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Abstract

Objectives: To investigaed the role of endoplasmic reticu-
lum stress (ERS)-related long non-coding RNAs (lncRNAs) in
stomach adenocarcinoma (STAD) using TCGA data.
Methods: This study integrated clinical, transcriptomic,
and tumor data from the Cancer Genome Atlas (TCGA). The
expression of ERS genes was evaluated, alongside their as-
sociation with identified lncRNAs. Gene set enrichment
analysis and immune cell infiltration analysis were per-
formed to elucidate the biological pathways influenced by
these lncRNAs.
Results: The study identified five lncRNAs – AC012055.1,
LINC01235, LINC00571, LINC02073, and CFAP61-AS1 – strongly
correlated with ERS pathways and cancer prognosis. A prog-
nostic model based on these lncRNAs was developed and
validated across low- and high-risk groups. Potential biological
pathways associated with these lncRNAs were uncovered
through immune cell infiltration and GSEA. Additionally,
screening identified drugs potentially effective against STAD,
highlighting co-expressedgenesasprobable therapeutic targets.
Conclusions: This research offers detailed insights into the
molecular mechanisms of STAD, enhancing understanding
of potential therapeutic targets and showing promise for
clinical applications.
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Introduction

Stomach adenocarcinoma (STAD) is a highly prevalent global
malignancy, with approximately one million cases annually
[1]. It is known to be a highly aggressive cancer that often
results in poor patient outcomes [2]. Although the exact
cause of STAD remains unclear, emerging evidence suggests
the involvement of endoplasmic reticulum stress (ERS) and
its associated signaling pathways in its development and
progression. For instance, Ogawa et al. observed a significant
correlation between ERS markers and STAD progression [3],
and Koike et al. identified that STAD tissues exhibit height-
ened ERS signaling, suggesting its potential role in tumor
malignancy [4]. The endoplasmic reticulum (ER) plays an
important role in lipid biosynthesis [5], protein folding [6],
and trafficking [7]. Homeostatic disturbances can result in
the buildup of misfolded proteins and initiating ERS [8].
Persistent and severe ERS can ultimately lead to cell death.
Consequently, cells activate the unfolded protein response
(UPR) to restore cellular balance [9, 10]. Beyond STAD, ERS
has been implicated in the pathogenesis of various cancers
[11], reinforcing its potential role in oncogenesis. Notably,
the expression of several UPR-related genes has been re-
ported to be increased in STAD tissues, marking the activa-
tion of the UPR signaling pathway [12]. Moreover, recent
studies highlight the aberrant expression of long non-coding
RNAs (lncRNAs) in STAD [13]. Intriguingly, emerging litera-
ture, such as the findings of Cui et al. [14], suggests that
lncRNAs can modulate ERS and UPR signaling, offering a
novel avenue of exploration in STAD’s molecular landscape.

LncRNAs, a class of non-coding RNAs exceeding 200
nucleotides in length, are transcribed from the genome
similarly to protein-coding genes [15]. They regulate tran-
scription, post-transcriptional processes, and chromatin
modification [16]. Previous studies have implicated dys-
regulated lncRNAs in the pathogenesis of several diseases,
including cancer [17, 18]. Additionally, Pan and Xie re-
ported that lncRNAs regulate ERS and UPR signaling in
cancer [19]. Numerous studies have pinpointed distinct
lncRNAs involved in regulating ERS across different cancer
types, including STAD [20]. For example, the lncRNA XIST
has been shown to inhibit ERS-induced apoptosis in STAD
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cells [21]. Another lncRNA, UCA1, has been reported to
regulate ERS and promote cell proliferation in STAD [22].
Hence, it is essential to further investigate the role of
lncRNAs in STAD-associated ERS.

In this study, by integrating datasets from The Cancer
Genome Atlas (TCGA) – including expression, mutation, and
clinical data – the focus was on identifying prognostic
lncRNAs and potential therapeutic targets for STAD. Our
exploration led us to discern a subset of lncRNAs intricately
linked to both ERS pathways and prognosis. This research led
to the development of a prognostic model based on the
identified lncRNAs, which was further validated across
various clinical subgroups. The study involved evaluating
Gene Set Enrichment Analysis (GSEA), immune cell infiltra-
tion, and the tumor microenvironment to understand the
biological pathways potentially influenced by these lncRNAs.
Moreover, our screening identified potential drugs against
STAD and their affiliated co-expressed genes as therapeutic
contenders. Notably, our drug sensitivity analysis unveiled
that certain compoundsmanifested efficacy specifically in the
C3 or C2 gene subtypes. Hence, gene subtype-based thera-
peutic strategies might usher in enhanced clinical outcomes
for distinct prognostic risk profiles. Collectively, our research
furnishes a holistic grasp of STAD’s molecular intricacies and
unveils potential therapeutic avenues for clinical deployment.

Materials and methods

Rationale for utilizing TCGA data analysis methods

This study utilized data from TCGA due to its comprehensive and well-
validated nature, rendering it an ideal resource for cancer research.
TCGA offers extensive genomic data, including transcriptomic, muta-
tional, and clinical datasets, essential for identifying potential bio-
markers and therapeutic targets in cancer research. Specifically, our
focus on lncRNAs in the context of ERS in STAD necessitated a database
with broad and detailed genomic information. The integrative bioin-
formatics approach adopted in this study, which combined gene
expression profiles with clinical data, facilitated a comprehensive un-
derstanding of the molecular mechanisms underlying STAD. This
method also aided in identifying potential prognostic lncRNAs and
therapeutic targets. This approach also facilitated the development and
validation of a prognostic model based on these lncRNAs, emphasizing
the utility of TCGA data in clinical applications for STAD.

Data preprocessing

The study acquired 448 transcriptome expression datasets, 434 tumor
mutation datasets, and 443 clinical datasets from the TCGA database,
which is accessible at https://tcga-data.nci.nih.gov/tcga/. This clinical
data included gender, age, and survival details. Using the Perl

programming language, this data was consolidated into a matrix file.
The research identified 295 ERS-related genes (Table S1), by querying the
Molecular Signatures Database (https://www.gsea-msigdb.org/gsea/
msigdb/index.jsp) using ERS-specific keywords (Table S2).

Evaluation of differentially expressed ERS-related
lncRNAs

The “limma” R package was utilized to identify 1364 ERS-associated
lncRNAs, applying cutoff values of |r|>0.6 and p<0.001 using Pearson’s
correlation coefficient. Differentially expressed ERS-related lncRNAs
were further selected by applying a threshold of adjusted p<0.05 and |
log2 (fold change, FC)|>1, in a comparison between STAD samples and
non-carcinoma samples. The ‘limma’ R package was employed to
identify 1364 ERS-associated lncRNAs, using cut-off values of |r|>0.6
and p<0.001 as determined by Pearson’s correlation coefficient. The
selection of differentially expressed ERS-related lncRNAs was further
refined by applying a threshold of adjusted p<0.05 and |log2 (fold
change, FC)|>1, in comparisons between STAD samples and non-
carcinoma samples.

Development of a prognostic model for ERS-related
lncRNAs

A prognostic model for ERS-related lncRNAs was constructed in the
following manner: initially, survival-related lncRNAs were identified
from the pool of differentially expressed ERS-related lncRNAs, employing
univariate Cox regression analysis and taking into account clinical data
from STAD patients. Subsequently, the identified prognostic lncRNAs
were subjected to LASSO-Cox regression analysis to mitigate overfitting.
This process involved one thousand cycles and was conducted with a
significance level set at p<0.05. The risk scores were then calculated using
the following formula:

Risk score = ∑
n

i=1
(coefi* exp ri)

where Σ represents the sum of all included lncRNAs, coefi represents
coefficient index, and expri represents expression level.

Verification of the risk model

Initially, the entire TCGA cohort underwent random division into
training and testing groups at a 1:1 ratio. Observations were allocated to
either the low- or high-risk group based on theirmedian risk scores, and
the predictive efficacy of the risk model was assessed using the Chi-
square test. Survival curves were generated according to the number of
events in each group, utilizing the “survival” and “survminer” packages.
The reliability of the risk scores was evaluated using the testing set.
Furthermore, univariate Cox regressions, LASSO, and multivariate Cox
regressionswere conducted using STADpatients’ clinical data, including
ages, gender, and stage. The prognostic effectiveness was assessed using
time-dependent Receiver Operating Characteristic (ROC) curve analysis
and Harrell’s concordance index (C-index) with the “survival”, “surv-
miner”, and “timeROC” R packages.
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Nomogram establishment

A nomogram was constructed to evaluate the reliability of the prediction
outcomes, incorporating factors such as gender, age, grade, risk score, and
tumor stage. The “rms” R package was utilized for this purpose, and
Hosmer-Lemeshow goodness-of-fit test curves were created as line graphs
for 1-, 2-, and 3-year overall survival (OS). The predictive performance of
the nomogram was assessed using the C-index and time-dependent ROC
curve, computed with the “survival” and “timeROC” R packages.

Gene ontology and Kyoto encyclopedia of genes and
genomes enrichment analysis

In this study, an enrichment analysis was conducted to elucidate various
signaling pathways and their biological effects, based on the findings ob-
tained. This analysis was facilitated using the ‘clusterProfiler’ package, an
R-based tool that offers a streamlined way to perform statistical analysis
and visualization of functional profiles for genes and gene clusters. The
package can be accessed via the Comprehensive R Archive Network at
CRAN URL for clusterProfiler. For the analysis, both the p-value and
q-value thresholdswere set at0.05. Statistically significant enrichmentwas
defined as cases where both the False Discovery Rate (FDR) and p-value
were less than 0.05. For reference to the Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) databases, please visit:

GO: http://geneontology.org/; KEGG: https://www.genome.jp/kegg/.

Gene set enrichment analysis

Several R packages were employed to further explore changes in gene
expression among different risk groups in the study. These include:
‘org.Hs.e.g. db’: An R package providing mappings between Entrez Gene
IDs and various gene identifiers. This package is crucial for gene
annotation in our analysis. Available at Bioconductor URL for org.Hs.e.g.
db. ‘limma’: utilized for analyzing gene expression data from micro-
array or RNA-seq technologies. It uses linear models for differential
expression in complex experiments. Available at Bioconductor URL for
limma. ‘enrichplot’: this package assists in visualizing functional
enrichment results, making it easier to interpret gene set enrichment
analysis. Available at Bioconductor URL for enrichplot. ‘clusterProfiler’:
as previously mentioned, this package was used for both statistical
analysis and visualization of functional profiles. For Gene Set Enrich-
ment Analysis (GSEA), refer to the official GSEA website: http://www.
gsea-msigdb.org/gsea/index.jsp.

Tumor mutation burden analysis

The R package “maftools” was utilized to investigate the Mutation
Annotation Format (MAF) data on somatic mutations, and the tumor
mutation burden (TMB) score for each STAD sample was calculated
using a specified methodology:

TMB = totalmutation
total coveredbases

× 106

Immune cell infiltration analysis and immune
checkpoints analysis

The R package ‘ESTIMATE’ assesses stromal cell and immune cell scores,
enabling the evaluation of tumor purity. Immune cell infiltration in
tumor samples was analyzed using single-sample GSEA for 29 different
immune cell types. Furthermore, the ‘ggpubr’ R package was used to
evaluate immune checkpoint molecules and visualize them through
boxplots in R.

Drug sensitivity analysis

Chemosensitivity analysis was conducted to explore potential differ-
ences in the sensitivity to chemotherapeutic drugs between low- and
high-risk groups among STAD patients. The analysis of drug sensitivity
was performed using the ‘limma’ package with a p-value threshold of
0.001, and diagrams illustrating the results were created using ‘ggplot2,’
with the ‘ggpubr’ package aiding in the visualization.

Consensus clustering

Consensus clustering was conducted on patients from TCGA database
using the Consensus Cluster Plus R package, with a focus on the five
selected ERS-related lncRNAs. The optimal number of clusters was
determined through the analysis of the cumulative distribution function
and consensus matrix.

Statistical analysis

Pearson correlation analysis was determined to investigate the associ-
ation between ERS-related genes and lncRNAs using R version 4.2.2. The
Wilcoxon signed-rank test was applied to assess immune infiltrating
cells and p-value less than 0.05 was considered significant.

Results

Identification of LncRNAs co-expressed with
RES in STAD

As depicted in Figure 1, the analysis was initiated by
acquiring transcriptome data from 412 STAD tissues and 36
normal tissues, followed by conversion of Ensembl ID into
official gene names and categorization of transcripts as
either mRNAs or lncRNAs. Subsequently, 295 ERS-related
genes were identified based on their mRNA expression. Po-
tential ERS-related lncRNAs were identified by filtering out
958 lncRNA genes that exhibited a correlation coefficient
greater than 0.6 and a significance level of p<0.001.
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Construction and the validation the
prognostic risk signature

The WilcoxTest was employed to analyze the differential
expression of lncRNAs co-expressed with ERS genes between
tumor and normal groups in TCGA. In the tumor group, 523
genes exhibited upregulation, while 58 genes showed down-
regulationwhencompared to thenormal group (Figure 2Aand
B). To construct a prognostic risk score model, clinical data of
TCGA-STAD was downloaded and merged with the above dif-
ferential expression data. The samples were divided into two
groups: a training group for constructing the model and a
testing group for validating the model. Univariate Cox
regression analysis identified 32 lncRNAs (AL352979.4,
AL137798.1, LINC02533, AC079467.1, LINC01354, AL022326.1,
SNHG14, AC084880.3, AC100849.1, LINC01990, AC110491.1,
AL161457.1, ADAMTS9-AS2, LINC01537, AC012055.1, AP006248.3,
AC027243.3, RBMS3-AS3, AL033543.1, LINC01235, AC008808.1,
GAS1RR, MRGPRF-AS1, LINC00571, AC073548.2, RMDN2-AS1,
LINC02073, DIRC3, ARHGEF26-AS1, AL583829.1, AC109927.1 and
CFAP61-AS1) that were associated with prognosis (Figure 2C
and D). Using LASSO regression analysis, 12 lncRNAs
(AL352979.4, LINC02533, AC110491.1, AL161457.1, AC012055.1,
AP006248.3, AC027243.3, LINC01235, AC008808.1, LINC00571,
LINC02073 and CFAP61-AS1) were selected (Figure 2E and F).

Finally, five prognostic lncRNAs were identified using multi-
variate Cox regression analysis. The regression coefficients of
the five lncRNAs were obtained using the R-package “Sur-
vival”. The risk score was calculated based on the screened
significant lncRNAs using the following formula: risk score =
(1.2059 × AC012055.1) + (0.32184 × LINC01235) + (−1.3766 ×
LINC00571) + (1.0984 × LINC02073) + (0.3024 × CFAP61-AS1).

Theprognostic power of themodelwas evaluated through
several analyses, including Kaplan-Meier (KM) survival curve,
independent prognostic, receiver operating characteristic
(ROC) curve, and nomogram. The KM analysis showed that
low-risk grouppatients had abetter prognosis compared to the
high-risk group (p<0.001), with an increasing death rate as the
risk score increased (Figure 3A). Furthermore, a heatmap
showed that LINC00571 was a protective lncRNA, while
AC012055.1, LINC01235, LINC02073, and CFAP61-AS1 were risk
lncRNAs (Figure 3B). ROC analysis revealed that the risk score
exhibited superior predictive performance compared to other
clinical indicators (Figure 3C), achieving an area under the
ROC curve (AUC) of 0.656 for 1-year survival, 0.697 for 3-year
survival, and 0.678 for 5-year survival (Figure 3D). Univariate
and multivariate analyses of independent prognostic factors
revealed that the risk score obtained from the prognostic
prediction model was an independent prognostic factor
(Figure 3E and F). A nomogram was developed to enhance

Figure 1: The workflow of this study.
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surgical prediction for STAD patients. The calibration curves
for 1-, 2-, and 3-year OS demonstrated strong agreement be-
tween the nomogram’s predictions and actual observations
(Figure 3G and H). The C-index for this risk model was 0.695
(95 % CI: 0.671–0.719). These findings indicate that the newly
constructed risk model is a more accurate predictor of prog-
nosis (Figure S1A–F).

Identify the differentially expressed genes
(DEGs) and functional enrichment analysis
between high- and low-risk groups

Differential expression analysis was conducted to investi-
gate the biological functions and pathways associated with
the risk score. This analysis compared the high- and low-risk

Figure 2: Identifying differentially expressed ERS-related lncRNAs in STAD. (A) Volcano plot depicting differential expression of ERS-related lncRNAs in
STAD tissues compared to those in normal tissues; (B) heatmap illustrating the expression levels of ERS-associated differentially expressed lncRNAs;
(C) heatmap displaying the expression levels of the 32 prognostic lncRNAs in all patients; (D) univariate Cox regression analysis of the 32 lncRNAs
associated with prognosis; (E) distribution of LASSO coefficients for the ERS-related lncRNAs; (F) cross-validation procedure for optimizing LASSO
regression parameters.
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Figure 3: Prognostic value of the five ERS-related lncRNAsmodel. (A) KM survival curves comparing the OS of patients in these two groups in the training
cohort; (B) the reference risk curve and heat map depicting the expression levels of the five ERS-related lncRNAs in the training cohort; (C) comparison of
the predictive accuracy of the clinical characteristics and the risk model using ROC curves; (D) time-dependent ROC curve indicating the overall survival
rates at 1, 2, and 3 years; (E) univariate Cox regression analysis of clinical features and the riskmodel for prognosis; (F)multivariate Cox regression analysis
of clinical features and the risk model for prognosis; (G) nomogram integrating the risk score and other clinical factors to predict overall survival;
(H) calibration curves for 1-, 2-, and 3-year survival predictions demonstrating the high agreement between predictions and observations.
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groups, applying a cutoff value of |logFC|>1 and an FDR<0.05.
Our analysis revealed 696 up-regulated genes and 54 down-
regulated genes (Figure 4A and B). Subsequently, GO, KEGG
enrichment analysis, and GSEA were conducted to identify
enriched biological functions and pathways. Our GO enrich-
ment analysis revealed that the DEGs were significantly
enriched in collagen-containing extracellular matrix and re-
ceptor ligand activity (Figure 4CandD). KEGGanalysis showed
that the DEGs were significantly enriched in neuroactive
ligand-receptor interaction and dilated cardiomyopathy
(Figure 4E and F). Furthermore, GSEA analysis revealed that
amino, nucleotide, and lipid metabolism were enriched in
the low-risk group. In contrast, the high-risk group was
enriched in vascular smooth muscle contraction, dilated car-
diomyopathy, hypertrophic cardiomyopathy, focal adhesion,
andneuroactive ligand receptor interaction (Figure 4GandH).

Analysis of mutation pattern between low-
and high-risk groups

The relationship between the risk score and mutation
patterns was investigated by conducting TMB analysis on
434 STAD samples obtained from TCGA. Significantly
mutated genes associated with ERS were identified using
Fisher’s exact test with a p-value threshold of 0.01. It was
observed that there were diverse somatic mutation profiles
in both the low- and high-risk groups. The genes with the
most mutations were TTN, TP53, MUC16, LRP1B, ARID1A,
CSMD3, SYNE1, FAT4, FLG and PCLO, with TTN ranked first
(Figure 5A and B). A significant negative correlation was
observed between the risk score and TMB (R=−0.12,
p=0.013) (Figure 5C and D). Additionally, patients with
higher TMB scores displayed improved overall survival in
the STAD cohort. Within the high-risk category, individuals
with low TMB scores exhibited the poorest overall survival
(Figure 5E). Moreover, patients in the low-risk group with
higher TMB scores (Figure 5F).

Drug sensitivity analysis and immune cell
infiltration analysis

Our analysis of the tumor microenvironment has revealed
significant differences in immune and stromal scores be-
tween high- and low-risk groups (Figure 6A–C; p<0.001).
Correlations between immune cell populations and risk
scores were also investigated, with T cells and NK cells
demonstrating significant negative correlations with risk
scores, while other immune cell populations showed signifi-
cant positive correlations (Figure 6D). Additionally, survival

analyses performed on samples divided by immune cell content
showed that cancer-associated fibroblast_MCPCOUNTER,
Endothelial cell_XCELL, andMacrophage_TIMERhad a higher
prognosis in the low-risk group (p<0.05), while T cell follicular
helper_CIBERSORT and uncharacterized cell_EPIC had a
higher prognosis in the high-risk group (p<0.05) (Figure 6E–I).
Our analysis of immune cell and function scores using ssGSEA
further demonstrated significant differences between low-
and high-risk groups (Figure 6J and H). Immune function
scores were also significantly higher in the high-risk group
(Figure 6L; p<0.05). Specifically, HLA (-DRA, -DOA, -DPB1,
-DPA1, -DPB2, -DQA1, and -DRB6) expressions were signifi-
cantly higher in the high-risk group than in the low-risk group
(Figure 6L; p<0.05). These results highlight the important role
of the tumor microenvironment and immune cell regulation
in STAD and provide valuable insights for future research in
this area.

Our tumor microenvironment analysis revealed that
individuals in the high-risk group displayed a pronounced
immune-hot phenotype, whereas those in the low-risk
group exhibited immune-cold characteristics. These
findings suggest that the high-risk groupmay benefit more
from immune checkpoint inhibitor (ICI) treatment. Drug
sensitivity results demonstrate that AZD8055, AZD8186,
BMS-75807, CZC24832, Dactolisisb, AMG-319, AT13148,
AZ960, AZDBB2, AZD2014, Dasatinib, Entospletinib, Fore-
tinib, GNE-317, Luminespib, GSK2606414, IGFIR-3801,
JAK-8517, JAKI_8709, Mirin, Nilotinib, NU7441, PCI-34051,
PD173074, Pictilisib, PLX-4720, PRIMA-IMET, RVX-208,
Staurosporine, Uprosertib, WZ4003 and XAV939 were
effective in the low-risk group (Figures 7, S2, and S3).
Conversely, Afatinib, Dabrafenib, Dihydrorotenone,
Erlotinib, Gefitinib, Lapatinib, Osimertinib, PF-4708671,
Ribociclib, Sapitinib and TAFI-5496 were more effective in
the high-risk group (Figures 7, S2, and S3).

Using an unsupervised consensus clustering
algorithm to validate the prognostic risk
signature

This study employed a combination of statistical analyses and
clustering algorithms to identify and characterize prognostic
risk signatures in a cohort of cancer patients. Specifically, the
approach involved the utilization ofunivariateCox regression
analysis, LASSO, and multivariate Cox regression analysis to
develop the risk signature. This signature was then validated
using unsupervised consensus clustering. This approach led
us to identify three distinct gene subtypes, referred to as gene
C1-3 (Figure 8A), with gene C3 showing the best survival
prognosis (Figure 8B). To gain additional insights into the
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Figure 4: Identification of DEGs and functional enrichment analysis. (A) Volcano plot displaying the DEGs between the high- and low-risk groups;
(B) heatmap of the top 50 DEGs; (C) GO analysis of DEGs enriched in biological processes; (D) GO analysis of DEGs enriched in molecular functions;
(E) KEGG analysis of DEGs; (F) KEGG pathway analysis of DEGs; (G) GSEA showing enriched pathways in low-risk group; (H) GSEA showing enriched
pathways in high-risk group.
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Figure 5: Illustrates the TMB analysis between the low- and high-risk groups. (A, B) The somatic mutations in each group; (C) the relationship between
the risk score and TMB; (D) TMB distribution in STAD cases categorized by risk groups; (E, F) the correlation between TMB, which includes different risk
scores, and survival probability.
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Figure 6: Presents the results of the immune cell infiltration analysis. (A–C) Box plots reveal a statistically significant difference in immune score, stromal
score, and estimat score; (D) correlation analysis indicates a significant relationship between immune cell infiltration and risk score; (E–I) the correlation
between immune cell infiltration and survival probability is demonstrated through KM curves; (J) ssGSEA enrichment analysis suggests the involvement of
various immune cells in the tumor microenvironment; (K) functional enrichment analysis identifies immune-related pathways that are significantly
enriched; (L) box plots show differential expression of immune checkpoint genes in the high-risk group compared to the low-risk group. *p<0.05,
**p<0.01, ***p<0.001 vs. low-risk group.
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Figure 7: Analysis of drug sensitivity across high- and low-risk groups. (A) Sensitivity of Afatinib differentiated between high- and low-risk cohorts;
(B) comparative sensitivity of AMG-319 in high-vs. low-risk groups; (C) differential sensitivity to AT13148 between the risk categories; (D) assessment of
AZ960 sensitivity across the risk strata. (E) Sensitivity variation of AZD1332 between high- and low-risk groups; (F) AZD2014 sensitivity contrasted between
the risk groups; (G) sensitivity profile of AZD8055 in the two risk classifications; (H) disparity in AZD8186 sensitivity between high- and low-risk patients;
(I) evaluation of BMS-754807 sensitivity across high- and low-risk groups; (J) sensitivity differentiation of CZC24832 among the risk cohorts; (K) dabrafenib
sensitivity comparison between high- and low-risk classifications; (L) examination of dactolisib sensitivity between the identified risk groups.
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Figure 8: The relationship between gene subtypes and various aspects of the TME, including immune cell infiltration, immune checkpoint expression,
TMB, and drug sensitivity. (A) The consensus clustering of STAD patients with K=3; (B) overall survival curves for three different gene subtypes; (C) the
Sankey diagram illustrates the distribution of different risk groups and gene subtypes; (D) PCA and tSNE analysis of the high- and low-risk groups; (E) PCA
and tSNE analysis of the different gene subtypes; (F–H) boxplots depicting the statistical differences in immune score, stromal score, and estimat score;
(I) boxplots showing the differential expression of immune checkpoint genes; (J) the expression levels of immune cells in different gene subtypes.
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Figure 9: Analysis of drug sensitivity in different gene subtypes. (A) Sensitivity of Acetalax differentiated among C1, C2, and C3 gene subtypes;
(B) comparative sensitivity of Afatinib in these groups; (C) differential sensitivity to AZ960 among the gene subtypes; (D) assessment of AZD1332 sensitivity
across the gene strata. (E) Sensitivity variation of AZD2014; (F) AZD8055 sensitivity contrasted among groups; (G) sensitivity profile of BMS-345541 in the
three gene classifications; (H) disparity in BMS-754807 sensitivity among C1, C2, and C3 patients; (I) evaluation of Cediranib sensitivity; (J) sensitivity
differentiation of dabrafebib among the gene cohorts; (K) dasatinib sensitivity; (L) examination of dihydrorotenone sensitivity.
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relationship between the risk score and genotypes, a Sankey
diagram was employed. This diagram revealed that gene C3
was closely associated with the low-risk group, while the other
two clusters were more closely associated with the high-risk
group (Figure 8C). Dimensionality reduction analyses using PCA
and t-SNE further confirmed these findings, with clear clus-
teringobservedbetweenhighand low-risk groupsbasedon risk
score, as well as between the three gene subtypes (Figure 8D
and E). The study also investigated the relationship between the
risk signature and the tumor microenvironment, including the
evaluation of immune cell expression and scores for immune
infiltration, stromal cells, and ESTIMATE scores. Notably, gene
C3 exhibited significantly lower immunescores, stromalscores,
and ESTIMATEscores compared to C1 and C2, suggesting a less
immunogenic and stromal-rich tumor microenvironment in
this group (Figure F-H; p<0.001). In line with this, the study
observed that stroma score_XCELL, endothelial cell_XCELL,
cancer-associated fibroblast_MCPCOUNTER, cancer-associated
fibroblast_XCELL, and endothelial cell_MCPCOUNTER were all
lower in C3 when compared to the other two gene subtypes
(Figure 8J). The study’s analysis of immune checkpoints
revealed significant differences in the expression of several key
immune checkpoint genes. These included ADORA2A, BTNL2,
BTLA, CTLA4, C10orf54, CD (27, 28, 40, 40LG, 44, 48, 70, 80, 86, 160,
200, 200R1, 244, 274, 276), IDO (1, 2), ICOS, ICOSLG, LAG3, LAIR1,
TNFRSF (4, 8, 9, 18), TNFSF (4, 9, 14, 15, 18), TIGIT, TMIGD2,
PDCD1LG2, PDCD1, KIR3DL1, HAVCR2, VTCN1, and NRP1
(Figure 8I). Notably, gene C3 exhibited lower expression of
several immune checkpoint genes, including CTLA4, LAG3,
IDO1, and PDCD1LG2, which could potentially make it more
responsive to immune checkpoint inhibitor therapy (Figure 8I).
Overall, ourfindings highlight the potential clinical utility of our
prognostic risk signature in guiding personalized treatment
decisions for cancer patients, particularly those in the low-risk
and gene C3 subgroups.

Our analysis ondrug sensitivity underscored that distinct
compounds manifested efficacy tailored to specific gene
subtypes, either C3 or C2. For the C3 group, therapeutic po-
tential was evident with compounds including AZ960,
AZD1332, AZD2014, AZD8055, Dasatinib, BMS-754807, Cedir-
anib, Doramapimod, Entospletinib, IGFIR_3801, JAK_8517, JQ1,
NU7441, Nutlin-3a, PCI-34051, RO-3306, RVX-208, SB216763,
Staurosporine, WZ4003, and XAV939 (Figures 9, S4, and S5).
On the other hand, the C2 group exhibited responsiveness to
Acetalax, Afatinib, BMS-345541, Dabrafebib, Dihydror-
otenone, Erlotinib, Gefitinib, Lapatinib, Leflunomide, ML323,
OSI-027, Oxaliplatin, Pevonedistat, PF-4708671, Sapitinib, and
TAFFI_5496 (Figures 9, S4, and S5). These findings suggest
that personalized therapeutic interventions based on

gene subtypes may lead to better clinical outcomes for
patients with different prognostic risk signatures.

Discussion

Adenocarcinomas of the esophagus, stomach, colon, or
rectum collectively result in approximately 1.4million global
deaths each year [23]. Among them, STAD ranks fifth in
incidence and third in cancer-related mortality, remaining a
substantial global health concern [24]. The high incidence,
aggressive nature, and drug resistance associated with STAD
have compounded the challenges in therapy and prognostic
management [25]. Hence, the quest for a novel molecular
marker to assess prognosis and guide treatment in STAD
patients assumes paramount importance.

Several studies have introduced prognostic signatures
for assessing patient outcomes in various types of tumors
[26–30]. Wu et al. [26] revealed the potential of ERS-related
lncRNAs in predicting the prognosis of bladder cancer pa-
tients. Li et al. [27] showed that lncRNA MALAT1 may
enhance the protective effect of DEX against acute lung
injury by sequestering miR-135a-5p to suppress ERS. Lin
et al. [28] identified that lncRNA DIRC1’s expression
significantly correlated with poor survival and immune
infiltrations in STAD, suggesting its promise as a prognostic
biomarker for this disease. Liao et al. [29] constructed a
prognostic prediction model for STAD using seven lncRNAs
-AL (353804.1, 355574.1, 161785.1), AC (010719.1, 009948.1,
005586.1), and TNFRSF10A-AS1-, which accurately predicted
patient prognosis. Cai et al. [30] developed an immune
signature to forecast both the prognosis and drug sensi-
tivity of STAD patients. Furthermore, an immune-related
lncRNA-based prognostic evaluation model has emerged as
a promising therapeutic biomarker for STAD. However, the
precise role of ERS-related lncRNAs in STAD necessitates
further investigation.

Through the study, five lncRNAs associated with STAD
were identified. Among them, AC012055.1, LINC01235,
LINC02073, and CFAP61-AS1 exhibited a protective effect for
prognosis, while LINC00571 demonstrated the opposite ef-
fect. Previous studies have identified LINC01235 (also known
as FLJ41200; ENSG00000270547.1) as a cancer-associated
gene located in the telomeric and centromeric regions of
CD274 (PDL-1) at 9p23 in small-cell lung carcinoma [31]. This
implies a potential association between LINC01235 and im-
mune regulation in cancer. Additionally, LINC02073 has
been implicated as a damage factor in cervical squamous cell
carcinoma [32]. CFAP61-AS1, on the other hand, has been
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found to be significantly associated with targeted therapy
and prognosis in patients with depression [33]. Moreover, its
expression was observed to be higher in STAD compared to
normal samples and was shown to promote tumor growth
and progression, indicating its potential as a prognostic
predictor for STAD patients.

Subsequently, it was observed that the ERS-related
lncRNAs identified in the study were enriched in a variety
of biological pathways. Notably, amino sugar and nucleo-
tide sugar metabolism are critical pathways involved in
numerous cellular processes, such as glycosylation,
glycosaminoglycan biosynthesis, and protein and lipid
modifications. Aberrations in these metabolic pathways
have been linked to the development and progression of
several cancer types, including prostate [34], breast [35],
liver [36], and lung cancer [37]. For instance, studies have
demonstrated that changes in amino sugarmetabolism can
drive prostate cancer development [38]. Specifically,
increased expression of the enzyme responsible for con-
verting UDP-GlcNAc to UDP-GalNAc, a key step in glycos-
aminoglycan synthesis, was found to be associated with
prostate cancer progression and poor patient prognosis
[39]. In breast cancer, alterations in amino sugar meta-
bolism have also been linked to disease progression [40].
Notably, increased expression of the enzyme responsible
for converting UDP-GlcNAc to UDP-GalNAc was associated
with poor patient prognosis and increased risk of metas-
tasis [41]. Moreover, nucleotide sugarmetabolism has been
implicated in cancer development and progression [42],
with alterations in the biosynthesis of sialic acid promot-
ing tumor growth and metastasis in liver cancer [43].
Similarly, changes in the biosynthesis of UDP-GlcNAc have
been linked to cancer cell proliferation and survival in
lung cancer [44]. As the ER is the source of ERS, and the
degradation of stress proteins aids in restoring cellular
homeostasis, these findings suggest the need for further
investigation into the molecular mechanisms underlying
ERS-related lncRNAs in STAD [45].

Conclusions

This comprehensive bioinformatics analysis of TCGA data,
centered on STAD, has brought the ERS pathway to the fore-
front, identifying key lncRNAs co-expressed with ERS-related
genes. Our investigations into immune cell infiltration and the
tumor microenvironment have revealed potential immuno-
suppressive agents impacting STAD prognosis. Further, GSEA
enrichment has linked these lncRNAs to critical metabolic and
cellular pathways. A prognostic model, derived from these
lncRNAs, has been developed and validated across diverse

clinical scenarios, affirming its reliability. Importantly, this
study underscores the pivotal roles of lncRNAs in STAD’s
molecular landscape, offering new insights for diagnostic and
therapeutic strategies. Looking ahead, the identified lncRNAs
and their associated pathways present promising targets for
future research. These findings pave the way for developing
more personalized and effective treatments for STAD.Ongoing
studies should focus on translating these bioinformatics find-
ings into clinical trials, exploring the therapeutic potential of
targeting these lncRNAs, and further unraveling their roles in
STAD progression and response to therapy. This research
forms a foundation for innovative approaches to combat this
challenging malignancy, signifying a leap towards more tar-
geted and precise oncological interventions.
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