for glioma predominantly uti-
lize BM-MSCs from humans or mice, and human umbilical
cord-derived MSCs (Tables 1 and 2). One study reported that
exosomes from adipose-derived MSCs do not inhibit glioma
cell invasiveness [103], contrasting with another study that
found exosomes from adipose sources can transfer miR-218
to breast cancer cells, reducing their invasiveness [113].
Thus, one significant challenge is identifying a consistent
and suitable source of MSCs for drug delivery, as variations
in MSC origins lead to exosomes with differing sizes, com-
positions, and functionalities. Additionally, the effect of cell
passage number on exosome content remains unclear.
While most research employs third or fourth generation
MSCs for exosome collection, the impact of different gener-
ations on exosome contents and surface properties is not
well understood. MSCs Exo retain certain characteristics of
their parent cells, including tumor-specific targeting abili-
ties. However, their specific molecular targeting mecha-
nisms are not yet thoroughly studied. Future research
should therefore delve into these molecular mechanisms to

[ —> Apoptosis [

Apoptosis{
Sensitivity to TMZ[ Figure 6: Engineered MSCs Exo in glioma
treatment (the figure was drawn using Al and
partly generated using Servier Medical Art,
provided by Servier, licensed under a Creative
Commons Attribution 3.0 unported license).
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Table 2: The therapeutic effects of MSCs Exo on glioma and related mechanisms (“N/A” indicates not mentioned or not applicable).

189

Exo/Evs type Receptor Passage Loading drugs/  Surface Mechanisms/ Function Study model Ref.
cell number  overexpressed modification targets
of cell molecules

UC-MSC-EVs  U87 The third  Vincristine N/A N/A Promote U87 cell In vitro [103]

passage apoptosis

hEnMSCs-Exo  U87/ The third  Atorvastatin N/A N/A Anti-tumor angiogenesis,  In vitro [25]

HUVECs passage migration and
proliferation

Wharton’s us7 Passage  miR-124 N/A CDKe6 Promote chemotherapy In vitro [27]

jelly-MSCs- 3-4 sensitivity of glioma cells

Exo

hMSC-Exo U87 798G N/A anti-miR-9-Cy5 N/A miR-9 Promote chemotherapy In vitro [28]
sensitivity of glioma cells

TRAIL-MSCs-  U87 N/A miR-7 N/A XIAP Increase the sensitivity of  In vitro and in vivo [104]

Exo TRAIL and synergize (U87-Balb/c nude
against tumors mice in situ tumor

formation)

hMSCs-Exo GSCs Passage miR-124a N/A (FOX)A2 Reduce the viability and In vitro and in vivo [21]

3-4 clonality of GSCs and pro- (GSC267-Balb/c nude
long the survival of tumor- mice in situ tumor
bearing mice formation)

BMMSCs-Exo 9L N/A miR-146b N/A EGFR/NF-kB Inhibit the growth of 9L In vitro and in vivo [22]
cells in vitro and slow down (9L-Fischer rat in situ
tumor progression in vivo  tumor formation)

hMSCs-Exo ug7 N/A miRNA-584-5P N/A CYP2J2-AKT/ Inhibition of U87 invasion In vitro and in vivo [201]

MAPK in vitro and slowing of (U87-nude mice sub-
tumor progression in vivo  cutaneous tumor
formation)

hMSCs-Exo ~ U87 N/A miR-375 N/A SLC31 A1 In vitro suppression of In vitro and in vivo [105]
U87’s proliferation, migra- (xenograft tumors in
tion, and invasion, promo- nude mice/specific
tion of apoptosis, and tumorigenesis
in vivo inhibition of xeno-  method unclear)
graft tumor growth in
nude mice

BMSC-Exo us7 The third  miR-512-5p N/A JAG1 Inhibits glioblastoma cell  In vitro and in vivo [106]

passage proliferation and induces  (U87-nude mice in
cell cycle arrest in vitro, in-  situ tumor formation)
hibits glioblastoma growth
and prolongs survival in
mice in vivo
hMSCs-Exo U251/ N/A miR-1208 N/A METTL3/ Enhances hBMSCs-Exo- In vitro and in vivo [39]

U373 NUP214/TGF-B  miR-1208 crossing the (U251-female BALB/c
BBB; effectively inhibits nude mice in situ tu-
tumor growth in vivo and  mor formation)
in vitro

hMSCs-Exo ~ U87/A172 N/A miR-29a-3p N/A ROBO1 Inhibits glioma cell migra-  In vitro and in vivo [24]
tion and VM formation (U87-Balb/c nude

mice in situ tumor
formation)

UCMSC-Exo  U87 N/A CDA/miR-34a Anti-EGFRVIIT  N/A Promote U87 cell In vitro [32]

antibody apoptosis

BMSC-Exo U251-TR  N/A TMZ/siSTAT3 HSSP STAT3-MGMT  Induces apoptosis in In vitro and in vivo [33]

axis U251-TR cells and restores (U251-TR-Balb/c

sensitivity of drug-resistant
glioma to TMZ

nude mice in situ tu-
mor formation)
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enhance targeting capabilities through genetic engineering.
There is also a lack of research on how MSC exosomes affect
different sources and types of glioma cells, an area that
needs further exploration. Most existing research is
confined to laboratory settings, presenting challenges in
transitioning bioengineered MSCs Exo to clinical applica-
tions. The biological origins and mechanisms of exosomes
are not fully understood, and numerous factors influence
their formation, integration into target cells, profiling, and
purification. These factors impact the modification and drug
loading of exosomes. Another hurdle is the mass production
of exosomes, requiring standardized processes for their sep-
aration, purification, drug loading, and modification. For
MSCs in particular, the purification and cultivation conditions
in the human body are stringent, adding to the complexity. In
summary, the clinical application of MSCs Exo requires opti-
mization in several areas, including large-scale production,
separation, drug loading, and surface modification.

MSCs Exo, as a critical medium for intercellular
communication, plays a pivotal role in glioma progression.
While the exact function of MSCs Exo in glioma is still under
debate, mainly due to variations in MSC origins and glioma
progression stages, their potential as carriers for therapeutic
drugs is broad and undeniable. MSCs not only possess
common exosomal characteristics and unique advantages
but also produce more exosomes compared to other cells,
demonstrating strong tumor targeting capability. This
capability could be further enhanced by surface modifica-
tions and alterations in content, improving the targeting and
inhibition of glioma invasion. However, research on MSCs
Exo is still in its infancy, with many unanswered questions.
Our aim is to overcome these challenges soon and develop a
more efficient and comprehensive glioma treatment strat-
egy based on MSCs Exo.
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